metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(4-fluoro­benzoato-κO)bis­­(1,10-phenanthroline-κ2N,N′)manganese(II) 4-fluoro­benzoate trihydrate

aCollege of Pharmaceutics and Material Engineering, Jinhua College of Profession and Technology, Jinhua, Zhejiang 321007, People's Republic of China, and bState Key Laboratory Base of Novel Functional Materials and Preparation, Science Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: zbs_jy@163.com

(Received 22 September 2011; accepted 22 November 2011; online 30 November 2011)

In the title compound, [Mn(C7H4FO2)(C12H8N2)2(H2O)](C7H4FO2)·3H2O, the MnII atom is coordinated by four N atoms from two chelating 1,10-phenanthroline ligands and two O atoms from one monodentate 4-fluoro­benzoate ion and one water mol­ecule, forming a distorted octa­hedral geometry. In the crystal, the three components are assembled into a tape structure along the a axis by O—H⋯O and C—H⋯O hydrogen bonds. Between the tapes, a ππ inter­action with a centroid–centroid distance of 3.569 (3) Å and a weak C—H⋯F hydrogen bond are observed.

Related literature

For applications of manganese complexes, see: Sehlotho & Durmus (2008[Sehlotho, N. & Durmus, M. (2008). Inorg. Chem. Commun. 11, 479-483.]). For related manganese(II) complexes with 1,10-phenanthroline ligands, see: Su et al. (2005[Su, J.-R., Zhang, L. & Xu, D.-J. (2005). Acta Cryst. E61, m939-m941.]); Zhang (2004[Zhang, B. S. (2004). Z. Kristallogr. New Cryst. Struct. 219, 485-486.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C7H4FO2)(C12H8N2)2(H2O)](C7H4FO2)·3H2O

  • Mr = 765.62

  • Triclinic, [P \overline 1]

  • a = 8.8897 (17) Å

  • b = 14.773 (3) Å

  • c = 14.890 (3) Å

  • α = 107.815 (4)°

  • β = 107.314 (4)°

  • γ = 91.386 (4)°

  • V = 1762.9 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 290 K

  • 0.20 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.923, Tmax = 0.948

  • 9353 measured reflections

  • 6138 independent reflections

  • 4642 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.085

  • wR(F2) = 0.178

  • S = 1.14

  • 6138 reflections

  • 478 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O3i 0.85 1.79 2.622 (4) 166
O5—H5B⋯O2 0.85 2.06 2.719 (5) 135
O6—H6A⋯O4ii 0.85 1.98 2.825 (6) 171
O6—H6B⋯O7iii 0.85 2.08 2.827 (7) 146
O7—H7A⋯O8 0.85 2.02 2.854 (8) 165
O7—H7B⋯O6 0.85 1.99 2.819 (6) 166
O8—H8A⋯O4 0.85 1.97 2.792 (7) 164
C1—H1⋯F2iv 0.93 2.50 3.209 (7) 133
C5—H5⋯O3v 0.93 2.45 3.339 (7) 160
C20—H20⋯O4i 0.93 2.42 3.233 (7) 146
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z; (iii) -x+2, -y, -z; (iv) -x, -y+1, -z; (v) x-1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Potential applications of manganese complexes have been reflected in catalysis, molecular magnets, materials, biology, electrochemical properties, etc (Sehlotho & Durmus, 2008). In this paper, we report synthesis and structure of a new manganese coordination complex with 4-fluorobenzoic acid, 1,10-phenanthroline and water ligands. The crystal structure of title compound is similar to the reported structures (Su et al., 2005; Zhang, 2004). In the complex molecule, the MnII atom is coordinated by four N atoms from two phen ligands, two O atoms respectively from one 4-fluorobenzoate ion and one water molecule to form a distorted MnN4O2 octahedral geometry. The equatorial positions of the MnII ion are occupied by one carboxylate O atom from the 4-fluorobenzoate ion and three N atoms from different phen molecules, and the axial ones by the other N atom from one phen ligand and one carboxylate O atom from one water molecule. The Mn1—N bond length is 2.245 (4) to 2.338 (4) Å, and Mn1—O bond lengths are 2.100 (3) and 2.126 (3) Å (Fig. 1). In the crystal structure, a tape structure of the three components along the a direction is formed by O—H···O and C—H···O hydrogen bonds (Table 1 and Fig. 2). A ππ stacking interaction between two adjacent phen ligands, with an interplanar distance of 3.389 (2) Å and a centroid-centroid distance of 3.569 (3) Å, and a weak C—H···F interaction are observed between the tapes.

Related literature top

For applications of manganese complexes, see: Sehlotho & Durmus (2008). For related manganese(II) complexes with 1,10-phenanthroline ligands, see: Su et al. (2005); Zhang (2004).

Experimental top

MnCl2.2H2O (0.081 g, 0.50 mmol) was dissolved in appropriate amount of water, and then 1M Na2CO3 solution was added. MnCO3 was obtained by filtration, which was then washed with distilled water for 5 times. The freshly prepared MnCO3, 4-fluorobenzoic acid (0.070 g, 0.50 mmol), phen.H2O (0.099 g, 0.50 mmol), CH3OH/H2O (v/v = 1:2, 15 ml) were mixed and stirred for 6 h. Subsequently, the resulting cream suspension was heated in a 23 ml Teflon-lined stainless steel autoclave at 453 K for ca. 260 h. After the autoclave was cooled to room temperature, the solid was filtered off. The resulting filtrate was allowed to stand at room temperature, and slow evaporation for a week afforded yellow bulk single crystals.

Refinement top

C-bound H atoms were placed in calculated positions (C—H = 0.93 Å) and were refined using the riding-model approximation, with Uiso(H) = 1.2Ueq(C). H atoms attached to O atoms were found in a difference Fourier map and were refined using a riding model, with the O—H distances fixed as initially found, and with Uiso(H) = 1.5Ueq(O).

Structure description top

Potential applications of manganese complexes have been reflected in catalysis, molecular magnets, materials, biology, electrochemical properties, etc (Sehlotho & Durmus, 2008). In this paper, we report synthesis and structure of a new manganese coordination complex with 4-fluorobenzoic acid, 1,10-phenanthroline and water ligands. The crystal structure of title compound is similar to the reported structures (Su et al., 2005; Zhang, 2004). In the complex molecule, the MnII atom is coordinated by four N atoms from two phen ligands, two O atoms respectively from one 4-fluorobenzoate ion and one water molecule to form a distorted MnN4O2 octahedral geometry. The equatorial positions of the MnII ion are occupied by one carboxylate O atom from the 4-fluorobenzoate ion and three N atoms from different phen molecules, and the axial ones by the other N atom from one phen ligand and one carboxylate O atom from one water molecule. The Mn1—N bond length is 2.245 (4) to 2.338 (4) Å, and Mn1—O bond lengths are 2.100 (3) and 2.126 (3) Å (Fig. 1). In the crystal structure, a tape structure of the three components along the a direction is formed by O—H···O and C—H···O hydrogen bonds (Table 1 and Fig. 2). A ππ stacking interaction between two adjacent phen ligands, with an interplanar distance of 3.389 (2) Å and a centroid-centroid distance of 3.569 (3) Å, and a weak C—H···F interaction are observed between the tapes.

For applications of manganese complexes, see: Sehlotho & Durmus (2008). For related manganese(II) complexes with 1,10-phenanthroline ligands, see: Su et al. (2005); Zhang (2004).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The three-dimensional supramolecular network of the title complex. Hydrogen bonds are drawn as dashed lines. H atoms not involved in the hydrogen bonds have been omitted.
Aqua(4-fluorobenzoato-κO)bis(1,10-phenanthroline- κ2N,N')manganese(II) 4-fluorobenzoate trihydrate top
Crystal data top
[Mn(C7H4FO2)(C12H8N2)2(H2O)](C7H4FO2)·3H2OZ = 2
Mr = 765.62F(000) = 790
Triclinic, P1Dx = 1.442 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8897 (17) ÅCell parameters from 6392 reflections
b = 14.773 (3) Åθ = 1.7–25.0°
c = 14.890 (3) ŵ = 0.45 mm1
α = 107.815 (4)°T = 290 K
β = 107.314 (4)°Block, yellow
γ = 91.386 (4)°0.20 × 0.15 × 0.12 mm
V = 1762.9 (6) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
6138 independent reflections
Radiation source: fine-focus sealed tube4642 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 1.7°
φ and ω scansh = 108
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1617
Tmin = 0.923, Tmax = 0.948l = 1717
9353 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.085Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0644P)2 + 0.7608P]
where P = (Fo2 + 2Fc2)/3
6138 reflections(Δ/σ)max < 0.001
478 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Mn(C7H4FO2)(C12H8N2)2(H2O)](C7H4FO2)·3H2Oγ = 91.386 (4)°
Mr = 765.62V = 1762.9 (6) Å3
Triclinic, P1Z = 2
a = 8.8897 (17) ÅMo Kα radiation
b = 14.773 (3) ŵ = 0.45 mm1
c = 14.890 (3) ÅT = 290 K
α = 107.815 (4)°0.20 × 0.15 × 0.12 mm
β = 107.314 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6138 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4642 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.948Rint = 0.032
9353 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0850 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.14Δρmax = 0.38 e Å3
6138 reflectionsΔρmin = 0.26 e Å3
478 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.21473 (8)0.73431 (5)0.44141 (5)0.0408 (2)
N10.0199 (4)0.6106 (3)0.3641 (3)0.0436 (9)
N20.1238 (4)0.7091 (2)0.5605 (3)0.0412 (9)
N30.3123 (4)0.8885 (3)0.5313 (3)0.0483 (10)
N40.0374 (5)0.8306 (3)0.3773 (3)0.0491 (10)
O10.2786 (4)0.7154 (3)0.3125 (2)0.0580 (9)
O20.4787 (6)0.6302 (3)0.3210 (3)0.1050 (16)
O30.4419 (4)0.3208 (3)0.3175 (2)0.0703 (10)
O40.3937 (4)0.1706 (3)0.2153 (3)0.0715 (10)
O50.4333 (4)0.6861 (3)0.5018 (2)0.0717 (11)
H5A0.48640.69050.56110.107*
H5B0.49850.68150.46930.107*
O60.8404 (5)0.0093 (3)0.1362 (3)0.1048 (15)
H6A0.77120.05850.16590.157*
H6B0.93190.02270.13860.157*
O70.8483 (6)0.0538 (3)0.0642 (3)0.1200 (17)
H7A0.76390.06140.07990.180*
H7B0.82830.03310.00150.180*
O80.5651 (6)0.0442 (4)0.1157 (4)0.140 (2)
H8A0.50850.08640.13600.211*
H8B0.55290.00610.13040.211*
F10.4141 (4)0.7201 (3)0.0743 (2)0.1016 (12)
F20.0334 (5)0.3861 (3)0.0739 (3)0.1139 (14)
C10.0280 (6)0.5602 (3)0.2679 (4)0.0549 (13)
H10.03160.56970.22900.066*
C20.1629 (6)0.4939 (4)0.2231 (4)0.0626 (14)
H20.19400.46100.15510.075*
C30.2494 (6)0.4769 (3)0.2781 (4)0.0609 (14)
H30.33950.43180.24810.073*
C40.2039 (5)0.5272 (3)0.3804 (4)0.0480 (12)
C50.2856 (6)0.5127 (4)0.4450 (4)0.0603 (14)
H50.37700.46870.41880.072*
C60.2330 (6)0.5614 (4)0.5425 (4)0.0596 (14)
H60.28900.55070.58290.071*
C70.0926 (5)0.6297 (3)0.5865 (4)0.0465 (11)
C80.0295 (6)0.6806 (4)0.6890 (4)0.0578 (14)
H80.08180.67290.73230.069*
C90.1071 (7)0.7407 (4)0.7244 (4)0.0600 (14)
H90.15160.77300.79230.072*
C100.1804 (6)0.7539 (3)0.6585 (3)0.0526 (12)
H100.27390.79600.68390.063*
C110.0099 (5)0.6471 (3)0.5256 (3)0.0402 (10)
C120.0656 (5)0.5940 (3)0.4209 (3)0.0393 (10)
C130.3921 (5)0.6878 (3)0.1850 (3)0.0433 (11)
C140.3068 (6)0.7495 (3)0.1460 (3)0.0549 (13)
H140.24190.78410.17890.066*
C150.3127 (6)0.7629 (4)0.0591 (4)0.0673 (15)
H150.25430.80590.03360.081*
C160.4077 (7)0.7102 (4)0.0129 (4)0.0649 (15)
C170.4943 (7)0.6478 (4)0.0472 (4)0.0727 (16)
H170.55690.61270.01250.087*
C180.4889 (6)0.6365 (4)0.1358 (4)0.0655 (15)
H180.55000.59460.16170.079*
C190.3842 (6)0.6751 (3)0.2804 (3)0.0499 (12)
C200.4439 (6)0.9168 (4)0.6097 (4)0.0598 (14)
H200.49120.87110.63610.072*
C210.5130 (7)1.0104 (4)0.6534 (4)0.0674 (15)
H210.60191.02760.71010.081*
C220.4513 (7)1.0775 (4)0.6136 (4)0.0737 (17)
H220.50051.14050.64090.088*
C230.3127 (7)1.0518 (4)0.5310 (4)0.0599 (14)
C240.2387 (8)1.1156 (4)0.4826 (5)0.0799 (18)
H240.28361.17930.50650.096*
C250.1081 (9)1.0878 (4)0.4048 (5)0.0797 (18)
H250.06501.13200.37460.096*
C260.0309 (7)0.9910 (4)0.3656 (4)0.0619 (14)
C270.1097 (8)0.9586 (5)0.2863 (4)0.0785 (18)
H270.15851.00030.25430.094*
C280.1755 (7)0.8665 (5)0.2557 (4)0.0795 (18)
H280.27140.84470.20420.095*
C290.0970 (6)0.8045 (4)0.3028 (4)0.0669 (15)
H290.14240.74090.28030.080*
C300.1009 (6)0.9242 (3)0.4099 (3)0.0471 (12)
C310.2448 (6)0.9546 (3)0.4926 (3)0.0472 (12)
C320.2864 (5)0.2925 (3)0.1510 (3)0.0452 (11)
C330.2816 (5)0.3889 (4)0.1659 (3)0.0501 (12)
H330.33690.43300.22790.060*
C340.1962 (6)0.4213 (4)0.0906 (4)0.0611 (14)
H340.19370.48650.10070.073*
C350.1162 (7)0.3552 (5)0.0016 (4)0.0698 (16)
C360.1153 (7)0.2590 (5)0.0166 (4)0.0738 (17)
H360.05710.21570.07840.089*
C370.2029 (6)0.2273 (4)0.0589 (3)0.0585 (13)
H370.20570.16200.04780.070*
C380.3824 (6)0.2584 (4)0.2351 (4)0.0524 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0408 (4)0.0452 (4)0.0389 (4)0.0043 (3)0.0097 (3)0.0202 (3)
N10.047 (2)0.046 (2)0.036 (2)0.0069 (18)0.0086 (18)0.0159 (18)
N20.041 (2)0.042 (2)0.040 (2)0.0063 (17)0.0106 (18)0.0159 (17)
N30.049 (2)0.051 (2)0.045 (2)0.0000 (19)0.013 (2)0.0194 (19)
N40.051 (2)0.055 (3)0.040 (2)0.0133 (19)0.009 (2)0.0176 (19)
O10.052 (2)0.086 (3)0.0476 (19)0.0160 (19)0.0186 (17)0.0347 (18)
O20.145 (4)0.131 (4)0.076 (3)0.097 (3)0.052 (3)0.063 (3)
O30.076 (3)0.078 (3)0.041 (2)0.013 (2)0.0026 (19)0.0177 (19)
O40.074 (3)0.065 (3)0.067 (2)0.018 (2)0.006 (2)0.025 (2)
O50.060 (2)0.112 (3)0.059 (2)0.037 (2)0.0189 (18)0.049 (2)
O60.104 (3)0.099 (3)0.100 (3)0.000 (3)0.015 (3)0.036 (3)
O70.106 (4)0.137 (4)0.093 (3)0.016 (3)0.036 (3)0.001 (3)
O80.110 (4)0.153 (5)0.148 (5)0.034 (4)0.057 (4)0.018 (4)
F10.102 (3)0.160 (4)0.058 (2)0.009 (2)0.038 (2)0.045 (2)
F20.117 (3)0.149 (4)0.080 (2)0.020 (3)0.002 (2)0.076 (2)
C10.062 (3)0.053 (3)0.045 (3)0.010 (3)0.012 (3)0.015 (2)
C20.062 (4)0.056 (3)0.048 (3)0.008 (3)0.001 (3)0.006 (3)
C30.049 (3)0.043 (3)0.077 (4)0.003 (2)0.004 (3)0.015 (3)
C40.044 (3)0.040 (3)0.060 (3)0.011 (2)0.009 (2)0.023 (2)
C50.043 (3)0.060 (3)0.089 (4)0.009 (2)0.020 (3)0.040 (3)
C60.047 (3)0.070 (4)0.083 (4)0.018 (3)0.030 (3)0.045 (3)
C70.046 (3)0.052 (3)0.058 (3)0.024 (2)0.024 (2)0.033 (2)
C80.063 (4)0.074 (4)0.061 (3)0.033 (3)0.034 (3)0.042 (3)
C90.070 (4)0.072 (4)0.043 (3)0.020 (3)0.017 (3)0.027 (3)
C100.062 (3)0.050 (3)0.042 (3)0.008 (2)0.009 (2)0.018 (2)
C110.042 (3)0.039 (3)0.049 (3)0.016 (2)0.015 (2)0.028 (2)
C120.036 (2)0.039 (3)0.044 (3)0.009 (2)0.008 (2)0.019 (2)
C130.045 (3)0.042 (3)0.036 (2)0.003 (2)0.012 (2)0.006 (2)
C140.064 (3)0.062 (3)0.042 (3)0.017 (3)0.021 (3)0.018 (2)
C150.067 (4)0.086 (4)0.057 (3)0.023 (3)0.019 (3)0.034 (3)
C160.060 (4)0.092 (4)0.041 (3)0.003 (3)0.013 (3)0.023 (3)
C170.057 (4)0.106 (5)0.054 (3)0.020 (3)0.030 (3)0.012 (3)
C180.064 (4)0.070 (4)0.062 (3)0.024 (3)0.020 (3)0.020 (3)
C190.050 (3)0.051 (3)0.045 (3)0.009 (2)0.013 (2)0.013 (2)
C200.062 (3)0.056 (3)0.057 (3)0.007 (3)0.011 (3)0.023 (3)
C210.065 (4)0.066 (4)0.061 (3)0.005 (3)0.012 (3)0.015 (3)
C220.077 (4)0.058 (4)0.079 (4)0.017 (3)0.034 (4)0.005 (3)
C230.078 (4)0.045 (3)0.072 (4)0.008 (3)0.043 (3)0.023 (3)
C240.098 (5)0.050 (4)0.111 (5)0.018 (3)0.050 (4)0.037 (4)
C250.106 (5)0.067 (4)0.100 (5)0.046 (4)0.053 (4)0.053 (4)
C260.076 (4)0.070 (4)0.060 (3)0.037 (3)0.033 (3)0.035 (3)
C270.092 (5)0.093 (5)0.070 (4)0.052 (4)0.030 (4)0.047 (4)
C280.071 (4)0.110 (5)0.050 (3)0.039 (4)0.005 (3)0.028 (4)
C290.067 (4)0.075 (4)0.049 (3)0.024 (3)0.007 (3)0.017 (3)
C300.059 (3)0.056 (3)0.040 (3)0.026 (2)0.026 (2)0.024 (2)
C310.058 (3)0.049 (3)0.046 (3)0.010 (2)0.027 (2)0.020 (2)
C320.036 (3)0.062 (3)0.038 (3)0.007 (2)0.012 (2)0.016 (2)
C330.050 (3)0.059 (3)0.038 (3)0.002 (2)0.014 (2)0.012 (2)
C340.060 (3)0.071 (4)0.061 (3)0.012 (3)0.017 (3)0.036 (3)
C350.065 (4)0.100 (5)0.056 (4)0.020 (3)0.014 (3)0.046 (4)
C360.069 (4)0.101 (5)0.037 (3)0.012 (3)0.002 (3)0.017 (3)
C370.060 (3)0.060 (3)0.049 (3)0.010 (3)0.012 (3)0.013 (3)
C380.040 (3)0.071 (4)0.045 (3)0.008 (3)0.009 (2)0.021 (3)
Geometric parameters (Å, º) top
Mn1—O12.101 (3)C9—H90.9300
Mn1—O52.123 (3)C10—H100.9300
Mn1—N12.245 (4)C11—C121.437 (6)
Mn1—N32.254 (4)C13—C141.355 (6)
Mn1—N22.276 (3)C13—C181.386 (7)
Mn1—N42.338 (4)C13—C191.510 (6)
N1—C11.325 (5)C14—C151.382 (6)
N1—C121.361 (5)C14—H140.9300
N2—C101.333 (5)C15—C161.358 (7)
N2—C111.346 (5)C15—H150.9300
N3—C201.331 (6)C16—C171.338 (8)
N3—C311.346 (6)C17—C181.394 (7)
N4—C291.316 (6)C17—H170.9300
N4—C301.362 (6)C18—H180.9300
O1—C191.258 (5)C20—C211.372 (7)
O2—C191.217 (6)C20—H200.9300
O3—C381.238 (6)C21—C221.352 (8)
O4—C381.251 (6)C21—H210.9300
O5—H5A0.8501C22—C231.401 (7)
O5—H5B0.8499C22—H220.9300
O6—H6A0.8500C23—C311.415 (6)
O6—H6B0.8499C23—C241.416 (7)
O7—H7A0.8501C24—C251.321 (8)
O7—H7B0.8498C24—H240.9300
O8—H8A0.8500C25—C261.434 (8)
O8—H8B0.8500C25—H250.9300
F1—C161.368 (5)C26—C271.390 (8)
F2—C351.360 (6)C26—C301.408 (6)
C1—C21.382 (7)C27—C281.350 (8)
C1—H10.9300C27—H270.9300
C2—C31.348 (7)C28—C291.397 (7)
C2—H20.9300C28—H280.9300
C3—C41.400 (7)C29—H290.9300
C3—H30.9300C30—C311.432 (6)
C4—C121.410 (6)C32—C331.376 (6)
C4—C51.425 (7)C32—C371.382 (6)
C5—C61.337 (7)C32—C381.524 (6)
C5—H50.9300C33—C341.379 (6)
C6—C71.432 (7)C33—H330.9300
C6—H60.9300C34—C351.353 (7)
C7—C111.400 (6)C34—H340.9300
C7—C81.406 (7)C35—C361.361 (8)
C8—C91.350 (7)C36—C371.382 (7)
C8—H80.9300C36—H360.9300
C9—C101.384 (6)C37—H370.9300
O1—Mn1—O587.22 (13)C13—C14—H14118.7
O1—Mn1—N192.61 (13)C15—C14—H14118.7
O5—Mn1—N1110.41 (14)C16—C15—C14116.8 (5)
O1—Mn1—N3102.43 (13)C16—C15—H15121.6
O5—Mn1—N391.99 (15)C14—C15—H15121.6
N1—Mn1—N3153.68 (14)C17—C16—C15123.7 (5)
O1—Mn1—N2163.65 (13)C17—C16—F1117.8 (5)
O5—Mn1—N290.34 (13)C15—C16—F1118.5 (5)
N1—Mn1—N273.11 (13)C16—C17—C18118.7 (5)
N3—Mn1—N293.81 (13)C16—C17—H17120.7
O1—Mn1—N483.87 (13)C18—C17—H17120.7
O5—Mn1—N4159.63 (14)C13—C18—C17119.7 (5)
N1—Mn1—N488.31 (13)C13—C18—H18120.1
N3—Mn1—N472.22 (14)C17—C18—H18120.1
N2—Mn1—N4103.18 (13)O2—C19—O1125.4 (5)
C1—N1—C12118.2 (4)O2—C19—C13119.6 (5)
C1—N1—Mn1126.1 (3)O1—C19—C13115.0 (4)
C12—N1—Mn1115.3 (3)N3—C20—C21122.9 (5)
C10—N2—C11117.4 (4)N3—C20—H20118.5
C10—N2—Mn1127.5 (3)C21—C20—H20118.5
C11—N2—Mn1114.9 (3)C22—C21—C20119.8 (5)
C20—N3—C31118.5 (4)C22—C21—H21120.1
C20—N3—Mn1124.6 (3)C20—C21—H21120.1
C31—N3—Mn1116.1 (3)C21—C22—C23119.6 (5)
C29—N4—C30117.1 (4)C21—C22—H22120.2
C29—N4—Mn1128.8 (4)C23—C22—H22120.2
C30—N4—Mn1112.7 (3)C22—C23—C31117.3 (5)
C19—O1—Mn1134.6 (3)C22—C23—C24124.5 (5)
Mn1—O5—H5A132.0C31—C23—C24118.2 (5)
Mn1—O5—H5B116.1C25—C24—C23122.3 (6)
H5A—O5—H5B107.2C25—C24—H24118.9
H6A—O6—H6B111.3C23—C24—H24118.9
H7A—O7—H7B111.7C24—C25—C26121.7 (5)
H8A—O8—H8B112.9C24—C25—H25119.2
N1—C1—C2122.6 (5)C26—C25—H25119.2
N1—C1—H1118.7C27—C26—C30117.4 (5)
C2—C1—H1118.7C27—C26—C25124.2 (6)
C3—C2—C1119.9 (5)C30—C26—C25118.4 (5)
C3—C2—H2120.0C28—C27—C26120.0 (5)
C1—C2—H2120.0C28—C27—H27120.0
C2—C3—C4120.1 (5)C26—C27—H27120.0
C2—C3—H3119.9C27—C28—C29118.8 (6)
C4—C3—H3119.9C27—C28—H28120.6
C3—C4—C12116.8 (5)C29—C28—H28120.6
C3—C4—C5124.2 (5)N4—C29—C28123.9 (6)
C12—C4—C5119.0 (4)N4—C29—H29118.0
C6—C5—C4121.0 (5)C28—C29—H29118.0
C6—C5—H5119.5N4—C30—C26122.6 (5)
C4—C5—H5119.5N4—C30—C31117.9 (4)
C5—C6—C7121.6 (5)C26—C30—C31119.5 (5)
C5—C6—H6119.2N3—C31—C23121.8 (5)
C7—C6—H6119.2N3—C31—C30118.2 (4)
C11—C7—C8116.8 (4)C23—C31—C30120.0 (5)
C11—C7—C6119.2 (4)C33—C32—C37119.1 (4)
C8—C7—C6123.9 (5)C33—C32—C38120.3 (4)
C9—C8—C7119.8 (5)C37—C32—C38120.5 (5)
C9—C8—H8120.1C32—C33—C34121.2 (5)
C7—C8—H8120.1C32—C33—H33119.4
C8—C9—C10119.3 (5)C34—C33—H33119.4
C8—C9—H9120.3C35—C34—C33117.9 (5)
C10—C9—H9120.3C35—C34—H34121.1
N2—C10—C9123.3 (5)C33—C34—H34121.1
N2—C10—H10118.4C34—C35—F2118.5 (6)
C9—C10—H10118.4C34—C35—C36123.2 (5)
N2—C11—C7123.3 (4)F2—C35—C36118.2 (5)
N2—C11—C12117.5 (4)C35—C36—C37118.5 (5)
C7—C11—C12119.1 (4)C35—C36—H36120.8
N1—C12—C4122.3 (4)C37—C36—H36120.8
N1—C12—C11117.7 (4)C36—C37—C32120.1 (5)
C4—C12—C11120.0 (4)C36—C37—H37120.0
C14—C13—C18118.5 (4)C32—C37—H37120.0
C14—C13—C19121.4 (4)O3—C38—O4126.0 (5)
C18—C13—C19120.0 (4)O3—C38—C32116.3 (5)
C13—C14—C15122.5 (5)O4—C38—C32117.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.851.792.622 (4)166
O5—H5B···O20.852.062.719 (5)135
O6—H6A···O4ii0.851.982.825 (6)171
O6—H6B···O7iii0.852.082.827 (7)146
O7—H7A···O80.852.022.854 (8)165
O7—H7B···O60.851.992.819 (6)166
O8—H8A···O40.851.972.792 (7)164
C1—H1···F2iv0.932.503.209 (7)133
C5—H5···O3v0.932.453.339 (7)160
C20—H20···O4i0.932.423.233 (7)146
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+2, y, z; (iv) x, y+1, z; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C7H4FO2)(C12H8N2)2(H2O)](C7H4FO2)·3H2O
Mr765.62
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)8.8897 (17), 14.773 (3), 14.890 (3)
α, β, γ (°)107.815 (4), 107.314 (4), 91.386 (4)
V3)1762.9 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.20 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.923, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
9353, 6138, 4642
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.085, 0.178, 1.14
No. of reflections6138
No. of parameters478
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.26

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg & Putz, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.851.792.622 (4)166
O5—H5B···O20.852.062.719 (5)135
O6—H6A···O4ii0.851.982.825 (6)171
O6—H6B···O7iii0.852.082.827 (7)146
O7—H7A···O80.852.022.854 (8)165
O7—H7B···O60.851.992.819 (6)166
O8—H8A···O40.851.972.792 (7)164
C1—H1···F2iv0.932.503.209 (7)133
C5—H5···O3v0.932.453.339 (7)160
C20—H20···O4i0.932.423.233 (7)146
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+2, y, z; (iv) x, y+1, z; (v) x1, y, z.
 

Acknowledgements

The authors gratefully acknowledge financial support by the Department of Education of Zhejiang Province (grant No. Y201120940) and the Scientific Research Fund of Ningbo University (grant No. XKL09078).

References

First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationSehlotho, N. & Durmus, M. (2008). Inorg. Chem. Commun. 11, 479–483.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R., Zhang, L. & Xu, D.-J. (2005). Acta Cryst. E61, m939–m941.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, B. S. (2004). Z. Kristallogr. New Cryst. Struct. 219, 485–486.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds