organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7′-[4-(Tri­fluoro­meth­yl)phen­yl]-5′,6′,7′,7a'-tetra­hydrodi­spiro­[indan-2,5′-pyrrolo­[1,2-c][1,3]thia­zole-6′,2′′-indan]-1,3,1′′-trione

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 1 November 2011; accepted 8 November 2011; online 12 November 2011)

In the title compound, C29H20F3NO3S, the thia­zolidine ringadopts a half-chair conformation. The pyrrolidine and two five-membered carbocyclic rings are in envelope conformations with the spiro C atoms at the flaps. The trifluoro­methyl-substituted benzene ring forms dihedral angles of 62.37 (14) and 87.40 (14)° with the benzene rings of the dihydro-1H-indene units. The two benzene rings form a dihedral angle of 36.94 (15)°. The mol­ecular structure is stabilized by intra­molecular C—H⋯O hydrogen bonds, which generate S(6) ring motifs. In the crystal, mol­ecules are linked into inversion dimers by pairs of inter­molecular C—H⋯O hydrogen bonds, generating R22(10) ring motifs.

Related literature

For related structures, see: Wei, Ali, Choon et al. (2011a[Wei, A. C., Ali, M. A., Choon, T. S., Quah, C. K. & Fun, H.-K. (2011a). Acta Cryst. E67, o2383.],b[Wei, A. C., Ali, M. A., Choon, T. S., Quah, C. K. & Fun, H.-K. (2011b). Acta Cryst. E67, o3218-o3219.]); Wei, Ali, Ismail et al. (2011[Wei, A. C., Ali, M. A., Ismail, R., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2381-o2382.]); Wei, Ali, Yoon et al. (2011[Wei, A. C., Ali, M. A., Yoon, Y. K., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2404.]); Kumar et al. (2010[Kumar, R. S., Osman, H., Ali, M. A., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1540-o1541.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C29H20F3NO3S

  • Mr = 519.52

  • Triclinic, [P \overline 1]

  • a = 8.5894 (9) Å

  • b = 12.3144 (13) Å

  • c = 12.6109 (15) Å

  • α = 68.181 (1)°

  • β = 87.589 (2)°

  • γ = 74.960 (2)°

  • V = 1193.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.23 × 0.22 × 0.09 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.983

  • 25475 measured reflections

  • 6922 independent reflections

  • 4508 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.216

  • S = 1.05

  • 6922 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O1i 0.93 2.57 3.227 (3) 128
C18—H18A⋯O2 0.97 2.47 3.091 (3) 122
C19—H19A⋯O1 0.98 2.50 3.145 (3) 123
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing search for novel heterocyclic compounds with antitubercular activity (Wei, Ali, Choon et al., 2011a,b; Wei, Ali, Ismail et al., 2011; Wei, Ali, Yoon et al., 2011), our group has synthesized the title compound as described below.

The molecular structure is shown in Fig. 1. The thiazolidine (S1/N1/C27-C29) ring is twisted about the S1—C28 bond, with puckering parameters (Cremer & Pople, 1975) Q = 0.405 (3) Å and φ = 204.5 (4)°, thereby adopting a half-chair conformation. The pyrrolidine (N1/C9/C10/C19/C27) and two five-membered carbocyclic (C1/C2/C7-C9 and C10-C12/C17/C18) rings are in envelope conformations, puckering parameters (Cremer & Pople, 1975) Q = 0.458 (2) Å and φ = 65.6 (3)° with atom C10 at the flap; Q = 0.178 (3) Å and φ = 322.2 (8)° with atom C9 at the flap; and Q = 0.202 (3) Å and φ = 352.7 (8)° with atom C10 at the flap, respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Kumar et al., 2010; Wei, Ali, Choon et al., 2011a,b; Wei, Ali, Ismail et al., 2011; Wei, Ali, Yoon et al., 2011). The trifluoromethyl-bound benzene (C20–C25) ring forms dihedral angles of 62.37 (14) and 87.40 (14)° with the other two benzene (C2–C7 and C12–C17) rings, respectively. The two benzene rings form a dihedral angle of 36.94 (15)°. The molecular structure is stabilized by intramolecular C18—H18A···O2 and C19—H19A···O1 hydrogen bonds (Table 1), which generate S(6) ring motifs (Fig. 1; Bernstein et al., 1995).

In the crystal (Fig. 2), molecules are linked into inversion dimers by pairs of intermolecular C3—H3A···O1 hydrogen bonds (Table 1), generating ten-membered R22(10) ring motifs (Bernstein et al., 1995).

Related literature top

For related structures, see: Wei, Ali, Choon et al. (2011a,b); Wei, Ali, Ismail et al. (2011); Wei, Ali, Yoon et al. (2011); Kumar et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of (Z)-2-(4-trifluoromethylbenzylidene)-2,3-dihydro-1 H-indene-1-one (0.001 mmol), ninhydrin (0.001 mmol) and thiazolidine -4-carboxylic acid (0.002 mmol) (1:1:2) were dissolved in methanol (10 ml) and refluxed for 4 h. After completion of the reaction as evident from TLC, the mixture was poured into crushed ice. The precipitated solid was filtered, washed with water and recrystallised from petroleum ether-ethyl acetate mixture (1:1) to reveal the title compound as yellow crystals.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

As part of our ongoing search for novel heterocyclic compounds with antitubercular activity (Wei, Ali, Choon et al., 2011a,b; Wei, Ali, Ismail et al., 2011; Wei, Ali, Yoon et al., 2011), our group has synthesized the title compound as described below.

The molecular structure is shown in Fig. 1. The thiazolidine (S1/N1/C27-C29) ring is twisted about the S1—C28 bond, with puckering parameters (Cremer & Pople, 1975) Q = 0.405 (3) Å and φ = 204.5 (4)°, thereby adopting a half-chair conformation. The pyrrolidine (N1/C9/C10/C19/C27) and two five-membered carbocyclic (C1/C2/C7-C9 and C10-C12/C17/C18) rings are in envelope conformations, puckering parameters (Cremer & Pople, 1975) Q = 0.458 (2) Å and φ = 65.6 (3)° with atom C10 at the flap; Q = 0.178 (3) Å and φ = 322.2 (8)° with atom C9 at the flap; and Q = 0.202 (3) Å and φ = 352.7 (8)° with atom C10 at the flap, respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Kumar et al., 2010; Wei, Ali, Choon et al., 2011a,b; Wei, Ali, Ismail et al., 2011; Wei, Ali, Yoon et al., 2011). The trifluoromethyl-bound benzene (C20–C25) ring forms dihedral angles of 62.37 (14) and 87.40 (14)° with the other two benzene (C2–C7 and C12–C17) rings, respectively. The two benzene rings form a dihedral angle of 36.94 (15)°. The molecular structure is stabilized by intramolecular C18—H18A···O2 and C19—H19A···O1 hydrogen bonds (Table 1), which generate S(6) ring motifs (Fig. 1; Bernstein et al., 1995).

In the crystal (Fig. 2), molecules are linked into inversion dimers by pairs of intermolecular C3—H3A···O1 hydrogen bonds (Table 1), generating ten-membered R22(10) ring motifs (Bernstein et al., 1995).

For related structures, see: Wei, Ali, Choon et al. (2011a,b); Wei, Ali, Ismail et al. (2011); Wei, Ali, Yoon et al. (2011); Kumar et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
7'-[4-(Trifluoromethyl)phenyl]-5',6',7',7a'-tetrahydrodispiro[indan-2,5'- pyrrolo[1,2-c][1,3]thiazole-6',2''-indan]-1,3,1''-trione top
Crystal data top
C29H20F3NO3SZ = 2
Mr = 519.52F(000) = 536
Triclinic, P1Dx = 1.445 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5894 (9) ÅCell parameters from 5253 reflections
b = 12.3144 (13) Åθ = 2.9–28.1°
c = 12.6109 (15) ŵ = 0.19 mm1
α = 68.181 (1)°T = 296 K
β = 87.589 (2)°Block, yellow
γ = 74.960 (2)°0.23 × 0.22 × 0.09 mm
V = 1193.7 (2) Å3
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
6922 independent reflections
Radiation source: fine-focus sealed tube4508 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 30.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.957, Tmax = 0.983k = 1717
25475 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1159P)2 + 0.3319P]
where P = (Fo2 + 2Fc2)/3
6922 reflections(Δ/σ)max = 0.001
334 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
C29H20F3NO3Sγ = 74.960 (2)°
Mr = 519.52V = 1193.7 (2) Å3
Triclinic, P1Z = 2
a = 8.5894 (9) ÅMo Kα radiation
b = 12.3144 (13) ŵ = 0.19 mm1
c = 12.6109 (15) ÅT = 296 K
α = 68.181 (1)°0.23 × 0.22 × 0.09 mm
β = 87.589 (2)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
6922 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4508 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.983Rint = 0.038
25475 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.216H-atom parameters constrained
S = 1.05Δρmax = 0.73 e Å3
6922 reflectionsΔρmin = 0.69 e Å3
334 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.96436 (9)0.35285 (8)0.03916 (7)0.0605 (2)
F10.0800 (4)0.0579 (3)0.1089 (2)0.1228 (12)
F20.0364 (3)0.23905 (19)0.2219 (2)0.0861 (7)
F30.2346 (3)0.1062 (3)0.2398 (2)0.1037 (9)
O10.8556 (2)0.10792 (17)0.32038 (17)0.0543 (5)
O20.5498 (3)0.48429 (15)0.31011 (16)0.0504 (5)
O30.4883 (2)0.07066 (15)0.36158 (15)0.0499 (4)
N10.7039 (2)0.36282 (17)0.15914 (15)0.0335 (4)
C10.7605 (3)0.1814 (2)0.34956 (19)0.0360 (5)
C20.7386 (3)0.1793 (2)0.46658 (19)0.0371 (5)
C30.8044 (3)0.0862 (2)0.5701 (2)0.0469 (6)
H3A0.86760.01150.57230.056*
C40.7723 (4)0.1090 (3)0.6684 (2)0.0622 (8)
H4A0.81480.04830.73830.075*
C50.6787 (5)0.2192 (3)0.6666 (2)0.0678 (9)
H5A0.65960.23120.73510.081*
C60.6127 (4)0.3124 (3)0.5648 (2)0.0565 (7)
H6A0.54890.38650.56380.068*
C70.6452 (3)0.2912 (2)0.46404 (19)0.0384 (5)
C80.6005 (3)0.3756 (2)0.34347 (19)0.0361 (5)
C90.6437 (2)0.29994 (18)0.26748 (17)0.0303 (4)
C100.4929 (2)0.27225 (18)0.22533 (16)0.0297 (4)
C110.4296 (3)0.1790 (2)0.32498 (17)0.0346 (4)
C120.2880 (3)0.2481 (2)0.36452 (19)0.0386 (5)
C130.2053 (4)0.2083 (3)0.4635 (2)0.0522 (7)
H13A0.23550.12810.51450.063*
C140.0782 (4)0.2912 (3)0.4831 (3)0.0622 (8)
H14A0.02080.26690.54820.075*
C150.0340 (4)0.4113 (3)0.4068 (3)0.0624 (8)
H15A0.05260.46600.42180.075*
C160.1164 (3)0.4511 (3)0.3090 (2)0.0496 (6)
H16A0.08680.53160.25880.060*
C170.2450 (3)0.3672 (2)0.28753 (19)0.0362 (5)
C180.3494 (3)0.3862 (2)0.18652 (18)0.0352 (4)
H18A0.38560.45890.16940.042*
H18B0.29120.39270.11920.042*
C190.5698 (3)0.22744 (19)0.13116 (17)0.0319 (4)
H19A0.64470.14770.17030.038*
C200.4566 (3)0.21104 (19)0.05324 (17)0.0329 (4)
C210.4027 (3)0.1066 (2)0.09141 (19)0.0422 (5)
H21A0.43460.05000.16510.051*
C220.3029 (4)0.0844 (2)0.0232 (2)0.0468 (6)
H22A0.26710.01440.05130.056*
C230.2565 (3)0.1670 (2)0.08730 (19)0.0388 (5)
C240.3089 (3)0.2709 (2)0.1275 (2)0.0464 (6)
H24A0.27880.32620.20190.056*
C250.4062 (3)0.2935 (2)0.0577 (2)0.0438 (6)
H25A0.43850.36500.08530.053*
C260.1537 (4)0.1431 (2)0.1638 (2)0.0507 (6)
C270.6737 (3)0.3150 (2)0.07265 (18)0.0363 (5)
H27A0.61210.38170.00590.044*
C280.8365 (4)0.2580 (3)0.0364 (3)0.0570 (7)
H28A0.82610.25780.03980.068*
H28B0.88010.17530.08940.068*
C290.8651 (3)0.3807 (3)0.1593 (2)0.0479 (6)
H29A0.92610.32520.23020.058*
H29B0.85780.46290.15260.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0445 (4)0.0840 (6)0.0729 (5)0.0327 (4)0.0244 (3)0.0430 (4)
F10.182 (3)0.124 (2)0.0866 (16)0.110 (2)0.0369 (17)0.0150 (14)
F20.0781 (14)0.0770 (13)0.1073 (17)0.0055 (11)0.0465 (13)0.0507 (12)
F30.0924 (16)0.151 (2)0.0966 (17)0.0001 (15)0.0160 (13)0.0971 (17)
O10.0494 (10)0.0514 (11)0.0527 (11)0.0130 (9)0.0126 (9)0.0248 (9)
O20.0688 (12)0.0320 (9)0.0500 (10)0.0087 (8)0.0040 (9)0.0178 (7)
O30.0666 (12)0.0343 (9)0.0400 (9)0.0134 (8)0.0011 (8)0.0038 (7)
N10.0341 (9)0.0377 (9)0.0316 (8)0.0148 (8)0.0040 (7)0.0127 (7)
C10.0337 (11)0.0358 (11)0.0367 (11)0.0051 (9)0.0052 (9)0.0134 (9)
C20.0371 (11)0.0405 (12)0.0341 (10)0.0127 (9)0.0038 (9)0.0120 (9)
C30.0472 (14)0.0457 (13)0.0394 (12)0.0132 (11)0.0091 (10)0.0047 (10)
C40.072 (2)0.071 (2)0.0339 (13)0.0281 (17)0.0066 (13)0.0021 (13)
C50.085 (2)0.090 (2)0.0337 (13)0.030 (2)0.0109 (14)0.0248 (14)
C60.0712 (19)0.0616 (17)0.0434 (14)0.0172 (15)0.0099 (13)0.0280 (13)
C70.0431 (12)0.0413 (12)0.0334 (10)0.0130 (10)0.0018 (9)0.0156 (9)
C80.0391 (11)0.0354 (11)0.0350 (11)0.0090 (9)0.0023 (9)0.0149 (9)
C90.0304 (10)0.0296 (9)0.0296 (9)0.0064 (8)0.0007 (7)0.0102 (8)
C100.0300 (9)0.0288 (9)0.0260 (9)0.0065 (8)0.0003 (7)0.0062 (7)
C110.0410 (11)0.0351 (11)0.0254 (9)0.0144 (9)0.0002 (8)0.0056 (8)
C120.0415 (12)0.0496 (13)0.0311 (10)0.0207 (10)0.0053 (9)0.0166 (9)
C130.0595 (16)0.0697 (18)0.0379 (12)0.0341 (15)0.0137 (11)0.0216 (12)
C140.0572 (17)0.102 (3)0.0465 (15)0.0369 (18)0.0211 (13)0.0405 (17)
C150.0451 (15)0.097 (2)0.0654 (19)0.0165 (16)0.0124 (13)0.0555 (19)
C160.0370 (12)0.0615 (16)0.0567 (15)0.0074 (11)0.0008 (11)0.0327 (13)
C170.0303 (10)0.0467 (12)0.0350 (10)0.0114 (9)0.0004 (8)0.0180 (9)
C180.0312 (10)0.0339 (10)0.0335 (10)0.0046 (8)0.0018 (8)0.0070 (8)
C190.0330 (10)0.0330 (10)0.0289 (9)0.0097 (8)0.0006 (8)0.0101 (8)
C200.0352 (10)0.0347 (10)0.0293 (9)0.0115 (9)0.0023 (8)0.0108 (8)
C210.0542 (14)0.0390 (12)0.0321 (10)0.0201 (11)0.0032 (10)0.0059 (9)
C220.0642 (16)0.0409 (13)0.0417 (12)0.0262 (12)0.0007 (11)0.0137 (10)
C230.0413 (12)0.0410 (12)0.0376 (11)0.0089 (10)0.0019 (9)0.0194 (9)
C240.0577 (15)0.0471 (13)0.0304 (11)0.0175 (12)0.0057 (10)0.0067 (9)
C250.0559 (14)0.0404 (12)0.0336 (11)0.0233 (11)0.0052 (10)0.0042 (9)
C260.0620 (17)0.0474 (14)0.0468 (14)0.0112 (13)0.0080 (12)0.0232 (11)
C270.0381 (11)0.0443 (12)0.0313 (10)0.0175 (10)0.0048 (8)0.0152 (9)
C280.0521 (15)0.0745 (19)0.0665 (18)0.0302 (15)0.0277 (13)0.0445 (16)
C290.0423 (13)0.0613 (16)0.0507 (14)0.0265 (12)0.0071 (11)0.0245 (12)
Geometric parameters (Å, º) top
S1—C291.807 (3)C13—C141.372 (5)
S1—C281.809 (3)C13—H13A0.9300
F1—C261.322 (4)C14—C151.393 (5)
F2—C261.323 (3)C14—H14A0.9300
F3—C261.308 (4)C15—C161.386 (4)
O1—C11.209 (3)C15—H15A0.9300
O2—C81.205 (3)C16—C171.396 (4)
O3—C111.208 (3)C16—H16A0.9300
N1—C91.447 (3)C17—C181.508 (3)
N1—C291.458 (3)C18—H18A0.9700
N1—C271.478 (3)C18—H18B0.9700
C1—C21.471 (3)C19—C201.510 (3)
C1—C91.553 (3)C19—C271.534 (3)
C2—C71.393 (3)C19—H19A0.9800
C2—C31.397 (3)C20—C211.389 (3)
C3—C41.371 (4)C20—C251.394 (3)
C3—H3A0.9300C21—C221.382 (3)
C4—C51.379 (5)C21—H21A0.9300
C4—H4A0.9300C22—C231.384 (3)
C5—C61.383 (4)C22—H22A0.9300
C5—H5A0.9300C23—C241.377 (3)
C6—C71.393 (3)C23—C261.488 (3)
C6—H6A0.9300C24—C251.384 (3)
C7—C81.485 (3)C24—H24A0.9300
C8—C91.542 (3)C25—H25A0.9300
C9—C101.581 (3)C27—C281.528 (4)
C10—C181.540 (3)C27—H27A0.9800
C10—C191.544 (3)C28—H28A0.9700
C10—C111.545 (3)C28—H28B0.9700
C11—C121.476 (3)C29—H29A0.9700
C12—C171.386 (3)C29—H29B0.9700
C12—C131.398 (3)
C29—S1—C2891.51 (12)C12—C17—C16119.6 (2)
C9—N1—C29118.30 (18)C12—C17—C18111.7 (2)
C9—N1—C27110.40 (16)C16—C17—C18128.7 (2)
C29—N1—C27113.82 (18)C17—C18—C10104.01 (17)
O1—C1—C2127.1 (2)C17—C18—H18A111.0
O1—C1—C9125.3 (2)C10—C18—H18A111.0
C2—C1—C9107.46 (18)C17—C18—H18B111.0
C7—C2—C3120.8 (2)C10—C18—H18B111.0
C7—C2—C1110.33 (19)H18A—C18—H18B109.0
C3—C2—C1128.8 (2)C20—C19—C27116.21 (17)
C4—C3—C2117.6 (3)C20—C19—C10116.84 (18)
C4—C3—H3A121.2C27—C19—C10103.12 (16)
C2—C3—H3A121.2C20—C19—H19A106.6
C3—C4—C5121.9 (3)C27—C19—H19A106.6
C3—C4—H4A119.0C10—C19—H19A106.6
C5—C4—H4A119.0C21—C20—C25117.3 (2)
C4—C5—C6121.2 (3)C21—C20—C19119.05 (18)
C4—C5—H5A119.4C25—C20—C19123.65 (19)
C6—C5—H5A119.4C22—C21—C20121.9 (2)
C5—C6—C7117.6 (3)C22—C21—H21A119.0
C5—C6—H6A121.2C20—C21—H21A119.0
C7—C6—H6A121.2C21—C22—C23119.6 (2)
C6—C7—C2120.8 (2)C21—C22—H22A120.2
C6—C7—C8129.5 (2)C23—C22—H22A120.2
C2—C7—C8109.64 (19)C24—C23—C22119.6 (2)
O2—C8—C7126.4 (2)C24—C23—C26119.7 (2)
O2—C8—C9126.0 (2)C22—C23—C26120.6 (2)
C7—C8—C9107.47 (18)C23—C24—C25120.3 (2)
N1—C9—C8113.35 (17)C23—C24—H24A119.9
N1—C9—C1116.89 (18)C25—C24—H24A119.9
C8—C9—C1101.91 (16)C24—C25—C20121.2 (2)
N1—C9—C10100.82 (15)C24—C25—H25A119.4
C8—C9—C10113.59 (17)C20—C25—H25A119.4
C1—C9—C10110.80 (16)F3—C26—F1104.7 (3)
C18—C10—C19116.52 (16)F3—C26—F2106.1 (2)
C18—C10—C11104.02 (17)F1—C26—F2104.9 (3)
C19—C10—C11115.45 (17)F3—C26—C23113.3 (3)
C18—C10—C9110.58 (16)F1—C26—C23113.7 (2)
C19—C10—C999.45 (16)F2—C26—C23113.3 (2)
C11—C10—C9110.96 (16)N1—C27—C28108.28 (19)
O3—C11—C12128.1 (2)N1—C27—C19104.79 (16)
O3—C11—C10125.1 (2)C28—C27—C19115.4 (2)
C12—C11—C10106.86 (18)N1—C27—H27A109.4
C17—C12—C13121.9 (3)C28—C27—H27A109.4
C17—C12—C11109.28 (19)C19—C27—H27A109.4
C13—C12—C11128.8 (2)C27—C28—S1104.62 (18)
C14—C13—C12117.9 (3)C27—C28—H28A110.8
C14—C13—H13A121.0S1—C28—H28A110.8
C12—C13—H13A121.0C27—C28—H28B110.8
C13—C14—C15120.8 (3)S1—C28—H28B110.8
C13—C14—H14A119.6H28A—C28—H28B108.9
C15—C14—H14A119.6N1—C29—S1108.05 (16)
C16—C15—C14121.4 (3)N1—C29—H29A110.1
C16—C15—H15A119.3S1—C29—H29A110.1
C14—C15—H15A119.3N1—C29—H29B110.1
C15—C16—C17118.4 (3)S1—C29—H29B110.1
C15—C16—H16A120.8H29A—C29—H29B108.4
C17—C16—H16A120.8
O1—C1—C2—C7166.6 (2)C17—C12—C13—C140.0 (4)
C9—C1—C2—C710.8 (2)C11—C12—C13—C14178.4 (2)
O1—C1—C2—C39.7 (4)C12—C13—C14—C150.3 (4)
C9—C1—C2—C3173.0 (2)C13—C14—C15—C160.0 (4)
C7—C2—C3—C40.6 (4)C14—C15—C16—C170.6 (4)
C1—C2—C3—C4176.5 (2)C13—C12—C17—C160.6 (3)
C2—C3—C4—C50.0 (4)C11—C12—C17—C16178.1 (2)
C3—C4—C5—C60.0 (5)C13—C12—C17—C18178.3 (2)
C4—C5—C6—C70.5 (5)C11—C12—C17—C183.0 (2)
C5—C6—C7—C21.1 (4)C15—C16—C17—C120.9 (3)
C5—C6—C7—C8175.6 (3)C15—C16—C17—C18177.8 (2)
C3—C2—C7—C61.2 (4)C12—C17—C18—C1014.8 (2)
C1—C2—C7—C6177.8 (2)C16—C17—C18—C10166.4 (2)
C3—C2—C7—C8176.1 (2)C19—C10—C18—C17148.04 (17)
C1—C2—C7—C80.5 (3)C11—C10—C18—C1719.8 (2)
C6—C7—C8—O213.2 (4)C9—C10—C18—C1799.42 (18)
C2—C7—C8—O2163.8 (2)C18—C10—C19—C2050.9 (2)
C6—C7—C8—C9171.4 (3)C11—C10—C19—C2071.6 (2)
C2—C7—C8—C911.7 (2)C9—C10—C19—C20169.66 (17)
C29—N1—C9—C872.0 (3)C18—C10—C19—C2777.9 (2)
C27—N1—C9—C8154.43 (18)C11—C10—C19—C27159.62 (17)
C29—N1—C9—C146.1 (3)C9—C10—C19—C2740.89 (18)
C27—N1—C9—C187.5 (2)C27—C19—C20—C21157.7 (2)
C29—N1—C9—C10166.28 (19)C10—C19—C20—C2180.1 (3)
C27—N1—C9—C1032.7 (2)C27—C19—C20—C2520.1 (3)
O2—C8—C9—N132.0 (3)C10—C19—C20—C25102.1 (3)
C7—C8—C9—N1143.50 (18)C25—C20—C21—C220.1 (4)
O2—C8—C9—C1158.5 (2)C19—C20—C21—C22178.0 (2)
C7—C8—C9—C117.0 (2)C20—C21—C22—C231.0 (4)
O2—C8—C9—C1082.3 (3)C21—C22—C23—C240.7 (4)
C7—C8—C9—C10102.2 (2)C21—C22—C23—C26177.9 (3)
O1—C1—C9—N136.5 (3)C22—C23—C24—C250.6 (4)
C2—C1—C9—N1140.89 (18)C26—C23—C24—C25179.2 (3)
O1—C1—C9—C8160.6 (2)C23—C24—C25—C201.6 (4)
C2—C1—C9—C816.8 (2)C21—C20—C25—C241.2 (4)
O1—C1—C9—C1078.2 (3)C19—C20—C25—C24176.6 (2)
C2—C1—C9—C10104.41 (19)C24—C23—C26—F376.1 (3)
N1—C9—C10—C1878.39 (19)C22—C23—C26—F3102.5 (3)
C8—C9—C10—C1843.2 (2)C24—C23—C26—F1164.5 (3)
C1—C9—C10—C18157.20 (17)C22—C23—C26—F116.9 (4)
N1—C9—C10—C1944.70 (18)C24—C23—C26—F244.9 (4)
C8—C9—C10—C19166.29 (16)C22—C23—C26—F2136.5 (3)
C1—C9—C10—C1979.71 (19)C9—N1—C27—C28116.7 (2)
N1—C9—C10—C11166.72 (17)C29—N1—C27—C2819.2 (3)
C8—C9—C10—C1171.7 (2)C9—N1—C27—C197.0 (2)
C1—C9—C10—C1142.3 (2)C29—N1—C27—C19142.8 (2)
C18—C10—C11—O3161.5 (2)C20—C19—C27—N1151.74 (19)
C19—C10—C11—O332.5 (3)C10—C19—C27—N122.6 (2)
C9—C10—C11—O379.6 (3)C20—C19—C27—C2889.3 (3)
C18—C10—C11—C1218.8 (2)C10—C19—C27—C28141.6 (2)
C19—C10—C11—C12147.68 (18)N1—C27—C28—S135.5 (2)
C9—C10—C11—C12100.17 (19)C19—C27—C28—S1152.48 (17)
O3—C11—C12—C17170.0 (2)C29—S1—C28—C2734.0 (2)
C10—C11—C12—C1710.3 (2)C9—N1—C29—S1138.59 (17)
O3—C11—C12—C1311.5 (4)C27—N1—C29—S16.5 (3)
C10—C11—C12—C13168.3 (2)C28—S1—C29—N124.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.932.573.227 (3)128
C18—H18A···O20.972.473.091 (3)122
C19—H19A···O10.982.503.145 (3)123
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC29H20F3NO3S
Mr519.52
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.5894 (9), 12.3144 (13), 12.6109 (15)
α, β, γ (°)68.181 (1), 87.589 (2), 74.960 (2)
V3)1193.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.23 × 0.22 × 0.09
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.957, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
25475, 6922, 4508
Rint0.038
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.216, 1.05
No. of reflections6922
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.69

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.93002.57003.227 (3)128.00
C18—H18A···O20.97002.47003.091 (3)122.00
C19—H19A···O10.98002.50003.145 (3)123.00
Symmetry code: (i) x+2, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Mol­ecular Medicine, Universiti Sains Malysia (USM), Penang. This work was funded through Research Grant No. RUC (1001/PSK/8620012). HKF and CKQ also thank USM for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKumar, R. S., Osman, H., Ali, M. A., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1540–o1541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Choon, T. S., Quah, C. K. & Fun, H.-K. (2011a). Acta Cryst. E67, o2383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Choon, T. S., Quah, C. K. & Fun, H.-K. (2011b). Acta Cryst. E67, o3218–o3219.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Ismail, R., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2381–o2382.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Yoon, Y. K., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2404.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds