metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1-methyl-1H-imidazole-κN3)bis­­[2-(naphthalen-1-yl)acetato-κO]copper(II) monohydrate

aJiangsu Marine Resources Development, Research Institute, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, bDepartment of Mathematics and Science, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, cDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, dDepartment of Chemical Engineering, Huaiyin Insititute of Technology, Huaiyin 223003, People's Republic of China, and eQian'an College, Hebei United University, Tangshan 063009, People's Republic of China
*Correspondence e-mail: yfj1999@126.com

(Received 10 November 2011; accepted 19 November 2011; online 25 November 2011)

In the crystal structure of the title compound, [Cu(C12H9O2)2(C4H6N2)2]·H2O, the CuII atom is coordinated by two 2-(naphthalen-1-yl)acetate anions and two 1-methyl­imidazole ligands, giving monomeric complexes with a square-planar coordination environment. Two complex mol­ecules and two water mol­ecules form a centrosymmetric ring system via O—H⋯O hydrogen bonds.

Related literature

For the pharmacological potential of metal complexes with imidazole, see: Boiani & Gonzales (2005[Boiani, M. & Gonzales, M. (2005). Mini Rev. Med. Chem. 5, 409-424.]); Parshina & Trofimov (2011[Parshina, L. N. & Trofimov, B. A. (2011). Russ. Chem. Bull. 60, 601-614.]). For the coordination chemistry of 1-naphthyl­acetate ligands, see: Yin et al. (2010[Yin, F.-J., Zhao, H. & Hu, X.-L. (2010). Synth. React. Inorg. Met. Org. Nano-Metal Chem. 40, 606-612.]); Chen et al. (2004[Chen, L.-F., Zhang, J., Song, L.-J., Wang, W.-G. & Ju, Z.-F. (2004). Acta Cryst. E60, m1032-m1034.]); Yang et al. (2008[Yang, Y.-Q., Li, C.-H. L. W. & Kuang, Y.-F. (2008). Chin. J. Struct. Chem. 30, 4524-4530.]); Tang et al. (2006[Tang, D.-X., Feng, L.-X. & Zhang, X.-Q. (2006). Chin. J. Inorg. Chem. 22, 1891-1894.]); Ji et al. (2011[Ji, L.-L., Liu, J.-S. & Song, W.-D. (2011). Acta Cryst. E67, m606.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H9O2)2(C4H6N2)2]·H2O

  • Mr = 616.16

  • Triclinic, [P \overline 1]

  • a = 8.7213 (10) Å

  • b = 12.8689 (14) Å

  • c = 13.5787 (15) Å

  • α = 107.223 (1)°

  • β = 90.295 (2)°

  • γ = 90.931 (1)°

  • V = 1455.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.843, Tmax = 0.843

  • 11175 measured reflections

  • 5094 independent reflections

  • 3534 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.102

  • S = 1.03

  • 5094 reflections

  • 381 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1 0.85 1.97 2.789 (3) 163
O1W—H1WB⋯O3i 0.85 2.07 2.904 (3) 167
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Self-assembly of supramolecular architectures based on naphthalene-1-yl-acetate ligands has attracted much attention during recent decades (Yin et al., 2010; Chen et al., 2004; Yang et al., 2008; Tang et al.,2006; Ji et al., 2011). Recent studies reveal that metal complexes with substituted imidazole and carboxylate ligands are interesting for medicinal chemists who explore their various pharmacological potentials (Boiani & Gonzales, 2005; Parshina & Trofimov, 2011). The crystal structure of the title compound was determined as part of an ongoing study on the properties of copper complexes containing imidazole ligands.

In the crystal structure of the title compound [Cu(C12H9O2)2(C4H6N2)2]H2O, each copper cation is coordinated by two N atoms of different 1-methylimidazole ligands and by two carboxyl O atoms of distinct naphthalene-1-yl-acetate anions within a square planar coordination sphere (Fig. 1). The Cu—N and Cu—O bond lengths are 1.985 (3) and 1.974 (2) Å, respectively. The asymmetric unit consits of one CuII cation, two neutral imidazole ligands, two anionic carboxylate ligands and one lattic water in general positions. It is noteworthy that there exist strong hydrogen-bonding interactions (Table 1, Fig.2) involving the carboxy group oxygen atoms of 1-naphthylacetate ligands as well as water molecules. The molecules fomr centrosymmetric ring systems by O—H···O hydrogen bonds

Related literature top

For the pharmacological potential of metal complexes with imidazole, see: Boiani & Gonzales (2005); Parshina & Trofimov (2011). For the coordination chemistry of 1-naphthylacetate ligands, see: Yin et al. (2010); Chen et al. (2004); Yang et al. (2008); Tang et al. (2006); Ji et al. (2011).

Experimental top

The title compound was synthesized by the reaction of Cu(NO3)2 × 3 H2O (72.3 mg, 0.3 mmol), naphthalene-1-yl-acetic acid (93 mg, 0.5 mmol), 1-methylimidazole (32.8 mg, 0.4 mmol) and NaOH (20 mg, 0.5 mmol) in 6 mL of a water-ethanol (2:1) mixture under solvothermal conditions. The mixture was homogenized and transferred into a sealed Teflon-lined solvothermal bomb (volume: 25 ml) and heated to 140°C for three days. After cooling green crystals of the title compound were obtained, which were washed with distilled water and absolute ethanol (yield: 38.7% based on Cu(NO3)2 × 3 H2O ).

Refinement top

H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 Å and included in the final cycles of refinement using a riding model with Uiso(H) = 1.2Ueq(parent atom).Water H atoms were located in Fourier difference maps and refined isotropically.

Structure description top

Self-assembly of supramolecular architectures based on naphthalene-1-yl-acetate ligands has attracted much attention during recent decades (Yin et al., 2010; Chen et al., 2004; Yang et al., 2008; Tang et al.,2006; Ji et al., 2011). Recent studies reveal that metal complexes with substituted imidazole and carboxylate ligands are interesting for medicinal chemists who explore their various pharmacological potentials (Boiani & Gonzales, 2005; Parshina & Trofimov, 2011). The crystal structure of the title compound was determined as part of an ongoing study on the properties of copper complexes containing imidazole ligands.

In the crystal structure of the title compound [Cu(C12H9O2)2(C4H6N2)2]H2O, each copper cation is coordinated by two N atoms of different 1-methylimidazole ligands and by two carboxyl O atoms of distinct naphthalene-1-yl-acetate anions within a square planar coordination sphere (Fig. 1). The Cu—N and Cu—O bond lengths are 1.985 (3) and 1.974 (2) Å, respectively. The asymmetric unit consits of one CuII cation, two neutral imidazole ligands, two anionic carboxylate ligands and one lattic water in general positions. It is noteworthy that there exist strong hydrogen-bonding interactions (Table 1, Fig.2) involving the carboxy group oxygen atoms of 1-naphthylacetate ligands as well as water molecules. The molecules fomr centrosymmetric ring systems by O—H···O hydrogen bonds

For the pharmacological potential of metal complexes with imidazole, see: Boiani & Gonzales (2005); Parshina & Trofimov (2011). For the coordination chemistry of 1-naphthylacetate ligands, see: Yin et al. (2010); Chen et al. (2004); Yang et al. (2008); Tang et al. (2006); Ji et al. (2011).

Computing details top

Data collection: APEX2 (Bruker 2007); cell refinement: SAINT (Bruker 2007); data reduction: SAINT'(Bruker 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Centrosymmetric ring system of the title compound including lattice water molecules. Hydrogen bonds are shown as dashed lines, and H atoms not involved in hydrogen bonding are omitted for clarity.
Bis(1-methyl-1H-imidazole-κN3)bis[2-(naphthalen-1-yl)acetato- κO]copper(II) monohydrate top
Crystal data top
[Cu(C12H9O2)2(C4H6N2)2]·H2OZ = 2
Mr = 616.16F(000) = 642
Triclinic, P1Dx = 1.406 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7213 (10) ÅCell parameters from 1644 reflections
b = 12.8689 (14) Åθ = 2.3–19.2°
c = 13.5787 (15) ŵ = 0.80 mm1
α = 107.223 (1)°T = 298 K
β = 90.295 (2)°Prism, green
γ = 90.931 (1)°0.20 × 0.20 × 0.20 mm
V = 1455.4 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5094 independent reflections
Radiation source: fine-focus sealed tube3534 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.843, Tmax = 0.843k = 1515
11175 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0371P)2 + 0.1784P]
where P = (Fo2 + 2Fc2)/3
5094 reflections(Δ/σ)max = 0.001
381 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu(C12H9O2)2(C4H6N2)2]·H2Oγ = 90.931 (1)°
Mr = 616.16V = 1455.4 (3) Å3
Triclinic, P1Z = 2
a = 8.7213 (10) ÅMo Kα radiation
b = 12.8689 (14) ŵ = 0.80 mm1
c = 13.5787 (15) ÅT = 298 K
α = 107.223 (1)°0.20 × 0.20 × 0.20 mm
β = 90.295 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5094 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3534 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 0.843Rint = 0.040
11175 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
5094 reflectionsΔρmin = 0.31 e Å3
381 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7153 (4)0.7870 (3)0.6104 (3)0.0395 (8)
C20.7391 (4)0.6657 (2)0.5639 (3)0.0490 (9)
H2A0.65050.63330.52190.059*
H2B0.74860.63200.61870.059*
C30.8829 (4)0.6438 (2)0.4976 (3)0.0444 (8)
C40.8703 (4)0.6226 (3)0.3940 (3)0.0500 (9)
H40.77350.61990.36430.060*
C50.9998 (5)0.6045 (3)0.3301 (3)0.0630 (11)
H50.98800.58910.25900.076*
C61.1423 (5)0.6098 (3)0.3728 (3)0.0587 (10)
H61.22790.59910.33070.070*
C71.1612 (4)0.6314 (3)0.4797 (3)0.0470 (9)
C81.0292 (4)0.6489 (2)0.5452 (3)0.0435 (8)
C91.0541 (4)0.6709 (3)0.6524 (3)0.0479 (9)
H90.97030.68100.69600.058*
C101.1973 (5)0.6777 (3)0.6928 (3)0.0639 (11)
H101.21090.69380.76370.077*
C111.3237 (5)0.6609 (3)0.6291 (4)0.0746 (13)
H111.42160.66520.65770.090*
C121.3065 (4)0.6384 (3)0.5264 (4)0.0653 (11)
H121.39320.62730.48520.078*
C130.7022 (4)1.1979 (3)0.8398 (3)0.0435 (8)
C140.6624 (4)1.3180 (2)0.8668 (2)0.0486 (9)
H14A0.75551.36040.86730.058*
H14B0.59461.32860.81390.058*
C150.5856 (4)1.3596 (3)0.9707 (3)0.0461 (9)
C160.6705 (5)1.4139 (3)1.0546 (3)0.0587 (10)
H160.77441.42691.04720.070*
C170.6043 (6)1.4509 (3)1.1527 (3)0.0729 (13)
H170.66431.48831.20930.088*
C180.4542 (6)1.4321 (3)1.1650 (3)0.0736 (13)
H180.41201.45611.23040.088*
C190.3595 (5)1.3768 (3)1.0802 (3)0.0572 (10)
C200.4261 (4)1.3412 (3)0.9806 (3)0.0448 (9)
C210.3277 (5)1.2891 (3)0.8967 (3)0.0597 (10)
H210.36831.26490.83080.072*
C220.1773 (5)1.2735 (4)0.9093 (4)0.0807 (13)
H220.11561.24000.85240.097*
C230.1130 (6)1.3074 (4)1.0074 (5)0.0928 (16)
H230.00931.29481.01570.111*
C240.2010 (6)1.3585 (4)1.0903 (4)0.0837 (15)
H240.15651.38201.15510.100*
C250.5448 (4)0.8706 (3)0.8592 (3)0.0524 (9)
H250.62240.82120.85660.063*
C260.4117 (4)0.8717 (3)0.9070 (3)0.0579 (10)
H260.37970.82380.94270.069*
C270.4195 (4)1.0032 (3)0.8372 (3)0.0518 (9)
H270.39131.06330.81690.062*
C280.1776 (4)0.9878 (4)0.9308 (3)0.0884 (15)
H28A0.15191.05450.91720.133*
H28B0.17460.99811.00370.133*
H28C0.10500.93180.89640.133*
C290.9660 (4)1.1131 (3)0.6535 (3)0.0530 (10)
H290.90811.17560.66560.064*
C301.1062 (4)1.1006 (3)0.6125 (3)0.0574 (10)
H301.16211.15170.59060.069*
C311.0373 (4)0.9532 (3)0.6472 (3)0.0486 (9)
H311.03980.88320.65360.058*
C321.2957 (4)0.9490 (3)0.5669 (3)0.0702 (12)
H32A1.29550.87470.56790.105*
H32B1.37990.98810.60810.105*
H32C1.30640.95130.49730.105*
Cu10.72561 (4)0.98739 (3)0.73588 (3)0.03873 (15)
N10.5513 (3)0.9531 (2)0.8147 (2)0.0434 (7)
N20.9208 (3)1.0192 (2)0.67509 (19)0.0403 (7)
N30.3314 (3)0.9560 (2)0.8930 (2)0.0527 (8)
N41.1514 (3)0.9992 (2)0.6089 (2)0.0461 (7)
O10.6406 (3)0.83829 (19)0.56361 (17)0.0543 (6)
O20.7793 (2)0.83265 (16)0.69796 (17)0.0433 (6)
O30.6513 (2)1.13568 (16)0.75272 (17)0.0444 (6)
O40.7809 (3)1.16518 (18)0.89921 (18)0.0540 (6)
O1W0.5269 (3)0.7509 (2)0.36319 (19)0.0803 (9)
H1WA0.54330.78390.42660.120*
H1WB0.47700.79330.33780.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0288 (18)0.0333 (19)0.053 (2)0.0010 (15)0.0151 (17)0.0078 (17)
C20.0364 (19)0.0341 (19)0.068 (2)0.0010 (16)0.0061 (17)0.0025 (17)
C30.043 (2)0.0273 (18)0.057 (2)0.0033 (15)0.0049 (18)0.0016 (16)
C40.050 (2)0.0354 (19)0.053 (2)0.0078 (17)0.0026 (18)0.0050 (17)
C50.082 (3)0.046 (2)0.054 (2)0.016 (2)0.010 (2)0.0012 (19)
C60.057 (3)0.047 (2)0.072 (3)0.0129 (19)0.023 (2)0.016 (2)
C70.039 (2)0.0324 (19)0.072 (3)0.0081 (16)0.0143 (19)0.0175 (18)
C80.040 (2)0.0250 (17)0.066 (3)0.0041 (15)0.0048 (18)0.0145 (17)
C90.048 (2)0.041 (2)0.057 (2)0.0063 (17)0.0068 (18)0.0174 (18)
C100.061 (3)0.064 (3)0.073 (3)0.005 (2)0.011 (2)0.029 (2)
C110.045 (3)0.081 (3)0.109 (4)0.003 (2)0.009 (3)0.046 (3)
C120.040 (2)0.071 (3)0.094 (3)0.011 (2)0.013 (2)0.037 (3)
C130.049 (2)0.038 (2)0.045 (2)0.0085 (17)0.0225 (18)0.0130 (18)
C140.060 (2)0.0341 (19)0.050 (2)0.0078 (17)0.0128 (18)0.0092 (17)
C150.065 (3)0.0293 (18)0.044 (2)0.0163 (18)0.0044 (19)0.0098 (17)
C160.069 (3)0.039 (2)0.063 (3)0.0108 (19)0.006 (2)0.007 (2)
C170.110 (4)0.048 (2)0.051 (3)0.023 (3)0.017 (3)0.001 (2)
C180.125 (4)0.054 (3)0.043 (3)0.044 (3)0.017 (3)0.014 (2)
C190.077 (3)0.047 (2)0.052 (3)0.029 (2)0.019 (2)0.020 (2)
C200.058 (2)0.0325 (19)0.044 (2)0.0147 (17)0.0094 (18)0.0109 (16)
C210.062 (3)0.049 (2)0.065 (3)0.009 (2)0.000 (2)0.010 (2)
C220.063 (3)0.074 (3)0.102 (4)0.007 (3)0.009 (3)0.022 (3)
C230.061 (3)0.092 (4)0.135 (5)0.022 (3)0.020 (3)0.047 (4)
C240.088 (4)0.081 (3)0.095 (4)0.040 (3)0.049 (3)0.043 (3)
C250.060 (2)0.048 (2)0.055 (2)0.0086 (19)0.0147 (19)0.0227 (19)
C260.071 (3)0.055 (2)0.052 (2)0.001 (2)0.015 (2)0.022 (2)
C270.054 (2)0.045 (2)0.061 (2)0.0096 (19)0.0161 (19)0.0212 (19)
C280.052 (3)0.114 (4)0.106 (4)0.012 (3)0.039 (3)0.042 (3)
C290.061 (2)0.035 (2)0.066 (3)0.0124 (18)0.022 (2)0.0186 (19)
C300.062 (3)0.047 (2)0.065 (3)0.001 (2)0.017 (2)0.021 (2)
C310.050 (2)0.038 (2)0.059 (2)0.0021 (18)0.0131 (19)0.0160 (18)
C320.047 (2)0.068 (3)0.097 (3)0.014 (2)0.023 (2)0.025 (2)
Cu10.0421 (3)0.0321 (2)0.0417 (3)0.00717 (17)0.00974 (18)0.00997 (18)
N10.0499 (18)0.0345 (15)0.0460 (17)0.0054 (14)0.0122 (14)0.0116 (13)
N20.0433 (17)0.0325 (15)0.0437 (17)0.0034 (13)0.0083 (13)0.0089 (13)
N30.0475 (18)0.0539 (19)0.0560 (19)0.0007 (16)0.0189 (15)0.0150 (16)
N40.0430 (17)0.0433 (17)0.0508 (18)0.0046 (14)0.0133 (14)0.0118 (14)
O10.0524 (15)0.0514 (15)0.0562 (16)0.0112 (12)0.0009 (12)0.0111 (13)
O20.0456 (14)0.0348 (13)0.0479 (15)0.0066 (11)0.0114 (11)0.0092 (11)
O30.0512 (14)0.0351 (13)0.0468 (15)0.0091 (11)0.0119 (11)0.0113 (11)
O40.0604 (16)0.0506 (15)0.0530 (16)0.0123 (13)0.0076 (13)0.0177 (13)
O1W0.091 (2)0.085 (2)0.0606 (18)0.0234 (17)0.0078 (15)0.0132 (15)
Geometric parameters (Å, º) top
C1—O11.233 (4)C19—C201.423 (5)
C1—O21.280 (4)C20—C211.416 (5)
C1—C21.519 (4)C21—C221.343 (5)
C2—C31.528 (4)C21—H210.9300
C2—H2A0.9700C22—C231.396 (6)
C2—H2B0.9700C22—H220.9300
C3—C41.355 (4)C23—C241.351 (6)
C3—C81.419 (4)C23—H230.9300
C4—C51.408 (5)C24—H240.9300
C4—H40.9300C25—C261.331 (4)
C5—C61.360 (5)C25—N11.369 (4)
C5—H50.9300C25—H250.9300
C6—C71.403 (5)C26—N31.360 (4)
C6—H60.9300C26—H260.9300
C7—C121.404 (5)C27—N11.319 (4)
C7—C81.438 (4)C27—N31.341 (4)
C8—C91.413 (4)C27—H270.9300
C9—C101.353 (4)C28—N31.460 (4)
C9—H90.9300C28—H28A0.9600
C10—C111.385 (5)C28—H28B0.9600
C10—H100.9300C28—H28C0.9600
C11—C121.345 (5)C29—C301.338 (4)
C11—H110.9300C29—N21.377 (4)
C12—H120.9300C29—H290.9300
C13—O41.226 (4)C30—N41.356 (4)
C13—O31.288 (4)C30—H300.9300
C13—C141.525 (4)C31—N21.319 (4)
C14—C151.517 (4)C31—N41.334 (4)
C14—H14A0.9700C31—H310.9300
C14—H14B0.9700C32—N41.463 (4)
C15—C161.356 (5)C32—H32A0.9600
C15—C201.421 (5)C32—H32B0.9600
C16—C171.406 (5)C32—H32C0.9600
C16—H160.9300Cu1—O21.969 (2)
C17—C181.348 (6)Cu1—O31.974 (2)
C17—H170.9300Cu1—N11.981 (3)
C18—C191.415 (5)Cu1—N21.985 (3)
C18—H180.9300O1W—H1WA0.8500
C19—C241.413 (6)O1W—H1WB0.8501
O1—C1—O2122.5 (3)C15—C20—C19118.9 (3)
O1—C1—C2120.6 (3)C22—C21—C20122.0 (4)
O2—C1—C2116.9 (3)C22—C21—H21119.0
C1—C2—C3111.2 (3)C20—C21—H21119.0
C1—C2—H2A109.4C21—C22—C23120.5 (5)
C3—C2—H2A109.4C21—C22—H22119.8
C1—C2—H2B109.4C23—C22—H22119.8
C3—C2—H2B109.4C24—C23—C22120.3 (5)
H2A—C2—H2B108.0C24—C23—H23119.9
C4—C3—C8120.3 (3)C22—C23—H23119.9
C4—C3—C2119.8 (3)C23—C24—C19121.0 (4)
C8—C3—C2119.8 (3)C23—C24—H24119.5
C3—C4—C5121.9 (3)C19—C24—H24119.5
C3—C4—H4119.1C26—C25—N1110.2 (3)
C5—C4—H4119.1C26—C25—H25125.0
C6—C5—C4119.6 (4)N1—C25—H25124.8
C6—C5—H5120.2C25—C26—N3106.7 (3)
C4—C5—H5120.2C25—C26—H26126.6
C5—C6—C7120.7 (4)N3—C26—H26126.7
C5—C6—H6119.7N1—C27—N3111.1 (3)
C7—C6—H6119.7N1—C27—H27124.5
C6—C7—C12122.1 (3)N3—C27—H27124.4
C6—C7—C8119.9 (3)N3—C28—H28A109.5
C12—C7—C8118.0 (4)N3—C28—H28B109.5
C9—C8—C3124.6 (3)H28A—C28—H28B109.5
C9—C8—C7117.8 (3)N3—C28—H28C109.5
C3—C8—C7117.6 (3)H28A—C28—H28C109.5
C10—C9—C8121.4 (3)H28B—C28—H28C109.5
C10—C9—H9119.3C30—C29—N2109.5 (3)
C8—C9—H9119.3C30—C29—H29125.2
C9—C10—C11120.3 (4)N2—C29—H29125.2
C9—C10—H10119.8C29—C30—N4107.0 (3)
C11—C10—H10119.8C29—C30—H30126.6
C12—C11—C10120.8 (4)N4—C30—H30126.4
C12—C11—H11119.6N2—C31—N4111.6 (3)
C10—C11—H11119.6N2—C31—H31124.2
C11—C12—C7121.7 (4)N4—C31—H31124.1
C11—C12—H12119.1N4—C32—H32A109.5
C7—C12—H12119.1N4—C32—H32B109.5
O4—C13—O3123.2 (3)H32A—C32—H32B109.5
O4—C13—C14120.0 (3)N4—C32—H32C109.5
O3—C13—C14116.7 (3)H32A—C32—H32C109.5
C15—C14—C13112.8 (3)H32B—C32—H32C109.5
C15—C14—H14A109.0O2—Cu1—O3170.52 (10)
C13—C14—H14A109.0O2—Cu1—N188.15 (10)
C15—C14—H14B109.0O3—Cu1—N192.02 (10)
C13—C14—H14B109.0O2—Cu1—N289.41 (9)
H14A—C14—H14B107.8O3—Cu1—N291.82 (9)
C16—C15—C20120.1 (3)N1—Cu1—N2170.95 (11)
C16—C15—C14119.5 (3)C27—N1—C25105.1 (3)
C20—C15—C14120.5 (3)C27—N1—Cu1128.9 (2)
C15—C16—C17121.1 (4)C25—N1—Cu1126.0 (2)
C15—C16—H16119.4C31—N2—C29104.9 (3)
C17—C16—H16119.4C31—N2—Cu1126.5 (2)
C18—C17—C16120.2 (4)C29—N2—Cu1128.7 (2)
C18—C17—H17119.9C27—N3—C26107.0 (3)
C16—C17—H17119.9C27—N3—C28126.8 (3)
C17—C18—C19121.2 (4)C26—N3—C28126.2 (3)
C17—C18—H18119.4C31—N4—C30107.0 (3)
C19—C18—H18119.4C31—N4—C32126.9 (3)
C24—C19—C18122.4 (4)C30—N4—C32126.1 (3)
C24—C19—C20119.1 (4)C1—O2—Cu1106.53 (19)
C18—C19—C20118.5 (4)C13—O3—Cu1108.00 (19)
C21—C20—C15123.9 (3)H1WA—O1W—H1WB107.7
C21—C20—C19117.3 (4)
O1—C1—C2—C389.1 (4)C20—C21—C22—C230.9 (6)
O2—C1—C2—C389.1 (4)C21—C22—C23—C241.5 (7)
C1—C2—C3—C497.6 (4)C22—C23—C24—C191.2 (7)
C1—C2—C3—C880.5 (4)C18—C19—C24—C23178.5 (4)
C8—C3—C4—C50.3 (5)C20—C19—C24—C230.4 (6)
C2—C3—C4—C5178.4 (3)N1—C25—C26—N30.1 (4)
C3—C4—C5—C61.0 (5)N2—C29—C30—N40.6 (4)
C4—C5—C6—C71.0 (5)N3—C27—N1—C250.2 (4)
C5—C6—C7—C12179.4 (3)N3—C27—N1—Cu1179.4 (2)
C5—C6—C7—C80.4 (5)C26—C25—N1—C270.1 (4)
C4—C3—C8—C9179.7 (3)C26—C25—N1—Cu1179.3 (2)
C2—C3—C8—C91.5 (5)O2—Cu1—N1—C27153.0 (3)
C4—C3—C8—C70.3 (5)O3—Cu1—N1—C2717.5 (3)
C2—C3—C8—C7177.9 (3)N2—Cu1—N1—C27132.6 (6)
C6—C7—C8—C9179.7 (3)O2—Cu1—N1—C2527.9 (3)
C12—C7—C8—C90.7 (4)O3—Cu1—N1—C25161.5 (3)
C6—C7—C8—C30.2 (4)N2—Cu1—N1—C2546.5 (8)
C12—C7—C8—C3178.8 (3)N4—C31—N2—C290.6 (4)
C3—C8—C9—C10178.0 (3)N4—C31—N2—Cu1180.0 (2)
C7—C8—C9—C101.4 (5)C30—C29—N2—C310.7 (4)
C8—C9—C10—C111.3 (5)C30—C29—N2—Cu1179.8 (2)
C9—C10—C11—C120.5 (6)O2—Cu1—N2—C3112.6 (3)
C10—C11—C12—C70.2 (6)O3—Cu1—N2—C31176.8 (3)
C6—C7—C12—C11178.9 (4)N1—Cu1—N2—C3161.7 (8)
C8—C7—C12—C110.1 (5)O2—Cu1—N2—C29168.0 (3)
O4—C13—C14—C1555.1 (4)O3—Cu1—N2—C292.6 (3)
O3—C13—C14—C15125.9 (3)N1—Cu1—N2—C29117.6 (7)
C13—C14—C15—C1698.1 (4)N1—C27—N3—C260.2 (4)
C13—C14—C15—C2081.3 (4)N1—C27—N3—C28179.1 (3)
C20—C15—C16—C171.3 (5)C25—C26—N3—C270.1 (4)
C14—C15—C16—C17178.1 (3)C25—C26—N3—C28179.2 (4)
C15—C16—C17—C180.4 (6)N2—C31—N4—C300.2 (4)
C16—C17—C18—C190.9 (6)N2—C31—N4—C32177.6 (3)
C17—C18—C19—C24178.3 (4)C29—C30—N4—C310.3 (4)
C17—C18—C19—C200.2 (5)C29—C30—N4—C32178.0 (3)
C16—C15—C20—C21177.5 (3)O1—C1—O2—Cu12.0 (3)
C14—C15—C20—C213.1 (5)C2—C1—O2—Cu1179.8 (2)
C16—C15—C20—C192.4 (5)O3—Cu1—O2—C13.1 (6)
C14—C15—C20—C19177.0 (3)N1—Cu1—O2—C194.28 (19)
C24—C19—C20—C210.1 (5)N2—Cu1—O2—C194.44 (19)
C18—C19—C20—C21178.0 (3)O4—C13—O3—Cu11.0 (4)
C24—C19—C20—C15179.9 (3)C14—C13—O3—Cu1178.0 (2)
C18—C19—C20—C151.9 (5)O2—Cu1—O3—C13176.3 (5)
C15—C20—C21—C22179.8 (3)N1—Cu1—O3—C1385.4 (2)
C19—C20—C21—C220.1 (5)N2—Cu1—O3—C1386.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.851.972.789 (3)163
O1W—H1WB···O3i0.852.072.904 (3)167
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C12H9O2)2(C4H6N2)2]·H2O
Mr616.16
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.7213 (10), 12.8689 (14), 13.5787 (15)
α, β, γ (°)107.223 (1), 90.295 (2), 90.931 (1)
V3)1455.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.843, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
11175, 5094, 3534
Rint0.040
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.102, 1.03
No. of reflections5094
No. of parameters381
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.31

Computer programs: APEX2 (Bruker 2007), SAINT (Bruker 2007), SAINT'(Bruker 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.851.972.789 (3)163
O1W—H1WB···O3i0.852.072.904 (3)167
Symmetry code: (i) x+1, y+2, z+1.
 

References

First citationBoiani, M. & Gonzales, M. (2005). Mini Rev. Med. Chem. 5, 409–424.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L.-F., Zhang, J., Song, L.-J., Wang, W.-G. & Ju, Z.-F. (2004). Acta Cryst. E60, m1032–m1034.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJi, L.-L., Liu, J.-S. & Song, W.-D. (2011). Acta Cryst. E67, m606.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParshina, L. N. & Trofimov, B. A. (2011). Russ. Chem. Bull. 60, 601–614.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, D.-X., Feng, L.-X. & Zhang, X.-Q. (2006). Chin. J. Inorg. Chem. 22, 1891–1894.  CAS Google Scholar
First citationYang, Y.-Q., Li, C.-H. L. W. & Kuang, Y.-F. (2008). Chin. J. Struct. Chem. 30, 4524–4530.  Google Scholar
First citationYin, F.-J., Zhao, H. & Hu, X.-L. (2010). Synth. React. Inorg. Met. Org. Nano-Metal Chem. 40, 606–612.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds