metal-organic compounds
Acetonitriletrichloridobis(cyclohexyldiphenylphosphane)rhodium(III) acetonitrile disolvate
aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: muller.theunis@gmail.com
In the title compound, [RhCl3(CH3CN)(C18H21P)2]·2CH3CN, the complex molecule lies on a twofold rotation axis that passes through the RhIII atom, one Cl atom, and the C and N atoms of the coordinated acetonitrile molecule. The RhIII atom is coordinated by two P atoms in trans positions, three Cl atoms and an acetonitrile molecule in a distorted octahedral geometry. Intramolecular C—H⋯Cl interactions are observed. The uncoordinated acetonitrile molecule is disordered over two sites with occupancies of 0.588 (4) and 0.412 (4).
Related literature
For background to the et al. (2010); Marko & Heil (1974); Nagy-Magos et al. (1978); Oro et al. (1978); Roodt et al. (2003). For related structures, see: Archer et al. (1993); Aslanov et al. (1970); Clegg et al. (2002); Drew et al. (1970).
of rhodium–phosphane adducts, see: BrinkExperimental
Crystal data
|
Refinement
|
|
|
Data collection: APEX2 (Bruker, 2008); cell SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536811047477/is2783sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811047477/is2783Isup2.hkl
RhCl3.H2O (20 mg, 9.557×10 -5 mol) was added to acetonitrile (5 ml) and heated to reflux. Cyclohexyldiphenylphosphane (2 eq, 1.911×10 -4 mol, 51,2 mg) was added to the solution. The solution was refluxed for 15 min before it was cooled to room temperature. Crystals suitable for X-ray analysis was grown overnight by the slow evaporation of acetonitrile at room temperature (yield 0.0750 g, 89%)
H atoms were positioned geometrically (C—H = 0.93–9.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(phenyl C) or 1.5Ueq(methyl and methylene C). The distance restraints [1.45 (1) Å] were applied for C21A—C22A and C21B—C22B.
Rhodium catalysts formed in situ from RhCl3xH2O and
have been used for the hydrogenation (Marko & Heil, 1974; Nagy-Magos et al., 1978) and hydroformylation (Oro et al., 1978) of The is determined by the electronic and steric effects of the phosphane ligand (Roodt et al., 2003; Brink et al., 2010).The title compound (Fig. 1) crystallizes in the monoclinic
C2/c. The RhIII atom is situated on a twofold rotation axis, which passes atoms Cl2, N1 and C2. Two cyclohexyldiphenylphosphane ligands are positioned trans to each other, with the other four coordination sites occupied by three mer-chloroligands and one molecule of the acetonitrile solvent. In contrast to the structure reported by Clegg et al. (2002) the solvent molecule lies opposite the shortest Rh—Cl2 bond [2.3297 (5) Å] in the complex. Deviations from ideal octahedral geometry are minor (Table 1). The Rh—P1 bond length is 2.4013 (5) Å, while the Rh—Cl1 bond length is 2.3486 (6) Å. The P1—Rh—P1i angle is 176.462 (17)° which is close to the Cl1—Rh—Cl1i at 176.185 (18)° [symmetry code: (i) -x, y, -z + 1/2]. This complex is therefore structurally related to trans-ReCl3(PMe2Ph)3 (Aslanov et al., 1970) and ReCl3(PPh3)2MeCN (Drew et al., 1970), and other metal halide derivatives of this type (Archer et al., 1993). The uncoordinated acetonitrile molecule is disordered over two positions with occupancies of 0.588 (4) and 0.412 (4). The molecular structure of the complex is stabilized by intramolecular C—H···Cl interactions (Table 2).For background to the
of rhodium–phosphane adducts, see: Brink et al. (2010); Marko & Heil (1974); Nagy-Magos et al. (1978); Oro et al. (1978); Roodt et al. (2003). For related structures, see: Archer et al. (1993); Aslanov et al. (1970); Clegg et al. (2002); Drew et al. (1970).Data collection: APEX2 (Bruker, 2008); cell
SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. Diamond representation of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability). |
[RhCl3(C2H3N)(C18H21P)2]·2C2H3N | F(000) = 1800 |
Mr = 869.06 | Dx = 1.425 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 24.995 (1) Å | Cell parameters from 9837 reflections |
b = 10.041 (1) Å | θ = 2.5–28.3° |
c = 16.258 (1) Å | µ = 0.73 mm−1 |
β = 96.763 (1)° | T = 100 K |
V = 4052.0 (5) Å3 | Cuboid, red |
Z = 4 | 0.32 × 0.25 × 0.16 mm |
Bruker APEXII CCD diffractometer | 4615 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
φ and ω scans | θmax = 28.4°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −33→33 |
Tmin = 0.797, Tmax = 0.889 | k = −13→13 |
33882 measured reflections | l = −21→19 |
5038 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.055 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0236P)2 + 4.9122P] where P = (Fo2 + 2Fc2)/3 |
5038 reflections | (Δ/σ)max = 0.001 |
264 parameters | Δρmax = 0.37 e Å−3 |
2 restraints | Δρmin = −0.63 e Å−3 |
[RhCl3(C2H3N)(C18H21P)2]·2C2H3N | V = 4052.0 (5) Å3 |
Mr = 869.06 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 24.995 (1) Å | µ = 0.73 mm−1 |
b = 10.041 (1) Å | T = 100 K |
c = 16.258 (1) Å | 0.32 × 0.25 × 0.16 mm |
β = 96.763 (1)° |
Bruker APEXII CCD diffractometer | 5038 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 4615 reflections with I > 2σ(I) |
Tmin = 0.797, Tmax = 0.889 | Rint = 0.027 |
33882 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | 2 restraints |
wR(F2) = 0.055 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.37 e Å−3 |
5038 reflections | Δρmin = −0.63 e Å−3 |
264 parameters |
Experimental. The intensity data was collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 20 s/frame. A total of 1963 frames were collected with a frame width of 0.5° covering up to θ = 28.35° with 99.6% completeness accomplished |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Rh1 | 0 | 0.145288 (14) | 0.25 | 0.01099 (5) | |
Cl1 | −0.053994 (13) | 0.13750 (3) | 0.35876 (2) | 0.01819 (7) | |
Cl2 | 0 | 0.37731 (4) | 0.25 | 0.01635 (9) | |
P1 | 0.079330 (13) | 0.13791 (3) | 0.34878 (2) | 0.01236 (7) | |
N1 | 0 | −0.05368 (17) | 0.25 | 0.0166 (3) | |
C15 | 0.07347 (5) | 0.20332 (14) | 0.45392 (8) | 0.0160 (3) | |
H15 | 0.0418 | 0.1572 | 0.4734 | 0.019* | |
C11 | 0.18508 (6) | 0.40163 (15) | 0.26099 (10) | 0.0230 (3) | |
H11 | 0.1831 | 0.479 | 0.2271 | 0.028* | |
C2 | 0 | −0.3095 (2) | 0.25 | 0.0238 (4) | |
H2A | 0.019 | −0.3421 | 0.2046 | 0.036* | 0.5 |
H2B | −0.0372 | −0.3421 | 0.2426 | 0.036* | 0.5 |
H2C | 0.0182 | −0.3421 | 0.3029 | 0.036* | 0.5 |
C5 | 0.14501 (6) | −0.23233 (15) | 0.32610 (10) | 0.0228 (3) | |
H5 | 0.1671 | −0.2744 | 0.29 | 0.027* | |
C4 | 0.13087 (6) | −0.09925 (15) | 0.31407 (9) | 0.0186 (3) | |
H4 | 0.1431 | −0.0512 | 0.2696 | 0.022* | |
C18 | 0.10192 (7) | 0.36857 (16) | 0.60247 (9) | 0.0242 (3) | |
H18A | 0.1342 | 0.4175 | 0.5893 | 0.029* | |
H18B | 0.0942 | 0.3966 | 0.6582 | 0.029* | |
C3 | 0.09890 (5) | −0.03580 (13) | 0.36674 (8) | 0.0151 (3) | |
C8 | 0.07948 (6) | −0.10963 (15) | 0.42960 (9) | 0.0197 (3) | |
H8 | 0.0562 | −0.069 | 0.4644 | 0.024* | |
C16 | 0.12161 (6) | 0.17108 (15) | 0.51730 (9) | 0.0217 (3) | |
H16A | 0.1273 | 0.0735 | 0.5193 | 0.026* | |
H16B | 0.1544 | 0.2129 | 0.5 | 0.026* | |
C10 | 0.13773 (6) | 0.33469 (15) | 0.27481 (9) | 0.0205 (3) | |
H10 | 0.1037 | 0.369 | 0.2525 | 0.025* | |
C7 | 0.09408 (7) | −0.24283 (15) | 0.44145 (10) | 0.0250 (3) | |
H7 | 0.0812 | −0.2921 | 0.485 | 0.03* | |
C19 | 0.05461 (6) | 0.40325 (16) | 0.53948 (9) | 0.0220 (3) | |
H19A | 0.0505 | 0.5013 | 0.537 | 0.026* | |
H19B | 0.0214 | 0.3657 | 0.5579 | 0.026* | |
C14 | 0.19135 (6) | 0.17214 (15) | 0.35757 (10) | 0.0209 (3) | |
H14 | 0.1936 | 0.0956 | 0.3922 | 0.025* | |
C9 | 0.14076 (5) | 0.21728 (14) | 0.32148 (9) | 0.0166 (3) | |
C13 | 0.23812 (6) | 0.23857 (16) | 0.34300 (10) | 0.0243 (3) | |
H13 | 0.2723 | 0.2043 | 0.3647 | 0.029* | |
C20 | 0.06056 (6) | 0.35127 (14) | 0.45333 (9) | 0.0201 (3) | |
H20A | 0.0897 | 0.4009 | 0.4305 | 0.024* | |
H20B | 0.0267 | 0.3673 | 0.4167 | 0.024* | |
C17 | 0.11302 (6) | 0.22091 (16) | 0.60265 (9) | 0.0214 (3) | |
H17A | 0.0823 | 0.1728 | 0.6221 | 0.026* | |
H17B | 0.1455 | 0.2016 | 0.6418 | 0.026* | |
C6 | 0.12719 (6) | −0.30370 (15) | 0.39021 (10) | 0.0253 (3) | |
H6 | 0.1376 | −0.394 | 0.3991 | 0.03* | |
C12 | 0.23475 (6) | 0.35541 (17) | 0.29659 (11) | 0.0281 (4) | |
H12 | 0.2666 | 0.4036 | 0.2893 | 0.034* | |
C1 | 0 | −0.1644 (2) | 0.25 | 0.0199 (4) | |
N2A | 0.22420 (12) | 0.4183 (3) | 0.0550 (2) | 0.0384 (8) | 0.588 (4) |
C21A | 0.2017 (4) | 0.1790 (4) | 0.1017 (6) | 0.0345 (17) | 0.588 (4) |
H21A | 0.1631 | 0.173 | 0.1067 | 0.052* | 0.588 (4) |
H21B | 0.2223 | 0.1594 | 0.1554 | 0.052* | 0.588 (4) |
H21C | 0.211 | 0.1144 | 0.0605 | 0.052* | 0.588 (4) |
C22A | 0.21444 (12) | 0.3123 (3) | 0.07576 (19) | 0.0331 (8) | 0.588 (4) |
N2B | 0.2558 (2) | 0.0458 (6) | −0.0078 (4) | 0.0611 (16) | 0.412 (4) |
C21B | 0.2042 (7) | 0.1588 (10) | 0.1007 (9) | 0.060 (4) | 0.412 (4) |
H21D | 0.2034 | 0.2552 | 0.0914 | 0.09* | 0.412 (4) |
H21E | 0.2224 | 0.1399 | 0.1563 | 0.09* | 0.412 (4) |
H21F | 0.1673 | 0.1243 | 0.096 | 0.09* | 0.412 (4) |
C22B | 0.2333 (2) | 0.0950 (6) | 0.0394 (4) | 0.0523 (17) | 0.412 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rh1 | 0.01107 (7) | 0.00977 (7) | 0.01209 (7) | 0 | 0.00121 (5) | 0 |
Cl1 | 0.01540 (15) | 0.02406 (18) | 0.01562 (16) | −0.00089 (12) | 0.00398 (12) | 0.00129 (12) |
Cl2 | 0.0172 (2) | 0.0117 (2) | 0.0195 (2) | 0 | −0.00028 (17) | 0 |
P1 | 0.01149 (15) | 0.01268 (16) | 0.01287 (16) | −0.00007 (12) | 0.00121 (12) | 0.00040 (12) |
N1 | 0.0136 (7) | 0.0180 (9) | 0.0173 (8) | 0 | −0.0018 (6) | 0 |
C15 | 0.0154 (6) | 0.0181 (7) | 0.0141 (6) | 0.0006 (5) | 0.0003 (5) | −0.0021 (5) |
C11 | 0.0214 (7) | 0.0184 (7) | 0.0299 (8) | −0.0017 (6) | 0.0054 (6) | 0.0036 (6) |
C2 | 0.0263 (11) | 0.0165 (10) | 0.0285 (11) | 0 | 0.0033 (9) | 0 |
C5 | 0.0222 (7) | 0.0179 (7) | 0.0278 (8) | 0.0047 (6) | 0.0007 (6) | −0.0026 (6) |
C4 | 0.0168 (6) | 0.0190 (7) | 0.0199 (7) | 0.0011 (5) | 0.0018 (5) | 0.0012 (6) |
C18 | 0.0279 (8) | 0.0275 (8) | 0.0170 (7) | −0.0023 (6) | 0.0019 (6) | −0.0044 (6) |
C3 | 0.0144 (6) | 0.0146 (6) | 0.0154 (6) | −0.0001 (5) | −0.0016 (5) | 0.0009 (5) |
C8 | 0.0219 (7) | 0.0187 (7) | 0.0185 (7) | −0.0024 (5) | 0.0022 (5) | 0.0010 (5) |
C16 | 0.0238 (7) | 0.0224 (7) | 0.0178 (7) | 0.0031 (6) | −0.0026 (6) | −0.0019 (6) |
C10 | 0.0154 (6) | 0.0212 (7) | 0.0250 (7) | 0.0004 (5) | 0.0022 (5) | 0.0044 (6) |
C7 | 0.0322 (8) | 0.0196 (7) | 0.0222 (8) | −0.0048 (6) | −0.0006 (6) | 0.0060 (6) |
C19 | 0.0246 (7) | 0.0207 (7) | 0.0201 (7) | 0.0025 (6) | 0.0004 (6) | −0.0046 (6) |
C14 | 0.0161 (6) | 0.0217 (7) | 0.0247 (7) | 0.0002 (5) | 0.0014 (5) | 0.0038 (6) |
C9 | 0.0138 (6) | 0.0177 (7) | 0.0185 (7) | −0.0020 (5) | 0.0025 (5) | −0.0004 (5) |
C13 | 0.0147 (6) | 0.0283 (8) | 0.0295 (8) | −0.0003 (6) | 0.0007 (6) | 0.0013 (6) |
C20 | 0.0251 (7) | 0.0184 (7) | 0.0165 (7) | 0.0033 (6) | 0.0014 (5) | −0.0010 (5) |
C17 | 0.0191 (7) | 0.0275 (8) | 0.0168 (7) | −0.0026 (6) | −0.0020 (5) | −0.0011 (6) |
C6 | 0.0302 (8) | 0.0152 (7) | 0.0285 (8) | 0.0014 (6) | −0.0051 (6) | 0.0020 (6) |
C12 | 0.0166 (7) | 0.0297 (9) | 0.0390 (9) | −0.0052 (6) | 0.0073 (6) | 0.0039 (7) |
C1 | 0.0174 (9) | 0.0200 (11) | 0.0217 (10) | 0 | −0.0004 (7) | 0 |
N2A | 0.0365 (16) | 0.0417 (17) | 0.0367 (17) | −0.0067 (12) | 0.0033 (12) | −0.0085 (13) |
C21A | 0.027 (3) | 0.040 (3) | 0.037 (4) | −0.005 (2) | 0.007 (2) | −0.007 (2) |
C22A | 0.0247 (14) | 0.0420 (19) | 0.0323 (16) | −0.0032 (13) | 0.0020 (11) | −0.0101 (14) |
N2B | 0.063 (3) | 0.066 (4) | 0.052 (3) | −0.027 (3) | −0.002 (3) | −0.014 (3) |
C21B | 0.073 (8) | 0.047 (4) | 0.055 (8) | −0.014 (5) | −0.021 (5) | 0.009 (5) |
C22B | 0.056 (4) | 0.049 (3) | 0.046 (3) | −0.023 (3) | −0.017 (3) | 0.000 (3) |
Rh1—N1 | 1.9978 (17) | C16—C17 | 1.514 (2) |
Rh1—Cl2 | 2.3297 (5) | C16—H16A | 0.99 |
Rh1—Cl1 | 2.3486 (3) | C16—H16B | 0.99 |
Rh1—Cl1i | 2.3486 (3) | C10—C9 | 1.399 (2) |
Rh1—P1 | 2.4013 (3) | C10—H10 | 0.95 |
Rh1—P1i | 2.4013 (3) | C7—C6 | 1.384 (2) |
P1—C3 | 1.8257 (14) | C7—H7 | 0.95 |
P1—C9 | 1.8304 (14) | C19—C20 | 1.518 (2) |
P1—C15 | 1.8529 (14) | C19—H19A | 0.99 |
N1—C1 | 1.112 (3) | C19—H19B | 0.99 |
C15—C20 | 1.520 (2) | C14—C13 | 1.390 (2) |
C15—C16 | 1.5240 (18) | C14—C9 | 1.4049 (19) |
C15—H15 | 1 | C14—H14 | 0.95 |
C11—C12 | 1.387 (2) | C13—C12 | 1.392 (2) |
C11—C10 | 1.402 (2) | C13—H13 | 0.95 |
C11—H11 | 0.95 | C20—H20A | 0.99 |
C2—C1 | 1.457 (3) | C20—H20B | 0.99 |
C2—H2A | 0.98 | C17—H17A | 0.99 |
C2—H2B | 0.98 | C17—H17B | 0.99 |
C2—H2C | 0.98 | C6—H6 | 0.95 |
C5—C6 | 1.381 (2) | C12—H12 | 0.95 |
C5—C4 | 1.390 (2) | N2A—C22A | 1.151 (5) |
C5—H5 | 0.95 | C21A—C22A | 1.4501 (10) |
C4—C3 | 1.392 (2) | C21A—H21A | 0.98 |
C4—H4 | 0.95 | C21A—H21B | 0.98 |
C18—C17 | 1.508 (2) | C21A—H21C | 0.98 |
C18—C19 | 1.511 (2) | N2B—C22B | 1.119 (9) |
C18—H18A | 0.99 | C21B—C22B | 1.4498 (10) |
C18—H18B | 0.99 | C21B—H21D | 0.98 |
C3—C8 | 1.395 (2) | C21B—H21E | 0.98 |
C8—C7 | 1.394 (2) | C21B—H21F | 0.98 |
C8—H8 | 0.95 | ||
N1—Rh1—Cl2 | 180 | C17—C16—C15 | 111.33 (12) |
N1—Rh1—Cl1 | 88.093 (9) | C17—C16—H16A | 109.4 |
Cl2—Rh1—Cl1 | 91.907 (9) | C15—C16—H16A | 109.4 |
N1—Rh1—Cl1i | 88.093 (9) | C17—C16—H16B | 109.4 |
Cl2—Rh1—Cl1i | 91.907 (9) | C15—C16—H16B | 109.4 |
Cl1—Rh1—Cl1i | 176.185 (18) | H16A—C16—H16B | 108 |
N1—Rh1—P1 | 88.231 (9) | C9—C10—C11 | 119.86 (13) |
Cl2—Rh1—P1 | 91.769 (9) | C9—C10—H10 | 120.1 |
Cl1—Rh1—P1 | 89.879 (12) | C11—C10—H10 | 120.1 |
Cl1i—Rh1—P1 | 90.003 (12) | C6—C7—C8 | 120.40 (15) |
N1—Rh1—P1i | 88.231 (9) | C6—C7—H7 | 119.8 |
Cl2—Rh1—P1i | 91.769 (9) | C8—C7—H7 | 119.8 |
Cl1—Rh1—P1i | 90.003 (12) | C18—C19—C20 | 113.09 (13) |
Cl1i—Rh1—P1i | 89.879 (12) | C18—C19—H19A | 109 |
P1—Rh1—P1i | 176.463 (17) | C20—C19—H19A | 109 |
C3—P1—C9 | 103.78 (6) | C18—C19—H19B | 109 |
C3—P1—C15 | 103.88 (6) | C20—C19—H19B | 109 |
C9—P1—C15 | 103.24 (6) | H19A—C19—H19B | 107.8 |
C3—P1—Rh1 | 108.72 (4) | C13—C14—C9 | 120.50 (14) |
C9—P1—Rh1 | 118.33 (5) | C13—C14—H14 | 119.8 |
C15—P1—Rh1 | 117.21 (4) | C9—C14—H14 | 119.8 |
C1—N1—Rh1 | 180 | C10—C9—C14 | 119.15 (13) |
C20—C15—C16 | 111.22 (12) | C10—C9—P1 | 120.32 (10) |
C20—C15—P1 | 112.36 (10) | C14—C9—P1 | 119.84 (11) |
C16—C15—P1 | 113.99 (10) | C14—C13—C12 | 119.89 (14) |
C20—C15—H15 | 106.2 | C14—C13—H13 | 120.1 |
C16—C15—H15 | 106.2 | C12—C13—H13 | 120.1 |
P1—C15—H15 | 106.2 | C19—C20—C15 | 111.96 (12) |
C12—C11—C10 | 120.26 (14) | C19—C20—H20A | 109.2 |
C12—C11—H11 | 119.9 | C15—C20—H20A | 109.2 |
C10—C11—H11 | 119.9 | C19—C20—H20B | 109.2 |
C1—C2—H2A | 109.5 | C15—C20—H20B | 109.2 |
C1—C2—H2B | 109.5 | H20A—C20—H20B | 107.9 |
H2A—C2—H2B | 109.5 | C18—C17—C16 | 111.65 (13) |
C1—C2—H2C | 109.5 | C18—C17—H17A | 109.3 |
H2A—C2—H2C | 109.5 | C16—C17—H17A | 109.3 |
H2B—C2—H2C | 109.5 | C18—C17—H17B | 109.3 |
C6—C5—C4 | 120.38 (15) | C16—C17—H17B | 109.3 |
C6—C5—H5 | 119.8 | H17A—C17—H17B | 108 |
C4—C5—H5 | 119.8 | C5—C6—C7 | 119.61 (14) |
C5—C4—C3 | 120.53 (14) | C5—C6—H6 | 120.2 |
C5—C4—H4 | 119.7 | C7—C6—H6 | 120.2 |
C3—C4—H4 | 119.7 | C11—C12—C13 | 120.15 (14) |
C17—C18—C19 | 110.91 (12) | C11—C12—H12 | 119.9 |
C17—C18—H18A | 109.5 | C13—C12—H12 | 119.9 |
C19—C18—H18A | 109.5 | N1—C1—C2 | 180 |
C17—C18—H18B | 109.5 | N2A—C22A—C21A | 179.5 (5) |
C19—C18—H18B | 109.5 | C22B—C21B—H21D | 109.5 |
H18A—C18—H18B | 108 | C22B—C21B—H21E | 109.5 |
C4—C3—C8 | 118.80 (13) | H21D—C21B—H21E | 109.5 |
C4—C3—P1 | 120.07 (11) | C22B—C21B—H21F | 109.5 |
C8—C3—P1 | 121.00 (11) | H21D—C21B—H21F | 109.5 |
C7—C8—C3 | 120.21 (14) | H21E—C21B—H21F | 109.5 |
C7—C8—H8 | 119.9 | N2B—C22B—C21B | 179.9 (11) |
C3—C8—H8 | 119.9 |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···Cl2 | 0.95 | 2.59 | 3.4452 (14) | 150 |
C20—H20B···Cl2 | 0.99 | 2.72 | 3.4797 (14) | 134 |
Experimental details
Crystal data | |
Chemical formula | [RhCl3(C2H3N)(C18H21P)2]·2C2H3N |
Mr | 869.06 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 100 |
a, b, c (Å) | 24.995 (1), 10.041 (1), 16.258 (1) |
β (°) | 96.763 (1) |
V (Å3) | 4052.0 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.73 |
Crystal size (mm) | 0.32 × 0.25 × 0.16 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.797, 0.889 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 33882, 5038, 4615 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.055, 1.04 |
No. of reflections | 5038 |
No. of parameters | 264 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.63 |
Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···Cl2 | 0.95 | 2.59 | 3.4452 (14) | 150.3 |
C20—H20B···Cl2 | 0.99 | 2.72 | 3.4797 (14) | 134.3 |
Acknowledgements
The University of the Free State and Inkaba are gratefully acknowledged for financial support.
References
Archer, C. M., Dilworth, J. R., Thompson, R. M., McPartlin, M., Povey, D. C. & Kelly, J. D. (1993). J. Chem. Soc. Dalton Trans. pp. 461–466. CSD CrossRef Web of Science Google Scholar
Aslanov, L., Mason, R., Wheeler, A. G. & Whimp, P. O. (1970). J. Chem. Soc. Chem. Commun. pp. 30–31. CrossRef Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brink, A., Roodt, A., Steyl, G. & Visser, H. G. (2010). J. Chem. Soc. Dalton Trans. 39, 5572—5578. CrossRef Google Scholar
Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clegg, W., Scott, A. J., Norman, N. C., Robins, E. G. & Whittell, G. R. (2002). Acta Cryst. E58, m410–m411. Web of Science CSD CrossRef IUCr Journals Google Scholar
Drew, M. G. B., Tisley, D. G. & Walton, R. A. (1970). J. Chem. Soc. Chem. Commun. pp. 600–601. CrossRef Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Marko, L. & Heil, B. (1974). Catal. Rev. 8, 269–293. Google Scholar
Nagy-Magos, Z., Vastag, S., Heil, B. & Marko, L. (1978). Transition Met. Chem. 3, 123–126. CAS Google Scholar
Oro, L. A., Manrique, A. & Royo, M. (1978). Transition Met. Chem. 3, 383–384. CrossRef CAS Web of Science Google Scholar
Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Rhodium catalysts formed in situ from RhCl3xH2O and phosphanes have been used for the hydrogenation (Marko & Heil, 1974; Nagy-Magos et al., 1978) and hydroformylation (Oro et al., 1978) of olefins. The catalytic activity is determined by the electronic and steric effects of the phosphane ligand (Roodt et al., 2003; Brink et al., 2010).
The title compound (Fig. 1) crystallizes in the monoclinic space group C2/c. The RhIII atom is situated on a twofold rotation axis, which passes atoms Cl2, N1 and C2. Two cyclohexyldiphenylphosphane ligands are positioned trans to each other, with the other four coordination sites occupied by three mer-chloroligands and one molecule of the acetonitrile solvent. In contrast to the structure reported by Clegg et al. (2002) the solvent molecule lies opposite the shortest Rh—Cl2 bond [2.3297 (5) Å] in the complex. Deviations from ideal octahedral geometry are minor (Table 1). The Rh—P1 bond length is 2.4013 (5) Å, while the Rh—Cl1 bond length is 2.3486 (6) Å. The P1—Rh—P1i angle is 176.462 (17)° which is close to the Cl1—Rh—Cl1i at 176.185 (18)° [symmetry code: (i) -x, y, -z + 1/2]. This complex is therefore structurally related to trans-ReCl3(PMe2Ph)3 (Aslanov et al., 1970) and ReCl3(PPh3)2MeCN (Drew et al., 1970), and other metal halide derivatives of this type (Archer et al., 1993). The uncoordinated acetonitrile molecule is disordered over two positions with occupancies of 0.588 (4) and 0.412 (4). The molecular structure of the complex is stabilized by intramolecular C—H···Cl interactions (Table 2).