metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aceto­nitrile­tri­chloridobis(cyclo­hexyl­di­phenyl­phosphane)rhodium(III) aceto­nitrile disolvate

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: muller.theunis@gmail.com

(Received 29 September 2011; accepted 9 November 2011; online 19 November 2011)

In the title compound, [RhCl3(CH3CN)(C18H21P)2]·2CH3CN, the complex mol­ecule lies on a twofold rotation axis that passes through the RhIII atom, one Cl atom, and the C and N atoms of the coordinated acetonitrile mol­ecule. The RhIII atom is coordinated by two P atoms in trans positions, three Cl atoms and an acetonitrile mol­ecule in a distorted octa­hedral geometry. Intra­molecular C—H⋯Cl inter­actions are observed. The uncoordinated acetonitrile mol­ecule is disordered over two sites with occupancies of 0.588 (4) and 0.412 (4).

Related literature

For background to the catalytic activity of rhodium–phosphane adducts, see: Brink et al. (2010[Brink, A., Roodt, A., Steyl, G. & Visser, H. G. (2010). J. Chem. Soc. Dalton Trans. 39, 5572—5578.]); Marko & Heil (1974[Marko, L. & Heil, B. (1974). Catal. Rev. 8, 269-293.]); Nagy-Magos et al. (1978[Nagy-Magos, Z., Vastag, S., Heil, B. & Marko, L. (1978). Transition Met. Chem. 3, 123-126.]); Oro et al. (1978[Oro, L. A., Manrique, A. & Royo, M. (1978). Transition Met. Chem. 3, 383-384.]); Roodt et al. (2003[Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121-137.]). For related structures, see: Archer et al. (1993[Archer, C. M., Dilworth, J. R., Thompson, R. M., McPartlin, M., Povey, D. C. & Kelly, J. D. (1993). J. Chem. Soc. Dalton Trans. pp. 461-466.]); Aslanov et al. (1970[Aslanov, L., Mason, R., Wheeler, A. G. & Whimp, P. O. (1970). J. Chem. Soc. Chem. Commun. pp. 30-31.]); Clegg et al. (2002[Clegg, W., Scott, A. J., Norman, N. C., Robins, E. G. & Whittell, G. R. (2002). Acta Cryst. E58, m410-m411.]); Drew et al. (1970[Drew, M. G. B., Tisley, D. G. & Walton, R. A. (1970). J. Chem. Soc. Chem. Commun. pp. 600-601.]).

[Scheme 1]

Experimental

Crystal data
  • [RhCl3(C2H3N)(C18H21P)2]·2C2H3N

  • Mr = 869.06

  • Monoclinic, C 2/c

  • a = 24.995 (1) Å

  • b = 10.041 (1) Å

  • c = 16.258 (1) Å

  • β = 96.763 (1)°

  • V = 4052.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 100 K

  • 0.32 × 0.25 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.797, Tmax = 0.889

  • 33882 measured reflections

  • 5038 independent reflections

  • 4615 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.055

  • S = 1.04

  • 5038 reflections

  • 264 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Selected bond lengths (Å)

Rh1—N1 1.9978 (17)
Rh1—Cl2 2.3297 (5)
Rh1—Cl1 2.3486 (3)
Rh1—P1 2.4013 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cl2 0.95 2.59 3.4452 (14) 150
C20—H20B⋯Cl2 0.99 2.72 3.4797 (14) 134

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Rhodium catalysts formed in situ from RhCl3xH2O and phosphanes have been used for the hydrogenation (Marko & Heil, 1974; Nagy-Magos et al., 1978) and hydroformylation (Oro et al., 1978) of olefins. The catalytic activity is determined by the electronic and steric effects of the phosphane ligand (Roodt et al., 2003; Brink et al., 2010).

The title compound (Fig. 1) crystallizes in the monoclinic space group C2/c. The RhIII atom is situated on a twofold rotation axis, which passes atoms Cl2, N1 and C2. Two cyclohexyldiphenylphosphane ligands are positioned trans to each other, with the other four coordination sites occupied by three mer-chloroligands and one molecule of the acetonitrile solvent. In contrast to the structure reported by Clegg et al. (2002) the solvent molecule lies opposite the shortest Rh—Cl2 bond [2.3297 (5) Å] in the complex. Deviations from ideal octahedral geometry are minor (Table 1). The Rh—P1 bond length is 2.4013 (5) Å, while the Rh—Cl1 bond length is 2.3486 (6) Å. The P1—Rh—P1i angle is 176.462 (17)° which is close to the Cl1—Rh—Cl1i at 176.185 (18)° [symmetry code: (i) -x, y, -z + 1/2]. This complex is therefore structurally related to trans-ReCl3(PMe2Ph)3 (Aslanov et al., 1970) and ReCl3(PPh3)2MeCN (Drew et al., 1970), and other metal halide derivatives of this type (Archer et al., 1993). The uncoordinated acetonitrile molecule is disordered over two positions with occupancies of 0.588 (4) and 0.412 (4). The molecular structure of the complex is stabilized by intramolecular C—H···Cl interactions (Table 2).

Related literature top

For background to the catalytic activity of rhodium–phosphane adducts, see: Brink et al. (2010); Marko & Heil (1974); Nagy-Magos et al. (1978); Oro et al. (1978); Roodt et al. (2003). For related structures, see: Archer et al. (1993); Aslanov et al. (1970); Clegg et al. (2002); Drew et al. (1970).

Experimental top

RhCl3.H2O (20 mg, 9.557×10 -5 mol) was added to acetonitrile (5 ml) and heated to reflux. Cyclohexyldiphenylphosphane (2 eq, 1.911×10 -4 mol, 51,2 mg) was added to the solution. The solution was refluxed for 15 min before it was cooled to room temperature. Crystals suitable for X-ray analysis was grown overnight by the slow evaporation of acetonitrile at room temperature (yield 0.0750 g, 89%)

Refinement top

H atoms were positioned geometrically (C—H = 0.93–9.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(phenyl C) or 1.5Ueq(methyl and methylene C). The distance restraints [1.45 (1) Å] were applied for C21A—C22A and C21B—C22B.

Structure description top

Rhodium catalysts formed in situ from RhCl3xH2O and phosphanes have been used for the hydrogenation (Marko & Heil, 1974; Nagy-Magos et al., 1978) and hydroformylation (Oro et al., 1978) of olefins. The catalytic activity is determined by the electronic and steric effects of the phosphane ligand (Roodt et al., 2003; Brink et al., 2010).

The title compound (Fig. 1) crystallizes in the monoclinic space group C2/c. The RhIII atom is situated on a twofold rotation axis, which passes atoms Cl2, N1 and C2. Two cyclohexyldiphenylphosphane ligands are positioned trans to each other, with the other four coordination sites occupied by three mer-chloroligands and one molecule of the acetonitrile solvent. In contrast to the structure reported by Clegg et al. (2002) the solvent molecule lies opposite the shortest Rh—Cl2 bond [2.3297 (5) Å] in the complex. Deviations from ideal octahedral geometry are minor (Table 1). The Rh—P1 bond length is 2.4013 (5) Å, while the Rh—Cl1 bond length is 2.3486 (6) Å. The P1—Rh—P1i angle is 176.462 (17)° which is close to the Cl1—Rh—Cl1i at 176.185 (18)° [symmetry code: (i) -x, y, -z + 1/2]. This complex is therefore structurally related to trans-ReCl3(PMe2Ph)3 (Aslanov et al., 1970) and ReCl3(PPh3)2MeCN (Drew et al., 1970), and other metal halide derivatives of this type (Archer et al., 1993). The uncoordinated acetonitrile molecule is disordered over two positions with occupancies of 0.588 (4) and 0.412 (4). The molecular structure of the complex is stabilized by intramolecular C—H···Cl interactions (Table 2).

For background to the catalytic activity of rhodium–phosphane adducts, see: Brink et al. (2010); Marko & Heil (1974); Nagy-Magos et al. (1978); Oro et al. (1978); Roodt et al. (2003). For related structures, see: Archer et al. (1993); Aslanov et al. (1970); Clegg et al. (2002); Drew et al. (1970).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Diamond representation of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability).
Acetonitriletrichloridobis(cyclohexyldiphenylphosphane)rhodium(III) acetonitrile disolvate top
Crystal data top
[RhCl3(C2H3N)(C18H21P)2]·2C2H3NF(000) = 1800
Mr = 869.06Dx = 1.425 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 24.995 (1) ÅCell parameters from 9837 reflections
b = 10.041 (1) Åθ = 2.5–28.3°
c = 16.258 (1) ŵ = 0.73 mm1
β = 96.763 (1)°T = 100 K
V = 4052.0 (5) Å3Cuboid, red
Z = 40.32 × 0.25 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
4615 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 3333
Tmin = 0.797, Tmax = 0.889k = 1313
33882 measured reflectionsl = 2119
5038 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0236P)2 + 4.9122P]
where P = (Fo2 + 2Fc2)/3
5038 reflections(Δ/σ)max = 0.001
264 parametersΔρmax = 0.37 e Å3
2 restraintsΔρmin = 0.63 e Å3
Crystal data top
[RhCl3(C2H3N)(C18H21P)2]·2C2H3NV = 4052.0 (5) Å3
Mr = 869.06Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.995 (1) ŵ = 0.73 mm1
b = 10.041 (1) ÅT = 100 K
c = 16.258 (1) Å0.32 × 0.25 × 0.16 mm
β = 96.763 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5038 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4615 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.889Rint = 0.027
33882 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0222 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 1.04Δρmax = 0.37 e Å3
5038 reflectionsΔρmin = 0.63 e Å3
264 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 20 s/frame. A total of 1963 frames were collected with a frame width of 0.5° covering up to θ = 28.35° with 99.6% completeness accomplished

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh100.145288 (14)0.250.01099 (5)
Cl10.053994 (13)0.13750 (3)0.35876 (2)0.01819 (7)
Cl200.37731 (4)0.250.01635 (9)
P10.079330 (13)0.13791 (3)0.34878 (2)0.01236 (7)
N100.05368 (17)0.250.0166 (3)
C150.07347 (5)0.20332 (14)0.45392 (8)0.0160 (3)
H150.04180.15720.47340.019*
C110.18508 (6)0.40163 (15)0.26099 (10)0.0230 (3)
H110.18310.4790.22710.028*
C200.3095 (2)0.250.0238 (4)
H2A0.0190.34210.20460.036*0.5
H2B0.03720.34210.24260.036*0.5
H2C0.01820.34210.30290.036*0.5
C50.14501 (6)0.23233 (15)0.32610 (10)0.0228 (3)
H50.16710.27440.290.027*
C40.13087 (6)0.09925 (15)0.31407 (9)0.0186 (3)
H40.14310.05120.26960.022*
C180.10192 (7)0.36857 (16)0.60247 (9)0.0242 (3)
H18A0.13420.41750.58930.029*
H18B0.09420.39660.65820.029*
C30.09890 (5)0.03580 (13)0.36674 (8)0.0151 (3)
C80.07948 (6)0.10963 (15)0.42960 (9)0.0197 (3)
H80.05620.0690.46440.024*
C160.12161 (6)0.17108 (15)0.51730 (9)0.0217 (3)
H16A0.12730.07350.51930.026*
H16B0.15440.21290.50.026*
C100.13773 (6)0.33469 (15)0.27481 (9)0.0205 (3)
H100.10370.3690.25250.025*
C70.09408 (7)0.24283 (15)0.44145 (10)0.0250 (3)
H70.08120.29210.4850.03*
C190.05461 (6)0.40325 (16)0.53948 (9)0.0220 (3)
H19A0.05050.50130.5370.026*
H19B0.02140.36570.55790.026*
C140.19135 (6)0.17214 (15)0.35757 (10)0.0209 (3)
H140.19360.09560.39220.025*
C90.14076 (5)0.21728 (14)0.32148 (9)0.0166 (3)
C130.23812 (6)0.23857 (16)0.34300 (10)0.0243 (3)
H130.27230.20430.36470.029*
C200.06056 (6)0.35127 (14)0.45333 (9)0.0201 (3)
H20A0.08970.40090.43050.024*
H20B0.02670.36730.41670.024*
C170.11302 (6)0.22091 (16)0.60265 (9)0.0214 (3)
H17A0.08230.17280.62210.026*
H17B0.14550.20160.64180.026*
C60.12719 (6)0.30370 (15)0.39021 (10)0.0253 (3)
H60.13760.3940.39910.03*
C120.23475 (6)0.35541 (17)0.29659 (11)0.0281 (4)
H120.26660.40360.28930.034*
C100.1644 (2)0.250.0199 (4)
N2A0.22420 (12)0.4183 (3)0.0550 (2)0.0384 (8)0.588 (4)
C21A0.2017 (4)0.1790 (4)0.1017 (6)0.0345 (17)0.588 (4)
H21A0.16310.1730.10670.052*0.588 (4)
H21B0.22230.15940.15540.052*0.588 (4)
H21C0.2110.11440.06050.052*0.588 (4)
C22A0.21444 (12)0.3123 (3)0.07576 (19)0.0331 (8)0.588 (4)
N2B0.2558 (2)0.0458 (6)0.0078 (4)0.0611 (16)0.412 (4)
C21B0.2042 (7)0.1588 (10)0.1007 (9)0.060 (4)0.412 (4)
H21D0.20340.25520.09140.09*0.412 (4)
H21E0.22240.13990.15630.09*0.412 (4)
H21F0.16730.12430.0960.09*0.412 (4)
C22B0.2333 (2)0.0950 (6)0.0394 (4)0.0523 (17)0.412 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01107 (7)0.00977 (7)0.01209 (7)00.00121 (5)0
Cl10.01540 (15)0.02406 (18)0.01562 (16)0.00089 (12)0.00398 (12)0.00129 (12)
Cl20.0172 (2)0.0117 (2)0.0195 (2)00.00028 (17)0
P10.01149 (15)0.01268 (16)0.01287 (16)0.00007 (12)0.00121 (12)0.00040 (12)
N10.0136 (7)0.0180 (9)0.0173 (8)00.0018 (6)0
C150.0154 (6)0.0181 (7)0.0141 (6)0.0006 (5)0.0003 (5)0.0021 (5)
C110.0214 (7)0.0184 (7)0.0299 (8)0.0017 (6)0.0054 (6)0.0036 (6)
C20.0263 (11)0.0165 (10)0.0285 (11)00.0033 (9)0
C50.0222 (7)0.0179 (7)0.0278 (8)0.0047 (6)0.0007 (6)0.0026 (6)
C40.0168 (6)0.0190 (7)0.0199 (7)0.0011 (5)0.0018 (5)0.0012 (6)
C180.0279 (8)0.0275 (8)0.0170 (7)0.0023 (6)0.0019 (6)0.0044 (6)
C30.0144 (6)0.0146 (6)0.0154 (6)0.0001 (5)0.0016 (5)0.0009 (5)
C80.0219 (7)0.0187 (7)0.0185 (7)0.0024 (5)0.0022 (5)0.0010 (5)
C160.0238 (7)0.0224 (7)0.0178 (7)0.0031 (6)0.0026 (6)0.0019 (6)
C100.0154 (6)0.0212 (7)0.0250 (7)0.0004 (5)0.0022 (5)0.0044 (6)
C70.0322 (8)0.0196 (7)0.0222 (8)0.0048 (6)0.0006 (6)0.0060 (6)
C190.0246 (7)0.0207 (7)0.0201 (7)0.0025 (6)0.0004 (6)0.0046 (6)
C140.0161 (6)0.0217 (7)0.0247 (7)0.0002 (5)0.0014 (5)0.0038 (6)
C90.0138 (6)0.0177 (7)0.0185 (7)0.0020 (5)0.0025 (5)0.0004 (5)
C130.0147 (6)0.0283 (8)0.0295 (8)0.0003 (6)0.0007 (6)0.0013 (6)
C200.0251 (7)0.0184 (7)0.0165 (7)0.0033 (6)0.0014 (5)0.0010 (5)
C170.0191 (7)0.0275 (8)0.0168 (7)0.0026 (6)0.0020 (5)0.0011 (6)
C60.0302 (8)0.0152 (7)0.0285 (8)0.0014 (6)0.0051 (6)0.0020 (6)
C120.0166 (7)0.0297 (9)0.0390 (9)0.0052 (6)0.0073 (6)0.0039 (7)
C10.0174 (9)0.0200 (11)0.0217 (10)00.0004 (7)0
N2A0.0365 (16)0.0417 (17)0.0367 (17)0.0067 (12)0.0033 (12)0.0085 (13)
C21A0.027 (3)0.040 (3)0.037 (4)0.005 (2)0.007 (2)0.007 (2)
C22A0.0247 (14)0.0420 (19)0.0323 (16)0.0032 (13)0.0020 (11)0.0101 (14)
N2B0.063 (3)0.066 (4)0.052 (3)0.027 (3)0.002 (3)0.014 (3)
C21B0.073 (8)0.047 (4)0.055 (8)0.014 (5)0.021 (5)0.009 (5)
C22B0.056 (4)0.049 (3)0.046 (3)0.023 (3)0.017 (3)0.000 (3)
Geometric parameters (Å, º) top
Rh1—N11.9978 (17)C16—C171.514 (2)
Rh1—Cl22.3297 (5)C16—H16A0.99
Rh1—Cl12.3486 (3)C16—H16B0.99
Rh1—Cl1i2.3486 (3)C10—C91.399 (2)
Rh1—P12.4013 (3)C10—H100.95
Rh1—P1i2.4013 (3)C7—C61.384 (2)
P1—C31.8257 (14)C7—H70.95
P1—C91.8304 (14)C19—C201.518 (2)
P1—C151.8529 (14)C19—H19A0.99
N1—C11.112 (3)C19—H19B0.99
C15—C201.520 (2)C14—C131.390 (2)
C15—C161.5240 (18)C14—C91.4049 (19)
C15—H151C14—H140.95
C11—C121.387 (2)C13—C121.392 (2)
C11—C101.402 (2)C13—H130.95
C11—H110.95C20—H20A0.99
C2—C11.457 (3)C20—H20B0.99
C2—H2A0.98C17—H17A0.99
C2—H2B0.98C17—H17B0.99
C2—H2C0.98C6—H60.95
C5—C61.381 (2)C12—H120.95
C5—C41.390 (2)N2A—C22A1.151 (5)
C5—H50.95C21A—C22A1.4501 (10)
C4—C31.392 (2)C21A—H21A0.98
C4—H40.95C21A—H21B0.98
C18—C171.508 (2)C21A—H21C0.98
C18—C191.511 (2)N2B—C22B1.119 (9)
C18—H18A0.99C21B—C22B1.4498 (10)
C18—H18B0.99C21B—H21D0.98
C3—C81.395 (2)C21B—H21E0.98
C8—C71.394 (2)C21B—H21F0.98
C8—H80.95
N1—Rh1—Cl2180C17—C16—C15111.33 (12)
N1—Rh1—Cl188.093 (9)C17—C16—H16A109.4
Cl2—Rh1—Cl191.907 (9)C15—C16—H16A109.4
N1—Rh1—Cl1i88.093 (9)C17—C16—H16B109.4
Cl2—Rh1—Cl1i91.907 (9)C15—C16—H16B109.4
Cl1—Rh1—Cl1i176.185 (18)H16A—C16—H16B108
N1—Rh1—P188.231 (9)C9—C10—C11119.86 (13)
Cl2—Rh1—P191.769 (9)C9—C10—H10120.1
Cl1—Rh1—P189.879 (12)C11—C10—H10120.1
Cl1i—Rh1—P190.003 (12)C6—C7—C8120.40 (15)
N1—Rh1—P1i88.231 (9)C6—C7—H7119.8
Cl2—Rh1—P1i91.769 (9)C8—C7—H7119.8
Cl1—Rh1—P1i90.003 (12)C18—C19—C20113.09 (13)
Cl1i—Rh1—P1i89.879 (12)C18—C19—H19A109
P1—Rh1—P1i176.463 (17)C20—C19—H19A109
C3—P1—C9103.78 (6)C18—C19—H19B109
C3—P1—C15103.88 (6)C20—C19—H19B109
C9—P1—C15103.24 (6)H19A—C19—H19B107.8
C3—P1—Rh1108.72 (4)C13—C14—C9120.50 (14)
C9—P1—Rh1118.33 (5)C13—C14—H14119.8
C15—P1—Rh1117.21 (4)C9—C14—H14119.8
C1—N1—Rh1180C10—C9—C14119.15 (13)
C20—C15—C16111.22 (12)C10—C9—P1120.32 (10)
C20—C15—P1112.36 (10)C14—C9—P1119.84 (11)
C16—C15—P1113.99 (10)C14—C13—C12119.89 (14)
C20—C15—H15106.2C14—C13—H13120.1
C16—C15—H15106.2C12—C13—H13120.1
P1—C15—H15106.2C19—C20—C15111.96 (12)
C12—C11—C10120.26 (14)C19—C20—H20A109.2
C12—C11—H11119.9C15—C20—H20A109.2
C10—C11—H11119.9C19—C20—H20B109.2
C1—C2—H2A109.5C15—C20—H20B109.2
C1—C2—H2B109.5H20A—C20—H20B107.9
H2A—C2—H2B109.5C18—C17—C16111.65 (13)
C1—C2—H2C109.5C18—C17—H17A109.3
H2A—C2—H2C109.5C16—C17—H17A109.3
H2B—C2—H2C109.5C18—C17—H17B109.3
C6—C5—C4120.38 (15)C16—C17—H17B109.3
C6—C5—H5119.8H17A—C17—H17B108
C4—C5—H5119.8C5—C6—C7119.61 (14)
C5—C4—C3120.53 (14)C5—C6—H6120.2
C5—C4—H4119.7C7—C6—H6120.2
C3—C4—H4119.7C11—C12—C13120.15 (14)
C17—C18—C19110.91 (12)C11—C12—H12119.9
C17—C18—H18A109.5C13—C12—H12119.9
C19—C18—H18A109.5N1—C1—C2180
C17—C18—H18B109.5N2A—C22A—C21A179.5 (5)
C19—C18—H18B109.5C22B—C21B—H21D109.5
H18A—C18—H18B108C22B—C21B—H21E109.5
C4—C3—C8118.80 (13)H21D—C21B—H21E109.5
C4—C3—P1120.07 (11)C22B—C21B—H21F109.5
C8—C3—P1121.00 (11)H21D—C21B—H21F109.5
C7—C8—C3120.21 (14)H21E—C21B—H21F109.5
C7—C8—H8119.9N2B—C22B—C21B179.9 (11)
C3—C8—H8119.9
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cl20.952.593.4452 (14)150
C20—H20B···Cl20.992.723.4797 (14)134

Experimental details

Crystal data
Chemical formula[RhCl3(C2H3N)(C18H21P)2]·2C2H3N
Mr869.06
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)24.995 (1), 10.041 (1), 16.258 (1)
β (°) 96.763 (1)
V3)4052.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.32 × 0.25 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.797, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
33882, 5038, 4615
Rint0.027
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.055, 1.04
No. of reflections5038
No. of parameters264
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.63

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Rh1—N11.9978 (17)Rh1—Cl12.3486 (3)
Rh1—Cl22.3297 (5)Rh1—P12.4013 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cl20.952.593.4452 (14)150.3
C20—H20B···Cl20.992.723.4797 (14)134.3
 

Acknowledgements

The University of the Free State and Inkaba are gratefully acknowledged for financial support.

References

First citationArcher, C. M., Dilworth, J. R., Thompson, R. M., McPartlin, M., Povey, D. C. & Kelly, J. D. (1993). J. Chem. Soc. Dalton Trans. pp. 461–466.  CSD CrossRef Web of Science Google Scholar
First citationAslanov, L., Mason, R., Wheeler, A. G. & Whimp, P. O. (1970). J. Chem. Soc. Chem. Commun. pp. 30–31.  CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrink, A., Roodt, A., Steyl, G. & Visser, H. G. (2010). J. Chem. Soc. Dalton Trans. 39, 5572—5578.  CrossRef Google Scholar
First citationBruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClegg, W., Scott, A. J., Norman, N. C., Robins, E. G. & Whittell, G. R. (2002). Acta Cryst. E58, m410–m411.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDrew, M. G. B., Tisley, D. G. & Walton, R. A. (1970). J. Chem. Soc. Chem. Commun. pp. 600–601.  CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMarko, L. & Heil, B. (1974). Catal. Rev. 8, 269–293.  Google Scholar
First citationNagy-Magos, Z., Vastag, S., Heil, B. & Marko, L. (1978). Transition Met. Chem. 3, 123–126.  CAS Google Scholar
First citationOro, L. A., Manrique, A. & Royo, M. (1978). Transition Met. Chem. 3, 383–384.  CrossRef CAS Web of Science Google Scholar
First citationRoodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds