organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(4,4′′-Di­fluoro-5′-meth­­oxy-1,1′:3′,1′′-terphenyl-4′-yl)-3-(6-meth­­oxy­naphthalen-2-yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 8 November 2011; accepted 10 November 2011; online 16 November 2011)

In the title compound, C33H24F2O3, the central benzene ring makes dihedral angles of 44.71 (10), 47.80 (10) and 63.68 (9)° with the two fluoro-substituted benzene rings and the naphthalene ring system, respectively. In the crystal, mol­ecules are connected via inter­molecular C—H⋯F and C—H⋯O hydrogen bonds. Furthermore, the crystal structure is stabilized by weak C—H⋯π and ππ inter­actions [centroid–centroid distance = 3.6816 (13) Å].

Related literature

For applications of chalcones, see: Dhar (1981[Dhar, D. N. (1981). In The Chemistry of Chalcones and Related Compounds. New York: Wiley.]); Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]); Satyanarayana et al. (2004[Satyanarayana, M., Tiwari, P., Tripathi, B. K., Sriwastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. 12, 883-887.]); Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54-59.]); Liu (2006[Liu, J. K. (2006). Chem. Rev. 106, 2209-2223.]); Astruc (2002[Astruc, D. (2002). In Modern Arene Chemistry. Weinheim: Wiley.]). For related structures, see: Samshuddin, Narayana et al. (2011[Samshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011). Der. Pharm. Chem., 3, 232-240.]); Samshuddin, Butcher et al. (2011[Samshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B., Yathirajan, H. S. & Sarojini, B. K. (2011). Acta Cryst. E67, o1954-o1955.]); Fun et al. (2010a[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582-o583.],b[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864-o865.]); Jasinski et al. (2010a[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o1948-o1949.],b[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o2018.]); Baktır et al. (2011a[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1262-o1263.],b[Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o1292-o1293.]).

[Scheme 1]

Experimental

Crystal data
  • C33H24F2O3

  • Mr = 506.52

  • Monoclinic, P 21 /n

  • a = 6.9524 (5) Å

  • b = 33.024 (2) Å

  • c = 11.6030 (9) Å

  • β = 107.267 (1)°

  • V = 2544.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.36 × 0.16 × 0.08 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.993

  • 53824 measured reflections

  • 7441 independent reflections

  • 4312 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.180

  • S = 1.02

  • 7441 reflections

  • 345 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg3 and Cg4 are the centroids of the C1–C3/C8–C10, C14–C19 and C20–C25 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28A⋯O2i 0.93 2.53 3.363 (3) 148
C32—H32C⋯F1ii 0.96 2.40 3.275 (4) 152
C33—H33A⋯F2iii 0.96 2.48 3.404 (3) 162
C32—H32ACg1iv 0.96 2.82 3.767 (4) 168
C24—H24ACg3v 0.93 2.83 3.461 (3) 126
C33—H33BCg3vi 0.96 2.91 3.556 (3) 126
C7—H7ACg4iii 0.93 2.85 3.548 (3) 133
Symmetry codes: (i) x+1, y, z+1; (ii) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x, y, z-1; (iv) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (v) x-1, y, z; (vi) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones are highly reactive substances of varied nature. They have been reported to possess many interesting pharmacological properties (Dhar, 1981) including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor and anticancer activities (Dimmock et al., 1999; Satyanarayana et al., 2004). Chalcones also find application as organic nonlinear optical materials (NLO) for their SHG conversion efficiency (Sarojini et al., 2006). The basic skeleton of chalcones which possess α,β-unsaturated carbonyl group is a useful synthone for the synthesis of various biodynamic cyclic derivatives such as pyrazoline, benzodiazepine, 2,4,6-triarylpyridine, isoxazoline and cyclohexenone derivatives. Polysubstituted aromatics are key structures of great efficacy in synthetic, medicinal and natural product chemistry. In recent years, it has been reported that some terphenyls exhibit considerable biological activities, e.g., potent anticoagulant, immunosuppressants, anti-thrombotic, neuroprotective, specific 5-lipoxygenase inhibitory and cytotoxic activities (Liu, 2006). Due to their promising biological activities and important properties, terphenyls have generated increasing research interests. As such, the synthesis of polysubstituted aromatics has been a fascinating area in organic chemistry (Astruc, 2002).

In view of the pharmacological importance of terphenyls and chalcones, and in continuation of our work on synthesis of various derivatives of 4,4'-difluorochalcone (Samshuddin, Narayana et al., 2011; Samshuddin, Butcher et al., 2011; Fun et al., 2010a,b; Jasinski et al., 2010a,b; Baktır et al., 2011a,b), the title compound (I) is prepared and its crystal structure is reported. The precursor of the title compound was prepared from 4,4'-difluorochalcone using several steps.

The asymmetric unit of the title compound as shown in Fig. 1. The naphthalene (C1–C10) ring system is approximately planar with a maximum deviation of 0.055 (2) Å for atom C10. The central benzene (C14–C19) ring makes dihedral angles of 44.71 (10), 47.80 (10) and 63.68 (9)° with the attached two fluoro-substituted benzene (C20–C25 and C26–C31) rings and the naphthalene (C1–C10) ring system, respectively.

In the crystal structure, (Fig. 2), the molecules are connected via intermolecular C—H···F and C—H···O hydrogen bonds. Furthermore, the crystal structure is stabilized by a weak ππ interaction between the benzene (C26–C31) rings [Cg···Cg(-x, -y, 2 - z) = 3.6816 (13) Å] and C—H···π (Table 1) interactions, involving the centroids of the C1–C3/C8–C10 (Cg1), C14–C19 (Cg3) and C20–C25 (Cg4) rings.

Related literature top

For applications of chalcones, see: Dhar (1981); Dimmock et al. (1999); Satyanarayana et al. (2004); Sarojini et al. (2006); Liu (2006); Astruc (2002). For related structures, see: Samshuddin, Narayana et al. (2011); Samshuddin, Butcher et al. (2011); Fun et al. (2010a,b); Jasinski et al. (2010a,b); Baktır et al. (2011a,b).

Experimental top

To a mixture of 1-(4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl) ethanone (0.338 g, 0.001 mol) and 6-methoxy-2-naphthaldehyde (0.188 g, 0.001 mol) in 30 ml ethanol, 0.5 ml of 10% sodium hydroxide solution was added and stirred at 5–10 °C for 3 hours. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from DMF by slow evaporation method and the yield of the compound was 84% (m.p. 479K).

Refinement top

All hydrogen atoms were positioned geometrically (C—H = 0.93 or 0.96 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating group model was applied to the methyl groups.

Structure description top

Chalcones are highly reactive substances of varied nature. They have been reported to possess many interesting pharmacological properties (Dhar, 1981) including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor and anticancer activities (Dimmock et al., 1999; Satyanarayana et al., 2004). Chalcones also find application as organic nonlinear optical materials (NLO) for their SHG conversion efficiency (Sarojini et al., 2006). The basic skeleton of chalcones which possess α,β-unsaturated carbonyl group is a useful synthone for the synthesis of various biodynamic cyclic derivatives such as pyrazoline, benzodiazepine, 2,4,6-triarylpyridine, isoxazoline and cyclohexenone derivatives. Polysubstituted aromatics are key structures of great efficacy in synthetic, medicinal and natural product chemistry. In recent years, it has been reported that some terphenyls exhibit considerable biological activities, e.g., potent anticoagulant, immunosuppressants, anti-thrombotic, neuroprotective, specific 5-lipoxygenase inhibitory and cytotoxic activities (Liu, 2006). Due to their promising biological activities and important properties, terphenyls have generated increasing research interests. As such, the synthesis of polysubstituted aromatics has been a fascinating area in organic chemistry (Astruc, 2002).

In view of the pharmacological importance of terphenyls and chalcones, and in continuation of our work on synthesis of various derivatives of 4,4'-difluorochalcone (Samshuddin, Narayana et al., 2011; Samshuddin, Butcher et al., 2011; Fun et al., 2010a,b; Jasinski et al., 2010a,b; Baktır et al., 2011a,b), the title compound (I) is prepared and its crystal structure is reported. The precursor of the title compound was prepared from 4,4'-difluorochalcone using several steps.

The asymmetric unit of the title compound as shown in Fig. 1. The naphthalene (C1–C10) ring system is approximately planar with a maximum deviation of 0.055 (2) Å for atom C10. The central benzene (C14–C19) ring makes dihedral angles of 44.71 (10), 47.80 (10) and 63.68 (9)° with the attached two fluoro-substituted benzene (C20–C25 and C26–C31) rings and the naphthalene (C1–C10) ring system, respectively.

In the crystal structure, (Fig. 2), the molecules are connected via intermolecular C—H···F and C—H···O hydrogen bonds. Furthermore, the crystal structure is stabilized by a weak ππ interaction between the benzene (C26–C31) rings [Cg···Cg(-x, -y, 2 - z) = 3.6816 (13) Å] and C—H···π (Table 1) interactions, involving the centroids of the C1–C3/C8–C10 (Cg1), C14–C19 (Cg3) and C20–C25 (Cg4) rings.

For applications of chalcones, see: Dhar (1981); Dimmock et al. (1999); Satyanarayana et al. (2004); Sarojini et al. (2006); Liu (2006); Astruc (2002). For related structures, see: Samshuddin, Narayana et al. (2011); Samshuddin, Butcher et al. (2011); Fun et al. (2010a,b); Jasinski et al. (2010a,b); Baktır et al. (2011a,b).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing diagram of the title compound. H atoms are not involving the hydrogen bond interactions are omitted for clarity.
(E)-1-(4,4''-Difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl)- 3-(6-methoxynaphthalen-2-yl)prop-2-en-1-one top
Crystal data top
C33H24F2O3F(000) = 1056
Mr = 506.52Dx = 1.322 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7590 reflections
a = 6.9524 (5) Åθ = 2.5–26.5°
b = 33.024 (2) ŵ = 0.09 mm1
c = 11.6030 (9) ÅT = 296 K
β = 107.267 (1)°Plate, yellow
V = 2544.0 (3) Å30.36 × 0.16 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
7441 independent reflections
Radiation source: fine-focus sealed tube4312 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
φ and ω scansθmax = 30.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.967, Tmax = 0.993k = 4646
53824 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0622P)2 + 1.2079P]
where P = (Fo2 + 2Fc2)/3
7441 reflections(Δ/σ)max = 0.001
345 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C33H24F2O3V = 2544.0 (3) Å3
Mr = 506.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9524 (5) ŵ = 0.09 mm1
b = 33.024 (2) ÅT = 296 K
c = 11.6030 (9) Å0.36 × 0.16 × 0.08 mm
β = 107.267 (1)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
7441 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4312 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.993Rint = 0.056
53824 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.02Δρmax = 0.28 e Å3
7441 reflectionsΔρmin = 0.18 e Å3
345 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.8506 (3)0.20150 (6)0.53664 (18)0.1044 (6)
F20.3881 (2)0.01095 (5)1.20226 (11)0.0746 (4)
O10.0952 (3)0.04503 (5)0.43318 (13)0.0590 (4)
O20.4053 (3)0.08801 (6)0.33233 (14)0.0719 (5)
O30.1800 (3)0.25775 (6)0.26009 (18)0.0868 (6)
C10.1517 (4)0.15151 (8)0.1660 (2)0.0595 (6)
H1A0.22550.14150.24090.071*
C20.2463 (4)0.17487 (8)0.1012 (2)0.0616 (6)
H2A0.38300.18050.13280.074*
C30.1381 (4)0.19040 (7)0.0126 (2)0.0555 (5)
C40.2299 (4)0.21664 (7)0.0797 (2)0.0623 (6)
H4A0.36520.22360.04950.075*
C50.1152 (4)0.23119 (8)0.1890 (2)0.0649 (7)
C60.0870 (5)0.22052 (8)0.2378 (2)0.0725 (7)
H6A0.16100.23050.31270.087*
C70.1757 (4)0.19549 (8)0.1758 (2)0.0660 (7)
H7A0.31020.18830.20900.079*
C80.0662 (4)0.18022 (7)0.06174 (19)0.0515 (5)
C90.1600 (4)0.15587 (7)0.00749 (19)0.0555 (5)
H9A0.29490.14890.02490.067*
C100.0563 (4)0.14246 (7)0.12064 (18)0.0521 (5)
C110.1675 (4)0.12159 (7)0.19354 (19)0.0538 (5)
H11A0.29860.11350.15360.065*
C120.0997 (4)0.11319 (7)0.30973 (19)0.0537 (5)
H12A0.03340.11940.35100.064*
C130.2262 (3)0.09428 (7)0.37715 (18)0.0488 (5)
C140.1234 (3)0.08339 (6)0.50667 (16)0.0416 (4)
C150.0403 (3)0.05689 (6)0.53151 (16)0.0433 (4)
C160.1302 (3)0.04262 (6)0.64713 (17)0.0436 (4)
H16A0.23660.02440.66150.052*
C170.0615 (3)0.05552 (6)0.74161 (16)0.0403 (4)
C180.0957 (3)0.08305 (6)0.71871 (17)0.0424 (4)
H18A0.13760.09260.78270.051*
C190.1932 (3)0.09687 (6)0.60211 (17)0.0405 (4)
C200.3657 (3)0.12534 (6)0.58344 (17)0.0441 (4)
C210.3847 (4)0.15999 (7)0.5133 (2)0.0554 (6)
H21A0.28710.16600.47580.066*
C220.5472 (4)0.18581 (8)0.4985 (2)0.0678 (7)
H22A0.55950.20900.45140.081*
C230.6886 (4)0.17661 (9)0.5542 (2)0.0660 (7)
C240.6756 (3)0.14343 (8)0.6256 (2)0.0608 (6)
H24A0.77330.13820.66370.073*
C250.5132 (3)0.11777 (7)0.63984 (19)0.0498 (5)
H25A0.50200.09490.68820.060*
C260.1510 (3)0.03850 (6)0.86460 (16)0.0418 (4)
C270.2048 (3)0.06306 (7)0.96664 (18)0.0496 (5)
H27A0.18660.09090.95820.060*
C280.2850 (3)0.04658 (8)1.08059 (18)0.0548 (6)
H28A0.32160.06301.14870.066*
C290.3089 (3)0.00566 (8)1.09028 (18)0.0520 (5)
C300.2575 (3)0.01981 (7)0.9932 (2)0.0526 (5)
H30A0.27480.04771.00300.063*
C310.1792 (3)0.00303 (7)0.88003 (18)0.0479 (5)
H31A0.14470.01980.81270.058*
C320.3839 (5)0.26621 (11)0.2300 (3)0.0988 (11)
H32A0.41170.28080.29480.148*
H32B0.45870.24130.21640.148*
H32C0.42260.28230.15800.148*
C330.2823 (4)0.02460 (8)0.4521 (2)0.0634 (6)
H33A0.30810.02070.37610.095*
H33B0.27650.00120.48900.095*
H33C0.38830.04060.50420.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0836 (12)0.1138 (15)0.1051 (14)0.0507 (11)0.0118 (10)0.0035 (11)
F20.0776 (10)0.1075 (12)0.0390 (7)0.0182 (8)0.0177 (6)0.0204 (7)
O10.0732 (11)0.0692 (10)0.0393 (8)0.0146 (8)0.0242 (7)0.0037 (7)
O20.0602 (11)0.1037 (14)0.0438 (9)0.0166 (10)0.0028 (8)0.0040 (9)
O30.0988 (16)0.0832 (14)0.0796 (13)0.0171 (12)0.0282 (12)0.0173 (11)
C10.0659 (15)0.0654 (15)0.0455 (12)0.0092 (12)0.0137 (11)0.0029 (11)
C20.0569 (14)0.0661 (15)0.0601 (14)0.0036 (12)0.0150 (11)0.0029 (12)
C30.0653 (15)0.0515 (12)0.0513 (12)0.0012 (11)0.0196 (11)0.0072 (10)
C40.0676 (16)0.0565 (14)0.0654 (15)0.0064 (12)0.0239 (12)0.0037 (12)
C50.0828 (18)0.0569 (14)0.0574 (14)0.0104 (13)0.0246 (13)0.0021 (11)
C60.090 (2)0.0680 (16)0.0529 (14)0.0142 (15)0.0108 (13)0.0043 (12)
C70.0745 (17)0.0665 (16)0.0499 (13)0.0104 (13)0.0073 (12)0.0013 (11)
C80.0647 (14)0.0466 (11)0.0427 (11)0.0016 (10)0.0153 (10)0.0052 (9)
C90.0635 (14)0.0567 (13)0.0449 (11)0.0021 (11)0.0139 (10)0.0034 (10)
C100.0687 (15)0.0493 (12)0.0399 (10)0.0042 (11)0.0185 (10)0.0038 (9)
C110.0653 (14)0.0545 (13)0.0414 (11)0.0004 (11)0.0154 (10)0.0033 (9)
C120.0654 (14)0.0557 (13)0.0393 (10)0.0033 (11)0.0145 (10)0.0004 (9)
C130.0547 (13)0.0538 (12)0.0348 (10)0.0040 (10)0.0086 (9)0.0044 (8)
C140.0445 (11)0.0459 (11)0.0334 (9)0.0073 (9)0.0103 (8)0.0031 (8)
C150.0491 (12)0.0479 (11)0.0358 (9)0.0054 (9)0.0172 (8)0.0057 (8)
C160.0415 (10)0.0472 (11)0.0435 (10)0.0009 (9)0.0146 (8)0.0022 (8)
C170.0419 (10)0.0450 (10)0.0345 (9)0.0040 (8)0.0121 (8)0.0020 (8)
C180.0456 (11)0.0495 (11)0.0343 (9)0.0035 (9)0.0152 (8)0.0046 (8)
C190.0399 (10)0.0448 (10)0.0368 (9)0.0057 (8)0.0114 (8)0.0031 (8)
C200.0434 (11)0.0460 (11)0.0390 (10)0.0036 (9)0.0063 (8)0.0057 (8)
C210.0622 (14)0.0557 (13)0.0473 (12)0.0010 (11)0.0147 (10)0.0038 (10)
C220.0798 (18)0.0586 (15)0.0572 (14)0.0153 (13)0.0081 (13)0.0072 (11)
C230.0544 (14)0.0714 (17)0.0633 (15)0.0186 (12)0.0038 (12)0.0123 (13)
C240.0444 (13)0.0715 (16)0.0651 (15)0.0015 (11)0.0141 (11)0.0153 (12)
C250.0463 (12)0.0528 (12)0.0500 (12)0.0052 (10)0.0135 (9)0.0048 (9)
C260.0376 (10)0.0529 (12)0.0358 (9)0.0002 (9)0.0124 (8)0.0006 (8)
C270.0533 (12)0.0537 (12)0.0412 (10)0.0007 (10)0.0130 (9)0.0045 (9)
C280.0538 (13)0.0751 (16)0.0341 (10)0.0004 (11)0.0109 (9)0.0076 (10)
C290.0442 (12)0.0783 (16)0.0361 (10)0.0092 (11)0.0158 (9)0.0100 (10)
C300.0503 (13)0.0584 (13)0.0522 (12)0.0073 (10)0.0201 (10)0.0082 (10)
C310.0486 (12)0.0543 (12)0.0425 (10)0.0014 (10)0.0160 (9)0.0025 (9)
C320.089 (2)0.095 (2)0.117 (3)0.0174 (19)0.037 (2)0.020 (2)
C330.0670 (16)0.0695 (16)0.0648 (14)0.0023 (13)0.0368 (13)0.0119 (12)
Geometric parameters (Å, º) top
F1—C231.360 (3)C16—C171.386 (3)
F2—C291.367 (2)C16—H16A0.9300
O1—C151.363 (2)C17—C181.385 (3)
O1—C331.423 (3)C17—C261.487 (3)
O2—C131.216 (3)C18—C191.398 (3)
O3—C51.369 (3)C18—H18A0.9300
O3—C321.384 (4)C19—C201.489 (3)
C1—C21.373 (3)C20—C211.387 (3)
C1—C101.416 (3)C20—C251.393 (3)
C1—H1A0.9300C21—C221.385 (3)
C2—C31.408 (3)C21—H21A0.9300
C2—H2A0.9300C22—C231.362 (4)
C3—C81.406 (3)C22—H22A0.9300
C3—C41.435 (3)C23—C241.360 (4)
C4—C51.369 (4)C24—C251.382 (3)
C4—H4A0.9300C24—H24A0.9300
C5—C61.396 (4)C25—H25A0.9300
C6—C71.358 (4)C26—C311.389 (3)
C6—H6A0.9300C26—C271.392 (3)
C7—C81.409 (3)C27—C281.385 (3)
C7—H7A0.9300C27—H27A0.9300
C8—C91.424 (3)C28—C291.362 (3)
C9—C101.370 (3)C28—H28A0.9300
C9—H9A0.9300C29—C301.366 (3)
C10—C111.476 (3)C30—C311.379 (3)
C11—C121.319 (3)C30—H30A0.9300
C11—H11A0.9300C31—H31A0.9300
C12—C131.478 (3)C32—H32A0.9600
C12—H12A0.9300C32—H32B0.9600
C13—C141.504 (3)C32—H32C0.9600
C14—C151.396 (3)C33—H33A0.9600
C14—C191.407 (3)C33—H33B0.9600
C15—C161.384 (3)C33—H33C0.9600
C15—O1—C33118.47 (17)C17—C18—H18A119.1
C5—O3—C32118.2 (2)C19—C18—H18A119.1
C2—C1—C10121.2 (2)C18—C19—C14118.51 (18)
C2—C1—H1A119.4C18—C19—C20119.03 (17)
C10—C1—H1A119.4C14—C19—C20122.46 (17)
C1—C2—C3120.6 (2)C21—C20—C25117.9 (2)
C1—C2—H2A119.7C21—C20—C19122.60 (19)
C3—C2—H2A119.7C25—C20—C19119.46 (19)
C8—C3—C2119.2 (2)C22—C21—C20120.9 (2)
C8—C3—C4118.9 (2)C22—C21—H21A119.6
C2—C3—C4121.9 (2)C20—C21—H21A119.6
C5—C4—C3118.9 (2)C23—C22—C21118.8 (2)
C5—C4—H4A120.5C23—C22—H22A120.6
C3—C4—H4A120.5C21—C22—H22A120.6
O3—C5—C4125.3 (3)F1—C23—C24118.7 (3)
O3—C5—C6112.9 (2)F1—C23—C22118.5 (3)
C4—C5—C6121.8 (2)C24—C23—C22122.8 (2)
C7—C6—C5120.0 (2)C23—C24—C25118.1 (2)
C7—C6—H6A120.0C23—C24—H24A121.0
C5—C6—H6A120.0C25—C24—H24A121.0
C6—C7—C8120.8 (3)C24—C25—C20121.5 (2)
C6—C7—H7A119.6C24—C25—H25A119.2
C8—C7—H7A119.6C20—C25—H25A119.2
C3—C8—C7119.6 (2)C31—C26—C27118.27 (18)
C3—C8—C9118.9 (2)C31—C26—C17119.97 (17)
C7—C8—C9121.4 (2)C27—C26—C17121.75 (19)
C10—C9—C8121.6 (2)C28—C27—C26120.9 (2)
C10—C9—H9A119.2C28—C27—H27A119.5
C8—C9—H9A119.2C26—C27—H27A119.5
C9—C10—C1118.5 (2)C29—C28—C27118.2 (2)
C9—C10—C11118.9 (2)C29—C28—H28A120.9
C1—C10—C11122.5 (2)C27—C28—H28A120.9
C12—C11—C10126.5 (2)C28—C29—C30123.2 (2)
C12—C11—H11A116.7C28—C29—F2118.8 (2)
C10—C11—H11A116.7C30—C29—F2118.0 (2)
C11—C12—C13122.8 (2)C29—C30—C31118.0 (2)
C11—C12—H12A118.6C29—C30—H30A121.0
C13—C12—H12A118.6C31—C30—H30A121.0
O2—C13—C12122.69 (19)C30—C31—C26121.3 (2)
O2—C13—C14120.62 (19)C30—C31—H31A119.3
C12—C13—C14116.68 (19)C26—C31—H31A119.3
C15—C14—C19119.10 (17)O3—C32—H32A109.5
C15—C14—C13118.22 (17)O3—C32—H32B109.5
C19—C14—C13122.57 (19)H32A—C32—H32B109.5
O1—C15—C16123.75 (19)O3—C32—H32C109.5
O1—C15—C14114.88 (17)H32A—C32—H32C109.5
C16—C15—C14121.29 (18)H32B—C32—H32C109.5
C15—C16—C17119.99 (19)O1—C33—H33A109.5
C15—C16—H16A120.0O1—C33—H33B109.5
C17—C16—H16A120.0H33A—C33—H33B109.5
C18—C17—C16119.15 (17)O1—C33—H33C109.5
C18—C17—C26120.89 (17)H33A—C33—H33C109.5
C16—C17—C26119.90 (18)H33B—C33—H33C109.5
C17—C18—C19121.88 (18)
C10—C1—C2—C30.1 (4)C14—C15—C16—C171.8 (3)
C1—C2—C3—C82.8 (4)C15—C16—C17—C180.7 (3)
C1—C2—C3—C4176.7 (2)C15—C16—C17—C26176.75 (18)
C8—C3—C4—C50.5 (3)C16—C17—C18—C192.9 (3)
C2—C3—C4—C5178.9 (2)C26—C17—C18—C19174.56 (18)
C32—O3—C5—C410.3 (4)C17—C18—C19—C142.4 (3)
C32—O3—C5—C6171.2 (3)C17—C18—C19—C20177.87 (18)
C3—C4—C5—O3177.0 (2)C15—C14—C19—C180.1 (3)
C3—C4—C5—C61.4 (4)C13—C14—C19—C18175.87 (18)
O3—C5—C6—C7177.7 (2)C15—C14—C19—C20179.54 (18)
C4—C5—C6—C70.9 (4)C13—C14—C19—C204.4 (3)
C5—C6—C7—C80.4 (4)C18—C19—C20—C21133.8 (2)
C2—C3—C8—C7179.8 (2)C14—C19—C20—C2145.9 (3)
C4—C3—C8—C70.7 (3)C18—C19—C20—C2544.9 (3)
C2—C3—C8—C92.7 (3)C14—C19—C20—C25135.4 (2)
C4—C3—C8—C9176.8 (2)C25—C20—C21—C221.0 (3)
C6—C7—C8—C31.2 (4)C19—C20—C21—C22179.8 (2)
C6—C7—C8—C9176.3 (2)C20—C21—C22—C230.1 (4)
C3—C8—C9—C100.4 (3)C21—C22—C23—F1178.2 (2)
C7—C8—C9—C10177.1 (2)C21—C22—C23—C241.1 (4)
C8—C9—C10—C13.4 (3)F1—C23—C24—C25178.1 (2)
C8—C9—C10—C11172.7 (2)C22—C23—C24—C251.2 (4)
C2—C1—C10—C93.2 (3)C23—C24—C25—C200.1 (3)
C2—C1—C10—C11172.7 (2)C21—C20—C25—C241.0 (3)
C9—C10—C11—C12167.3 (2)C19—C20—C25—C24179.72 (19)
C1—C10—C11—C128.5 (4)C18—C17—C26—C31131.2 (2)
C10—C11—C12—C13176.3 (2)C16—C17—C26—C3146.3 (3)
C11—C12—C13—O25.7 (4)C18—C17—C26—C2747.6 (3)
C11—C12—C13—C14175.1 (2)C16—C17—C26—C27135.0 (2)
O2—C13—C14—C15122.6 (2)C31—C26—C27—C280.2 (3)
C12—C13—C14—C1558.2 (3)C17—C26—C27—C28179.0 (2)
O2—C13—C14—C1953.4 (3)C26—C27—C28—C290.4 (3)
C12—C13—C14—C19125.8 (2)C27—C28—C29—C300.0 (3)
C33—O1—C15—C1615.3 (3)C27—C28—C29—F2179.95 (19)
C33—O1—C15—C14167.99 (19)C28—C29—C30—C310.5 (3)
C19—C14—C15—O1179.04 (17)F2—C29—C30—C31179.43 (19)
C13—C14—C15—O12.8 (3)C29—C30—C31—C260.7 (3)
C19—C14—C15—C162.3 (3)C27—C26—C31—C300.3 (3)
C13—C14—C15—C16173.92 (19)C17—C26—C31—C30178.50 (19)
O1—C15—C16—C17178.33 (19)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg3 and Cg4 are the centroids of the C1–C3/C8–C10, C14–C19 and C20–C25 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C28—H28A···O2i0.932.533.363 (3)148
C32—H32C···F1ii0.962.403.275 (4)152
C33—H33A···F2iii0.962.483.404 (3)162
C32—H32A···Cg1iv0.962.823.767 (4)168
C24—H24A···Cg3v0.932.833.461 (3)126
C33—H33B···Cg3vi0.962.913.556 (3)126
C7—H7A···Cg4iii0.932.853.548 (3)133
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y+1/2, z1/2; (iii) x, y, z1; (iv) x1/2, y1/2, z3/2; (v) x1, y, z; (vi) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC33H24F2O3
Mr506.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)6.9524 (5), 33.024 (2), 11.6030 (9)
β (°) 107.267 (1)
V3)2544.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.16 × 0.08
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.967, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
53824, 7441, 4312
Rint0.056
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.180, 1.02
No. of reflections7441
No. of parameters345
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg3 and Cg4 are the centroids of the C1–C3/C8–C10, C14–C19 and C20–C25 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C28—H28A···O2i0.93002.53003.363 (3)148.00
C32—H32C···F1ii0.96002.40003.275 (4)152.00
C33—H33A···F2iii0.96002.48003.404 (3)162.00
C32—H32A···Cg1iv0.96002.82003.767 (4)168.00
C24—H24A···Cg3v0.93002.83003.461 (3)126.00
C33—H33B···Cg3vi0.96002.91003.556 (3)126.00
C7—H7A···Cg4iii0.93002.85003.548 (3)133.00
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y+1/2, z1/2; (iii) x, y, z1; (iv) x1/2, y1/2, z3/2; (v) x1, y, z; (vi) x, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. BN thanks the UGC for financial assistance under an SAP and BSR one-time grant for the purchase of chemicals. SS thanks Mangalore University for research facilities.

References

First citationAstruc, D. (2002). In Modern Arene Chemistry. Weinheim: Wiley.  Google Scholar
First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1262–o1263.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o1292–o1293.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDhar, D. N. (1981). In The Chemistry of Chalcones and Related Compounds. New York: Wiley.  Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864–o865.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o1948–o1949.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o2018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, J. K. (2006). Chem. Rev. 106, 2209–2223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSamshuddin, S., Butcher, R. J., Akkurt, M., Narayana, B., Yathirajan, H. S. & Sarojini, B. K. (2011). Acta Cryst. E67, o1954–o1955.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011). Der. Pharm. Chem., 3, 232–240.  CAS Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSatyanarayana, M., Tiwari, P., Tripathi, B. K., Sriwastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. 12, 883–887.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds