metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Tetra­carbonyl­bis­­[tris­­(3-fluoro­phen­yl)phosphane]chromium(0)

aFaculty of Industrial Science and Technology, Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia, bChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 10 October 2011; accepted 28 October 2011; online 2 November 2011)

In the title compound, [Cr(C18H12F3P)2(CO)4], the Cr atom is octa­hedrally coordinated by four carbonyl ligands and the two tertiary phosphanes, which are trans to each other. The three benzene rings in one phosphane ligand make dihedral angles of 53.50 (9), 75.51 (10) and 80.63 (10)° with each other, while in the other ligand these angles are 51.92 (10), 78.56 (11) and 86.80 (10)°. C—H⋯O and C—H⋯F inter­actions link the mol­ecules into a three-dimensional network. Each of the F atoms is disordered over two positions with refined occupancies of 0.944 (3):0.056 (3), 0.702 (4):0.298 (4), 0.829 (4):0.171 (4), 0.567 (4):0.433 (4), 0.545 (4):0.455 (4) and 0.920 (4):0.080 (4).

Related literature

For related structures, see: Bennett et al. (2004[Bennett, D. W., Siddiquee, T. A., Haworth, D. T., Kabir, S. E. & Camellia, F. K. (2004). J. Chem. Crystallogr. 34, 353-359.]); Brunet et al. (2002[Brunet, J. J., Diallo, O., Donnadieu, B. & Roblou, E. (2002). Organometallics, 21, 3388-3394.]); Preston et al. (1972[Preston, H. G., Steward, J. M., Plastas, H. J. & Grim, S. O. (1972). Inorg. Chem. 11, 161-165.]); Shawkataly et al. (1996[Shawkataly, O. bin, Tamilselvan, S., Muniswaran, K., Fun, H.-K. & Sivakumar, K. (1996). Acta Cryst. C52, 1352-1355.], 2009[Shawkataly, O. bin, Thangadurai, D. T., Pankhi, M. A. A., Shahinoor Dulal Islam, S. M. & Fun, H.-K. (2009). Acta Cryst. E65, m250-m251.]); Norlidah et al. (2011[Norlidah, M. N., Hamdya, F. M. Y., Bin Shawkataly, O., Rosli, M. M. & Fun, H.-K. (2011). Acta Cryst. E67, m1314-m1315.]). A search of the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) revealed 113 complexes of carbonyl­chromium complexes with bis-phosphanes. For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Cr(C18H12F3P)2(CO)4]

  • Mr = 796.53

  • Monoclinic, P 21 /c

  • a = 12.1675 (2) Å

  • b = 18.5362 (3) Å

  • c = 15.4084 (2) Å

  • β = 90.448 (1)°

  • V = 3475.09 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 100 K

  • 0.26 × 0.25 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.881, Tmax = 0.912

  • 104037 measured reflections

  • 14097 independent reflections

  • 9496 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.139

  • S = 1.21

  • 14097 reflections

  • 528 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −1.41 e Å−3

Table 1
Selected bond lengths (Å)

Cr1—C37 1.8890 (18)
Cr1—C38 1.882 (2)
Cr1—C39 1.888 (2)
Cr1—C40 1.8885 (19)
Cr1—P1 2.3333 (5)
Cr1—P2 2.3320 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.95 2.52 3.105 (2) 120
C4—H4A⋯F1ii 0.95 2.41 3.292 (2) 153
C10—H10A⋯F4iii 0.95 2.53 3.271 (3) 135
C28—H28A⋯F5iv 0.95 2.33 3.069 (3) 135
C34—H34A⋯F3v 0.95 2.32 3.191 (3) 153
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z; (iv) -x, -y+1, -z; (v) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The bonding characteristics of metal carbonyls with a phosphine ligand in phosphine-substituted metal carbonyls are of interest. Several crystal structures of phosphine-substituted group 6 carbonyls with trans coordination of phosphine have been reported (Brunet et al., 2002; Bennett et al., 2004).

In the title compound where the fluorine atom is in the meta position on each benzene ring (Fig. 1), the Cr—P bond lengths, with an average value of 2.3327 Å (Table 1), are relatively short despite the presence of the bulky phosphine ligand, compared to the average value of 2.3656 (16) Å in the complex trans-Cr(CO)4(PPh3)2 (Bennett et al., 2004). We have previously reported the C40H24CrF6O4P2 but the fluorine atom is in the para position whereby the average of Cr—P bond lengths is almost similar (Norlidah et al., 2011).

All six fluorine atoms in the title compound are disordered over two positions with the final refined occupancies being 0.944 (3):0.056 (3) (F1:F1X), 0.702 (4):0.298 (4) (F2:F2X), 0.829 (4):0.171 (4) (F3:F3X), 0.567 (4):0.433 (4) (F4:F4X), 0.545 (4):0.455 (4) (F5:F5X) and 0.920 (4):0.080 (4) (F6:F6X) (Fig. 1). The dihedral angles of the three benzene rings attached to the P1 atom are 53.50 (9)° (between C1—C6 & C7—C12), 80.63 (10)° (between C1—C6 & C13—C18) and 75.51 (10)° (between C7—C12 & C13—C18) and the dihedral angles of the three benzene ring attached to the P2 atom are 86.80 (10)° (between C19—C24 & C25—C30), 78.56 (11)° (between C19—C24 & C31—C36) and 51.92 (10)° (between C25—C30 & C31—C36).

C4—H4A···F1ii interaction showing a R22(8) hydrogen ring motif and other intermolecular interactions C2—H2A···O2i, C10—C10A···F4iii, C28—H28A···F5iv and C34—H34A···F3v (Table 2) linked the molecules to form an infinite three-dimensional network (Fig. 2).

Related literature top

For related structures, see: Bennett et al. (2004); Brunet et al. (2002); Preston et al. (1972); Shawkataly et al. (1996, 2009); Norlidah et al. (2011). A search of the Cambridge Structural Database (Allen, 2002) revealed 113 complexes of carbonylchromium complexes with bis-phosphanes. For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

All manipulations were performed under a dry, oxygen-free nitrogen atmosphere using standard Schlenk techniques. All solvents were dried over sodium under dry oxygen-free nitrogen. Chromium hexacarbonyl (200 mg, 0.909 mmol) and tris-(3-flurophenyl)-phosphine (301.8 mg, 0.9542 mmol) in 30 ml of pet ether (100–130 °C) was refluxed for 12 h. Suitable single crystals were obtained by solvent-solvent diffusion in a mixture of dichloromethane/methanol.

Refinement top

All six fluorine atoms are disordered over two position with the final refined occupancies being 0.944 (3):0.056 (3) (F1:F1X), 0.702 (4):0.298 (4) (F2:F2X), 0.829 (4):0.171 (4) (F3:F3X), 0.567 (4):0.433 (4) (F4:F4X), 0.545 (4):0.455 (4) (F5:F5X) and 0.920 (4):0.080 (4) (F6:F6X). C5—F1X, C11—F2X, C23—F4X and C35—F6X distances were restrained to be around 1.399 (1) Å. F1X and F6X were refined isotropically due to the very small occupancies. All hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

The bonding characteristics of metal carbonyls with a phosphine ligand in phosphine-substituted metal carbonyls are of interest. Several crystal structures of phosphine-substituted group 6 carbonyls with trans coordination of phosphine have been reported (Brunet et al., 2002; Bennett et al., 2004).

In the title compound where the fluorine atom is in the meta position on each benzene ring (Fig. 1), the Cr—P bond lengths, with an average value of 2.3327 Å (Table 1), are relatively short despite the presence of the bulky phosphine ligand, compared to the average value of 2.3656 (16) Å in the complex trans-Cr(CO)4(PPh3)2 (Bennett et al., 2004). We have previously reported the C40H24CrF6O4P2 but the fluorine atom is in the para position whereby the average of Cr—P bond lengths is almost similar (Norlidah et al., 2011).

All six fluorine atoms in the title compound are disordered over two positions with the final refined occupancies being 0.944 (3):0.056 (3) (F1:F1X), 0.702 (4):0.298 (4) (F2:F2X), 0.829 (4):0.171 (4) (F3:F3X), 0.567 (4):0.433 (4) (F4:F4X), 0.545 (4):0.455 (4) (F5:F5X) and 0.920 (4):0.080 (4) (F6:F6X) (Fig. 1). The dihedral angles of the three benzene rings attached to the P1 atom are 53.50 (9)° (between C1—C6 & C7—C12), 80.63 (10)° (between C1—C6 & C13—C18) and 75.51 (10)° (between C7—C12 & C13—C18) and the dihedral angles of the three benzene ring attached to the P2 atom are 86.80 (10)° (between C19—C24 & C25—C30), 78.56 (11)° (between C19—C24 & C31—C36) and 51.92 (10)° (between C25—C30 & C31—C36).

C4—H4A···F1ii interaction showing a R22(8) hydrogen ring motif and other intermolecular interactions C2—H2A···O2i, C10—C10A···F4iii, C28—H28A···F5iv and C34—H34A···F3v (Table 2) linked the molecules to form an infinite three-dimensional network (Fig. 2).

For related structures, see: Bennett et al. (2004); Brunet et al. (2002); Preston et al. (1972); Shawkataly et al. (1996, 2009); Norlidah et al. (2011). A search of the Cambridge Structural Database (Allen, 2002) revealed 113 complexes of carbonylchromium complexes with bis-phosphanes. For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing diagram of the title compound. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
trans-Tetracarbonylbis[tris(3-fluorophenyl)phosphane]chromium(0) top
Crystal data top
[Cr(C18H12F3P)2(CO)4]F(000) = 1616
Mr = 796.53Dx = 1.522 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9990 reflections
a = 12.1675 (2) Åθ = 2.4–33.4°
b = 18.5362 (3) ŵ = 0.50 mm1
c = 15.4084 (2) ÅT = 100 K
β = 90.448 (1)°Block, yellow
V = 3475.09 (9) Å30.26 × 0.25 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
14097 independent reflections
Radiation source: fine-focus sealed tube9496 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
φ and ω scansθmax = 34.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1918
Tmin = 0.881, Tmax = 0.912k = 2929
104037 measured reflectionsl = 2422
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.041P)2 + 2.0091P]
where P = (Fo2 + 2Fc2)/3
14097 reflections(Δ/σ)max < 0.001
528 parametersΔρmax = 1.19 e Å3
4 restraintsΔρmin = 1.41 e Å3
Crystal data top
[Cr(C18H12F3P)2(CO)4]V = 3475.09 (9) Å3
Mr = 796.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1675 (2) ŵ = 0.50 mm1
b = 18.5362 (3) ÅT = 100 K
c = 15.4084 (2) Å0.26 × 0.25 × 0.19 mm
β = 90.448 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
14097 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
9496 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.912Rint = 0.054
104037 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0564 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.21Δρmax = 1.19 e Å3
14097 reflectionsΔρmin = 1.41 e Å3
528 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr10.24363 (2)0.212464 (14)0.238820 (18)0.01984 (6)
P10.42089 (4)0.20679 (2)0.29728 (3)0.02068 (9)
P20.06713 (4)0.20669 (2)0.17916 (3)0.02217 (9)
F10.40001 (11)0.43367 (7)0.47940 (9)0.0403 (4)0.944 (3)
F1X0.7317 (4)0.3942 (11)0.3182 (13)0.032 (6)*0.056 (3)
F20.66968 (14)0.20076 (10)0.02992 (11)0.0356 (5)0.702 (4)
F2X0.6755 (4)0.00403 (16)0.1916 (3)0.0491 (15)0.298 (4)
F30.30991 (17)0.03694 (11)0.54658 (15)0.0689 (8)0.829 (4)
F3X0.6380 (7)0.1297 (5)0.5745 (5)0.049 (3)0.171 (4)
F40.1674 (2)0.03788 (14)0.07513 (17)0.0515 (9)0.567 (4)
F4X0.1622 (2)0.13733 (19)0.0959 (2)0.0514 (11)0.433 (4)
F50.0764 (2)0.44328 (14)0.02129 (18)0.0500 (8)0.545 (4)
F5X0.2518 (2)0.39483 (15)0.16862 (18)0.0355 (8)0.455 (4)
F60.17803 (11)0.19241 (8)0.44892 (9)0.0413 (5)0.920 (4)
F6X0.175 (2)0.0154 (6)0.2925 (19)0.090 (10)*0.080 (4)
O10.24251 (14)0.37600 (8)0.24574 (11)0.0428 (4)
O20.33543 (13)0.23794 (10)0.05910 (10)0.0415 (4)
O30.14885 (12)0.22402 (10)0.41964 (10)0.0409 (4)
O40.24657 (14)0.04846 (8)0.23311 (13)0.0494 (4)
C10.48190 (14)0.29334 (9)0.33036 (11)0.0208 (3)
C20.41993 (15)0.33288 (9)0.38965 (11)0.0234 (3)
H2A0.35090.31540.40900.028*
C30.46066 (16)0.39758 (10)0.41947 (12)0.0278 (4)
H3A0.41920.42330.46130.033*0.056 (3)
C40.55815 (17)0.42703 (10)0.39197 (13)0.0310 (4)
H4A0.58260.47270.41240.037*
C50.61897 (17)0.38759 (11)0.33359 (13)0.0320 (4)
H5A0.68700.40630.31360.038*0.944 (3)
C60.58257 (16)0.32087 (11)0.30334 (13)0.0289 (4)
H6A0.62650.29400.26420.035*
C70.52277 (14)0.16517 (10)0.22598 (12)0.0252 (3)
C80.55869 (15)0.20189 (11)0.15205 (13)0.0282 (4)
H8A0.53410.24950.14010.034*
C90.63082 (16)0.16734 (13)0.09669 (14)0.0350 (5)
H9A0.65650.19290.04740.042*0.298 (4)
C100.66706 (16)0.09799 (13)0.10953 (15)0.0382 (5)
H10A0.71600.07520.07040.046*
C110.62923 (18)0.06403 (12)0.18087 (15)0.0403 (5)
H11A0.65280.01590.19090.048*0.702 (4)
C120.55879 (16)0.09447 (11)0.24012 (14)0.0307 (4)
H12A0.53530.06800.28940.037*
C130.44428 (16)0.15630 (9)0.39854 (13)0.0264 (3)
C140.36388 (19)0.11232 (11)0.43427 (15)0.0359 (4)
H14A0.29530.10540.40550.043*
C150.3861 (2)0.07881 (13)0.51269 (18)0.0488 (6)
H15A0.33060.04930.53730.059*0.171 (4)
C160.4836 (3)0.08589 (13)0.55666 (17)0.0506 (6)
H16A0.49590.06220.61060.061*
C170.5632 (2)0.12834 (12)0.52011 (16)0.0440 (6)
H17A0.63210.13350.54880.053*0.829 (4)
C180.54504 (17)0.16367 (11)0.44241 (14)0.0322 (4)
H18A0.60110.19310.41860.039*
C190.04474 (16)0.15870 (10)0.07525 (13)0.0286 (4)
C200.12532 (19)0.11578 (11)0.03810 (15)0.0370 (5)
H20A0.19440.10950.06620.044*
C210.1035 (3)0.08208 (13)0.04079 (17)0.0517 (7)
H21A0.15880.05260.06570.062*0.433 (4)
C220.0051 (3)0.08976 (12)0.08393 (17)0.0535 (7)
H22A0.00940.06720.13820.064*
C230.0688 (2)0.13127 (13)0.04406 (16)0.0501 (6)
H23A0.13790.13660.07250.060*0.567 (4)
C240.05633 (18)0.16659 (11)0.03242 (14)0.0349 (4)
H24A0.11350.19530.05580.042*
C250.00110 (14)0.29297 (9)0.15190 (11)0.0224 (3)
C260.06208 (15)0.34021 (10)0.10104 (12)0.0269 (4)
H26A0.13370.32710.08260.032*
C270.01821 (18)0.40595 (12)0.07759 (13)0.0333 (4)
H27A0.06040.43730.04220.040*0.455 (4)
C280.08477 (18)0.42789 (11)0.10357 (13)0.0327 (4)
H28A0.11290.47400.08840.039*
C290.14483 (17)0.38031 (12)0.15219 (14)0.0336 (4)
H29A0.21650.39390.16990.040*0.545 (4)
C300.10467 (16)0.31307 (11)0.17641 (14)0.0307 (4)
H30A0.14880.28110.20940.037*
C310.03148 (15)0.16095 (10)0.24952 (13)0.0270 (4)
C320.07029 (15)0.19584 (11)0.32351 (13)0.0292 (4)
H32A0.05060.24450.33550.035*
C330.13789 (16)0.15805 (12)0.37881 (14)0.0347 (4)
H33A0.16580.18230.42830.042*0.080 (4)
C340.16684 (18)0.08738 (13)0.36618 (17)0.0428 (6)
H34A0.21320.06300.40590.051*
C350.12655 (19)0.05288 (12)0.29403 (17)0.0433 (6)
H35A0.14450.00370.28420.052*0.920 (4)
C360.06001 (17)0.08897 (11)0.23521 (15)0.0344 (4)
H36A0.03400.06460.18520.041*
C370.24234 (15)0.31430 (10)0.24311 (12)0.0264 (3)
C380.30195 (15)0.22475 (11)0.12700 (13)0.0278 (4)
C390.18387 (15)0.21704 (10)0.35137 (13)0.0270 (4)
C400.24578 (16)0.11064 (10)0.23508 (14)0.0309 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.01851 (12)0.01680 (11)0.02425 (13)0.00013 (10)0.00279 (9)0.00305 (10)
P10.01922 (19)0.01744 (18)0.0254 (2)0.00003 (15)0.00260 (15)0.00167 (15)
P20.0202 (2)0.01820 (19)0.0281 (2)0.00114 (15)0.00099 (16)0.00416 (16)
F10.0426 (8)0.0379 (7)0.0403 (8)0.0025 (6)0.0016 (6)0.0207 (6)
F20.0316 (9)0.0462 (11)0.0292 (9)0.0083 (7)0.0095 (7)0.0004 (7)
F2X0.047 (3)0.046 (3)0.055 (3)0.008 (2)0.010 (2)0.020 (2)
F30.0667 (14)0.0577 (13)0.0826 (15)0.0146 (10)0.0198 (11)0.0404 (11)
F3X0.040 (5)0.071 (6)0.035 (4)0.005 (4)0.012 (3)0.019 (4)
F40.0471 (15)0.0499 (15)0.0573 (16)0.0245 (12)0.0056 (12)0.0319 (12)
F4X0.0410 (19)0.059 (2)0.054 (2)0.0019 (15)0.0088 (15)0.0210 (17)
F50.0517 (16)0.0406 (14)0.0579 (17)0.0084 (12)0.0051 (12)0.0287 (12)
F5X0.0243 (13)0.0437 (16)0.0387 (15)0.0119 (11)0.0054 (10)0.0001 (12)
F60.0325 (8)0.0524 (9)0.0393 (8)0.0061 (6)0.0121 (6)0.0051 (6)
O10.0566 (10)0.0213 (6)0.0502 (10)0.0026 (6)0.0201 (8)0.0031 (6)
O20.0335 (8)0.0637 (11)0.0272 (7)0.0015 (7)0.0065 (6)0.0040 (7)
O30.0296 (7)0.0637 (11)0.0294 (7)0.0003 (7)0.0068 (6)0.0015 (7)
O40.0523 (10)0.0201 (7)0.0757 (13)0.0019 (7)0.0073 (9)0.0043 (7)
C10.0218 (7)0.0186 (7)0.0221 (7)0.0010 (6)0.0009 (6)0.0011 (6)
C20.0255 (8)0.0235 (8)0.0213 (8)0.0004 (6)0.0007 (6)0.0014 (6)
C30.0342 (10)0.0252 (8)0.0239 (8)0.0036 (7)0.0032 (7)0.0063 (7)
C40.0414 (11)0.0229 (8)0.0287 (9)0.0059 (7)0.0079 (8)0.0016 (7)
C50.0329 (10)0.0324 (10)0.0308 (10)0.0136 (8)0.0014 (8)0.0001 (8)
C60.0258 (9)0.0307 (9)0.0302 (9)0.0077 (7)0.0054 (7)0.0056 (7)
C70.0194 (7)0.0254 (8)0.0310 (9)0.0016 (6)0.0004 (6)0.0086 (7)
C80.0211 (8)0.0317 (9)0.0319 (9)0.0012 (7)0.0033 (7)0.0092 (7)
C90.0207 (8)0.0492 (12)0.0351 (10)0.0013 (8)0.0040 (7)0.0161 (9)
C100.0230 (9)0.0509 (13)0.0407 (12)0.0088 (8)0.0006 (8)0.0223 (10)
C110.0303 (10)0.0433 (12)0.0471 (13)0.0124 (9)0.0091 (9)0.0221 (10)
C120.0274 (9)0.0286 (9)0.0361 (10)0.0055 (7)0.0038 (7)0.0095 (8)
C130.0295 (9)0.0178 (7)0.0318 (9)0.0030 (6)0.0011 (7)0.0011 (6)
C140.0387 (11)0.0231 (9)0.0459 (12)0.0024 (8)0.0040 (9)0.0079 (8)
C150.0642 (17)0.0296 (11)0.0528 (15)0.0000 (11)0.0095 (12)0.0161 (10)
C160.0795 (19)0.0319 (11)0.0402 (13)0.0108 (12)0.0036 (12)0.0115 (9)
C170.0589 (15)0.0332 (11)0.0398 (12)0.0103 (10)0.0130 (11)0.0032 (9)
C180.0344 (10)0.0271 (9)0.0349 (10)0.0040 (8)0.0035 (8)0.0009 (8)
C190.0322 (9)0.0215 (8)0.0321 (9)0.0032 (7)0.0012 (7)0.0066 (7)
C200.0462 (12)0.0257 (9)0.0390 (11)0.0056 (8)0.0037 (9)0.0124 (8)
C210.0818 (19)0.0291 (11)0.0442 (13)0.0111 (12)0.0065 (13)0.0176 (10)
C220.092 (2)0.0282 (11)0.0399 (13)0.0007 (12)0.0165 (13)0.0140 (9)
C230.0722 (18)0.0345 (11)0.0433 (13)0.0122 (12)0.0156 (12)0.0057 (10)
C240.0356 (10)0.0298 (9)0.0392 (11)0.0044 (8)0.0063 (9)0.0071 (8)
C250.0222 (7)0.0218 (7)0.0231 (8)0.0001 (6)0.0007 (6)0.0040 (6)
C260.0249 (8)0.0321 (9)0.0237 (8)0.0010 (7)0.0035 (7)0.0013 (7)
C270.0357 (10)0.0358 (10)0.0285 (9)0.0016 (8)0.0007 (8)0.0080 (8)
C280.0415 (11)0.0262 (9)0.0303 (10)0.0068 (8)0.0012 (8)0.0007 (7)
C290.0296 (10)0.0366 (10)0.0347 (10)0.0111 (8)0.0048 (8)0.0012 (8)
C300.0236 (8)0.0309 (9)0.0375 (10)0.0029 (7)0.0063 (7)0.0059 (8)
C310.0206 (8)0.0236 (8)0.0369 (10)0.0040 (6)0.0021 (7)0.0026 (7)
C320.0220 (8)0.0291 (9)0.0365 (10)0.0033 (7)0.0024 (7)0.0046 (7)
C330.0217 (9)0.0432 (11)0.0391 (11)0.0056 (8)0.0002 (8)0.0109 (9)
C340.0312 (10)0.0446 (12)0.0523 (14)0.0138 (9)0.0065 (10)0.0207 (11)
C350.0410 (12)0.0322 (11)0.0566 (15)0.0151 (9)0.0145 (11)0.0129 (10)
C360.0329 (10)0.0257 (9)0.0446 (12)0.0064 (7)0.0091 (9)0.0038 (8)
C370.0288 (9)0.0221 (7)0.0282 (9)0.0017 (7)0.0042 (7)0.0027 (7)
C380.0220 (8)0.0321 (9)0.0295 (9)0.0013 (7)0.0015 (7)0.0059 (7)
C390.0203 (8)0.0304 (9)0.0304 (9)0.0018 (7)0.0007 (7)0.0008 (7)
C400.0281 (9)0.0221 (8)0.0425 (11)0.0007 (7)0.0012 (8)0.0031 (8)
Geometric parameters (Å, º) top
Cr1—C371.8890 (18)C11—C121.378 (3)
Cr1—C381.882 (2)C11—H11A0.9500
Cr1—C391.888 (2)C12—H12A0.9500
Cr1—C401.8885 (19)C13—C141.390 (3)
Cr1—P12.3333 (5)C13—C181.402 (3)
Cr1—P22.3320 (5)C14—C151.383 (3)
P1—C71.8330 (18)C14—H14A0.9500
P1—C11.8382 (17)C15—C161.369 (4)
P1—C131.8396 (19)C15—H15A0.9500
P2—C311.8315 (19)C16—C171.371 (4)
P2—C251.8370 (18)C16—H16A0.9500
P2—C191.8498 (19)C17—C181.381 (3)
F1—C31.362 (2)C17—H17A0.9500
F1X—C51.3991 (10)C18—H18A0.9500
F2—C91.293 (3)C19—C201.390 (3)
F2X—C111.3909 (10)C19—C241.399 (3)
F3—C151.320 (3)C20—C211.391 (3)
F3X—C171.233 (8)C20—H20A0.9500
F4—C211.250 (3)C21—C221.372 (4)
F4X—C231.3881 (10)C21—H21A0.9500
F5—C271.320 (3)C22—C231.337 (4)
F5X—C291.354 (3)C22—H22A0.9500
F6—C331.349 (3)C23—C241.356 (3)
F6X—C351.3987 (10)C23—H23A0.9500
O1—C371.144 (2)C24—H24A0.9500
O2—C381.152 (2)C25—C261.393 (3)
O3—C391.145 (2)C25—C301.395 (3)
O4—C401.153 (2)C26—C271.378 (3)
C1—C61.394 (2)C26—H26A0.9500
C1—C21.397 (2)C27—C281.380 (3)
C2—C31.375 (2)C27—H27A0.9500
C2—H2A0.9500C28—C291.372 (3)
C3—C41.376 (3)C28—H28A0.9500
C3—H3A0.9500C29—C301.389 (3)
C4—C51.379 (3)C29—H29A0.9500
C4—H4A0.9500C30—H30A0.9500
C5—C61.393 (3)C31—C361.396 (3)
C5—H5A0.9500C31—C321.396 (3)
C6—H6A0.9500C32—C331.380 (3)
C7—C121.398 (3)C32—H32A0.9500
C7—C81.400 (3)C33—C341.370 (3)
C8—C91.385 (3)C33—H33A0.9500
C8—H8A0.9500C34—C351.376 (4)
C9—C101.373 (3)C34—H34A0.9500
C9—H9A0.9500C35—C361.391 (3)
C10—C111.351 (3)C35—H35A0.9500
C10—H10A0.9500C36—H36A0.9500
C38—Cr1—C39170.47 (9)C15—C16—C17117.6 (2)
C38—Cr1—C4095.03 (9)C15—C16—H16A121.2
C39—Cr1—C4094.50 (9)C17—C16—H16A121.2
C38—Cr1—C3785.09 (8)F3X—C17—C16104.6 (4)
C39—Cr1—C3785.39 (8)F3X—C17—C18133.7 (5)
C40—Cr1—C37179.59 (9)C16—C17—C18121.3 (2)
C38—Cr1—P289.85 (6)C16—C17—H17A119.3
C39—Cr1—P290.23 (6)C18—C17—H17A119.3
C40—Cr1—P287.42 (6)C17—C18—C13120.3 (2)
C37—Cr1—P292.97 (6)C17—C18—H18A119.8
C38—Cr1—P190.28 (6)C13—C18—H18A119.8
C39—Cr1—P190.51 (6)C20—C19—C24119.08 (18)
C40—Cr1—P187.35 (6)C20—C19—P2122.15 (15)
C37—Cr1—P192.26 (6)C24—C19—P2118.76 (15)
P2—Cr1—P1174.760 (19)C19—C20—C21119.1 (2)
C7—P1—C1105.07 (8)C19—C20—H20A120.4
C7—P1—C13101.15 (9)C21—C20—H20A120.4
C1—P1—C1398.60 (8)F4—C21—C22114.0 (2)
C7—P1—Cr1114.52 (6)F4—C21—C20123.3 (3)
C1—P1—Cr1115.96 (6)C22—C21—C20122.5 (2)
C13—P1—Cr1119.13 (6)C22—C21—H21A118.8
C31—P2—C25104.54 (8)C20—C21—H21A118.8
C31—P2—C19101.37 (9)C23—C22—C21115.1 (2)
C25—P2—C1999.18 (8)C23—C22—H22A122.4
C31—P2—Cr1113.17 (6)C21—C22—H22A122.4
C25—P2—Cr1116.74 (6)C22—C23—C24127.3 (2)
C19—P2—Cr1119.49 (7)C22—C23—F4X109.5 (2)
C6—C1—C2118.91 (16)C24—C23—F4X123.1 (3)
C6—C1—P1126.21 (14)C22—C23—H23A116.4
C2—C1—P1114.86 (13)C24—C23—H23A116.4
C3—C2—C1118.76 (17)C23—C24—C19116.9 (2)
C3—C2—H2A120.6C23—C24—H24A121.6
C1—C2—H2A120.6C19—C24—H24A121.6
F1—C3—C2117.33 (17)C26—C25—C30118.77 (17)
F1—C3—C4119.14 (17)C26—C25—P2116.23 (13)
C2—C3—C4123.53 (18)C30—C25—P2124.99 (14)
C2—C3—H3A118.2C27—C26—C25119.77 (18)
C4—C3—H3A118.2C27—C26—H26A120.1
C3—C4—C5117.32 (17)C25—C26—H26A120.1
C3—C4—H4A121.3F5—C27—C26115.3 (2)
C5—C4—H4A121.3F5—C27—C28121.9 (2)
C4—C5—C6121.21 (18)C26—C27—C28122.39 (19)
C4—C5—F1X126.6 (9)C26—C27—H27A118.8
C6—C5—F1X109.3 (9)C28—C27—H27A118.8
C4—C5—H5A119.4C29—C28—C27117.25 (18)
C6—C5—H5A119.4C29—C28—H28A121.4
C5—C6—C1120.21 (18)C27—C28—H28A121.4
C5—C6—H6A119.9F5X—C29—C28119.4 (2)
C1—C6—H6A119.9F5X—C29—C30117.7 (2)
C12—C7—C8118.88 (17)C28—C29—C30122.41 (19)
C12—C7—P1120.90 (15)C28—C29—H29A118.8
C8—C7—P1120.00 (14)C30—C29—H29A118.8
C9—C8—C7118.66 (19)C29—C30—C25119.36 (18)
C9—C8—H8A120.7C29—C30—H30A120.3
C7—C8—H8A120.7C25—C30—H30A120.3
F2—C9—C10116.36 (19)C36—C31—C32119.11 (18)
F2—C9—C8120.4 (2)C36—C31—P2120.82 (16)
C10—C9—C8123.3 (2)C32—C31—P2119.76 (14)
C10—C9—H9A118.4C33—C32—C31118.43 (19)
C8—C9—H9A118.4C33—C32—H32A120.8
C11—C10—C9116.27 (19)C31—C32—H32A120.8
C11—C10—H10A121.9F6—C33—C34118.09 (19)
C9—C10—H10A121.9F6—C33—C32118.4 (2)
C10—C11—C12124.5 (2)C34—C33—C32123.5 (2)
C10—C11—F2X112.3 (3)C34—C33—H33A118.3
C12—C11—F2X123.1 (3)C32—C33—H33A118.3
C10—C11—H11A117.8C33—C34—C35117.8 (2)
C12—C11—H11A117.8C33—C34—H34A121.1
C11—C12—C7118.4 (2)C35—C34—H34A121.1
C11—C12—H12A120.8C34—C35—C36121.0 (2)
C7—C12—H12A120.8C34—C35—F6X106.2 (12)
C14—C13—C18118.79 (19)C36—C35—F6X132.4 (12)
C14—C13—P1121.97 (16)C34—C35—H35A119.5
C18—C13—P1119.22 (15)C36—C35—H35A119.5
C15—C14—C13118.4 (2)C35—C36—C31120.1 (2)
C15—C14—H14A120.8C35—C36—H36A119.9
C13—C14—H14A120.8C31—C36—H36A119.9
F3—C15—C16118.0 (2)O1—C37—Cr1179.42 (18)
F3—C15—C14118.5 (3)O2—C38—Cr1174.59 (18)
C16—C15—C14123.5 (2)O3—C39—Cr1176.02 (18)
C16—C15—H15A118.2O4—C40—Cr1179.6 (2)
C14—C15—H15A118.2
C38—Cr1—P1—C733.20 (9)C18—C13—C14—C151.3 (3)
C39—Cr1—P1—C7156.30 (9)P1—C13—C14—C15177.03 (17)
C40—Cr1—P1—C761.82 (10)C13—C14—C15—F3179.9 (2)
C37—Cr1—P1—C7118.30 (9)C13—C14—C15—C160.8 (4)
C38—Cr1—P1—C189.47 (9)F3—C15—C16—C17178.7 (2)
C39—Cr1—P1—C181.03 (9)C14—C15—C16—C170.3 (4)
C40—Cr1—P1—C1175.51 (9)C15—C16—C17—F3X175.5 (5)
C37—Cr1—P1—C14.38 (9)C15—C16—C17—C181.0 (4)
C38—Cr1—P1—C13153.04 (9)F3X—C17—C18—C13173.1 (7)
C39—Cr1—P1—C1336.46 (9)C16—C17—C18—C130.5 (3)
C40—Cr1—P1—C1358.02 (9)C14—C13—C18—C170.7 (3)
C37—Cr1—P1—C13121.86 (9)P1—C13—C18—C17177.71 (17)
C38—Cr1—P2—C31157.99 (9)C31—P2—C19—C20114.30 (18)
C39—Cr1—P2—C3131.54 (9)C25—P2—C19—C20138.73 (18)
C40—Cr1—P2—C3162.95 (10)Cr1—P2—C19—C2010.8 (2)
C37—Cr1—P2—C31116.93 (9)C31—P2—C19—C2466.35 (18)
C38—Cr1—P2—C2580.59 (9)C25—P2—C19—C2440.62 (18)
C39—Cr1—P2—C2589.88 (9)Cr1—P2—C19—C24168.57 (14)
C40—Cr1—P2—C25175.63 (9)C24—C19—C20—C210.3 (3)
C37—Cr1—P2—C254.49 (9)P2—C19—C20—C21179.09 (19)
C38—Cr1—P2—C1938.77 (9)C19—C20—C21—F4173.8 (3)
C39—Cr1—P2—C19150.76 (9)C19—C20—C21—C220.3 (4)
C40—Cr1—P2—C1956.27 (10)F4—C21—C22—C23173.7 (3)
C37—Cr1—P2—C19123.84 (9)C20—C21—C22—C230.9 (4)
C7—P1—C1—C62.00 (19)C21—C22—C23—C241.0 (4)
C13—P1—C1—C6106.08 (17)C21—C22—C23—F4X177.3 (3)
Cr1—P1—C1—C6125.52 (16)C22—C23—C24—C190.5 (4)
C7—P1—C1—C2176.57 (13)F4X—C23—C24—C19176.3 (3)
C13—P1—C1—C272.49 (14)C20—C19—C24—C230.2 (3)
Cr1—P1—C1—C255.91 (14)P2—C19—C24—C23179.17 (17)
C6—C1—C2—C30.2 (3)C31—P2—C25—C26177.34 (14)
P1—C1—C2—C3178.51 (14)C19—P2—C25—C2678.29 (15)
C1—C2—C3—F1177.86 (16)Cr1—P2—C25—C2651.49 (15)
C1—C2—C3—C42.2 (3)C31—P2—C25—C304.31 (19)
F1—C3—C4—C5177.74 (18)C19—P2—C25—C30100.06 (17)
C2—C3—C4—C52.3 (3)Cr1—P2—C25—C30130.16 (15)
C3—C4—C5—C60.4 (3)C30—C25—C26—C271.4 (3)
C3—C4—C5—F1X158.2 (11)P2—C25—C26—C27179.82 (15)
C4—C5—C6—C11.4 (3)C25—C26—C27—F5172.4 (2)
F1X—C5—C6—C1163.4 (9)C25—C26—C27—C280.8 (3)
C2—C1—C6—C51.6 (3)F5—C27—C28—C29170.7 (2)
P1—C1—C6—C5179.92 (15)C26—C27—C28—C292.1 (3)
C1—P1—C7—C12128.51 (15)C27—C28—C29—F5X170.5 (2)
C13—P1—C7—C1226.33 (17)C27—C28—C29—C301.1 (3)
Cr1—P1—C7—C12103.10 (15)F5X—C29—C30—C25172.8 (2)
C1—P1—C7—C856.90 (16)C28—C29—C30—C251.0 (3)
C13—P1—C7—C8159.07 (15)C26—C25—C30—C292.2 (3)
Cr1—P1—C7—C871.50 (15)P2—C25—C30—C29179.47 (16)
C12—C7—C8—C91.5 (3)C25—P2—C31—C36132.33 (16)
P1—C7—C8—C9176.25 (14)C19—P2—C31—C3629.60 (18)
C7—C8—C9—F2176.82 (19)Cr1—P2—C31—C3699.61 (16)
C7—C8—C9—C101.6 (3)C25—P2—C31—C3254.22 (17)
F2—C9—C10—C11177.87 (19)C19—P2—C31—C32156.94 (16)
C8—C9—C10—C110.6 (3)Cr1—P2—C31—C3273.85 (16)
C9—C10—C11—C120.4 (3)C36—C31—C32—C331.5 (3)
C9—C10—C11—F2X176.2 (3)P2—C31—C32—C33175.10 (15)
C10—C11—C12—C70.4 (3)C31—C32—C33—F6178.06 (17)
F2X—C11—C12—C7175.7 (3)C31—C32—C33—C341.7 (3)
C8—C7—C12—C110.6 (3)F6—C33—C34—C35179.32 (19)
P1—C7—C12—C11175.25 (15)C32—C33—C34—C350.5 (3)
C7—P1—C13—C14116.34 (17)C33—C34—C35—C361.0 (3)
C1—P1—C13—C14136.33 (17)C33—C34—C35—F6X175.0 (12)
Cr1—P1—C13—C1410.10 (19)C34—C35—C36—C311.1 (3)
C7—P1—C13—C1865.34 (16)F6X—C35—C36—C31173.3 (16)
C1—P1—C13—C1841.99 (16)C32—C31—C36—C350.2 (3)
Cr1—P1—C13—C18168.22 (13)P2—C31—C36—C35173.69 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.952.523.105 (2)120
C4—H4A···F1ii0.952.413.292 (2)153
C10—H10A···F4iii0.952.533.271 (3)135
C28—H28A···F5iv0.952.333.069 (3)135
C34—H34A···F3v0.952.323.191 (3)153
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x, y+1, z; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cr(C18H12F3P)2(CO)4]
Mr796.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.1675 (2), 18.5362 (3), 15.4084 (2)
β (°) 90.448 (1)
V3)3475.09 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.26 × 0.25 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.881, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
104037, 14097, 9496
Rint0.054
(sin θ/λ)max1)0.787
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.139, 1.21
No. of reflections14097
No. of parameters528
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 1.41

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cr1—C371.8890 (18)Cr1—C401.8885 (19)
Cr1—C381.882 (2)Cr1—P12.3333 (5)
Cr1—C391.888 (2)Cr1—P22.3320 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.952.523.105 (2)120
C4—H4A···F1ii0.952.413.292 (2)153
C10—H10A···F4iii0.952.533.271 (3)135
C28—H28A···F5iv0.952.333.069 (3)135
C34—H34A···F3v0.952.323.191 (3)153
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x, y+1, z; (v) x, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: D-6198-2011.

§Additional correspondence author, e-mail: omarsa@usm.my. Thomson Reuters ResearcherID: B-6034-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

ObS would like to thank Universiti Sains Malaysia (USM) for the Research Grant 1001/PJJauh/811115. HKF thanks USM for the Research University Grant No. 1001/PFIZIK/811160. MNN is grateful to Universiti Malaysia Pahang for a researcher position.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBennett, D. W., Siddiquee, T. A., Haworth, D. T., Kabir, S. E. & Camellia, F. K. (2004). J. Chem. Crystallogr. 34, 353–359.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrunet, J. J., Diallo, O., Donnadieu, B. & Roblou, E. (2002). Organometallics, 21, 3388–3394.  Web of Science CSD CrossRef CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNorlidah, M. N., Hamdya, F. M. Y., Bin Shawkataly, O., Rosli, M. M. & Fun, H.-K. (2011). Acta Cryst. E67, m1314–m1315.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPreston, H. G., Steward, J. M., Plastas, H. J. & Grim, S. O. (1972). Inorg. Chem. 11, 161–165.  CSD CrossRef CAS Web of Science Google Scholar
First citationShawkataly, O. bin, Thangadurai, D. T., Pankhi, M. A. A., Shahinoor Dulal Islam, S. M. & Fun, H.-K. (2009). Acta Cryst. E65, m250–m251.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin, Tamilselvan, S., Muniswaran, K., Fun, H.-K. & Sivakumar, K. (1996). Acta Cryst. C52, 1352–1355.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds