organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Bis(thio­phen-2-yl)-3-(2,4,5-trimeth­­oxy­phen­yl)pentane-1,5-dione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 11 November 2011; accepted 15 November 2011; online 25 November 2011)

In the title 1,5-diketone compound, C22H22O5S2, the benzene ring makes dihedral angles of 41.51 (6) and 25.83 (6)° with the two thio­phene rings, while the dihedral angle between the thio­phene rings is 26.67 (7)°. An intra­molecular C—H⋯O inter­action generates an S(9) ring motif. In the crystal, mol­ecules are linked into a three-dimensional network by weak C—H⋯O and C—H⋯π inter­actions, and a ππ inter­action with a centroid–centroid distance of 3.6527 (8) Å.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background and applications of 1,5-diketone compounds, see: Alagarsamy et al. (2007[Alagarsamy, V., Vijayakumar, S. & Solomon, V. R. (2007). Biomed. Pharmacother. 61, 285-291.]); Favaro et al. (2002[Favaro, G., Ortica, F. & Romani, A. (2002). Chem. Phys. 280, 163-175.]); Harrowven & Hannam (1999[Harrowven, D. C. & Hannam, J. C. (1999). Tetrahedron, 55, 9333-9340.]); Pillai et al. (2004[Pillai, A. D., Rathod, P. D., Franklin, P. X., Padh, H., Vasu, K. K. & Sudarsanam, V. (2004). Biochem. Biophys. Res. Commun. 317, 1067-1074.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]). For the preparation of the title compound, see: Suwunwong et al. (2011[Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2011). Chem. Zvesti, 65, 890-897.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C22H22O5S2

  • Mr = 430.54

  • Monoclinic, P 21 /c

  • a = 16.1955 (2) Å

  • b = 7.5777 (1) Å

  • c = 16.7706 (2) Å

  • β = 93.490 (1)°

  • V = 2054.35 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.26 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.928, Tmax = 0.949

  • 23337 measured reflections

  • 6027 independent reflections

  • 4962 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.102

  • S = 1.04

  • 6027 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.95 2.57 3.5002 (18) 166
C3—H3A⋯O2 0.95 2.48 3.3677 (17) 156
C8—H8B⋯O1ii 0.99 2.58 3.3154 (16) 131
C21—H21A⋯O1iii 0.98 2.57 3.0692 (17) 112
C22—H22A⋯O1iv 0.98 2.39 3.3489 (16) 165
C21—H21BCg2v 0.98 2.91 3.8317 (16) 158
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y+1, z; (iii) -x+1, -y, -z+1; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Ketones are obviously one of the most important compounds in organic chemistry. There are many interesting applications of the compounds with the ketone group and the heterocyclic unit, which exhibit not only bioactivity such as antibacterial (Rai et al., 2008), anti-inflammatory (Pillai et al., 2004) and analgesic (Alagarsamy et al., 2007) activities, but also fluorescent property (Favaro et al., 2002). The 1,5-diketone compound is conventionally prepared by the oxidative cleavage of cyclopentenes or the conjugate addition of enolates to α,β-unsaturated ketones (Harrowven & Hannam, 1999).

In the molecule of the title compound (Fig. 1), the pentane-1,5-dione unit (C5–C9/O1/O2) is puckered with the torsion angles C5–C6–C7–C8 = 170.36 (10)° and C6–C7–C8–C9 = -71.81 (13)°, making the two ketone groups pointing towards opposite directions. A weak intramolecular C3—H3A···O2 interaction (Table 1) which generates an S(9) ring motif (Bernstein et al., 1995) helps to stabilize this conformation. The dihedral angle between the two thiophene rings is 26.67 (7)°. The 2,4,5-trimethoxyphenyl ring makes dihedral angles of 41.51 (6) and 25.83 (6)° with the S1/C1–C4 and S2/C10–C13 thiophene rings, respectively. The three substituted methoxy groups of 2,4,5-trimethoxyphenyl unit have two different orientations in which the ortho- and para-methoxy groups (at atom C15 and C17 positions) are co-planar with the phenyl ring with torsion angles C20–O3–C15–C16 = -0.50 (18)° and C21–O4–C17–C18 = 179.46 (12)° whereas the meta-methoxy (at atom C18) is twisted with the torsion angle C22–O5–C18–C19 = 10.08 (19)° The bond distances in (I) are in normal ranges (Allen et al., 1987).

In the crystal packing (Fig. 2), the molecules are linked into a three dimensional network through the enone unit by weak C—H···O interactions (Table 1), a weak C—H···π interaction (Table 1) and a ππ interaction with a Cg1···Cg1 distance of 3.6527 (8) Å; Cg1 is the centroid of S1/C1–C4 thiophene ring.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background and applications of 1,5-diketone compounds, see: Alagarsamy et al. (2007); Favaro et al. (2002); Harrowven & Hannam (1999); Pillai et al. (2004); Rai et al. (2008). For the preparation of the title compound, see: Suwunwong et al. (2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound (I) is a symmetrical 1,5-diketone compound which was alternatively synthesized by the stirring of (E)-1-(2-thitenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one (0.57 g, 1.5 mmol) (Suwunwong et al., 2011) in methanol (15 ml) with a freshly prepared sodium methoxide (1.5 mmol of sodium in 40 ml of methanol). Excess malononitrile (0.20 g, 3.0 mmol) was then added with continuous stirring at room temperature until the precipitate separated out. The resulting solid was filtered. Colorless single crystals of the title compound suitable for X-ray structure determination was obtained by recrystalization from acetone/methanol (1:1 v/v) by the slow evaporation of the solvent at room temperature after several days.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.95, 1.00 and 0.99 Å for aromatic, CH and CH2, respectively, and Uiso(H) = 1.2Ueq(C), and with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups.

Structure description top

Ketones are obviously one of the most important compounds in organic chemistry. There are many interesting applications of the compounds with the ketone group and the heterocyclic unit, which exhibit not only bioactivity such as antibacterial (Rai et al., 2008), anti-inflammatory (Pillai et al., 2004) and analgesic (Alagarsamy et al., 2007) activities, but also fluorescent property (Favaro et al., 2002). The 1,5-diketone compound is conventionally prepared by the oxidative cleavage of cyclopentenes or the conjugate addition of enolates to α,β-unsaturated ketones (Harrowven & Hannam, 1999).

In the molecule of the title compound (Fig. 1), the pentane-1,5-dione unit (C5–C9/O1/O2) is puckered with the torsion angles C5–C6–C7–C8 = 170.36 (10)° and C6–C7–C8–C9 = -71.81 (13)°, making the two ketone groups pointing towards opposite directions. A weak intramolecular C3—H3A···O2 interaction (Table 1) which generates an S(9) ring motif (Bernstein et al., 1995) helps to stabilize this conformation. The dihedral angle between the two thiophene rings is 26.67 (7)°. The 2,4,5-trimethoxyphenyl ring makes dihedral angles of 41.51 (6) and 25.83 (6)° with the S1/C1–C4 and S2/C10–C13 thiophene rings, respectively. The three substituted methoxy groups of 2,4,5-trimethoxyphenyl unit have two different orientations in which the ortho- and para-methoxy groups (at atom C15 and C17 positions) are co-planar with the phenyl ring with torsion angles C20–O3–C15–C16 = -0.50 (18)° and C21–O4–C17–C18 = 179.46 (12)° whereas the meta-methoxy (at atom C18) is twisted with the torsion angle C22–O5–C18–C19 = 10.08 (19)° The bond distances in (I) are in normal ranges (Allen et al., 1987).

In the crystal packing (Fig. 2), the molecules are linked into a three dimensional network through the enone unit by weak C—H···O interactions (Table 1), a weak C—H···π interaction (Table 1) and a ππ interaction with a Cg1···Cg1 distance of 3.6527 (8) Å; Cg1 is the centroid of S1/C1–C4 thiophene ring.

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background and applications of 1,5-diketone compounds, see: Alagarsamy et al. (2007); Favaro et al. (2002); Harrowven & Hannam (1999); Pillai et al. (2004); Rai et al. (2008). For the preparation of the title compound, see: Suwunwong et al. (2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The weak C—H···O interaction was shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing diagram of the title compound viewed along the b axis. Weak C—H···O interactions were shown as dashed lines.
1,5-Bis(thiophen-2-yl)-3-(2,4,5-trimethoxyphenyl)pentane-1,5-dione top
Crystal data top
C22H22O5S2F(000) = 904
Mr = 430.54Dx = 1.392 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6027 reflections
a = 16.1955 (2) Åθ = 2.4–30.1°
b = 7.5777 (1) ŵ = 0.29 mm1
c = 16.7706 (2) ÅT = 100 K
β = 93.490 (1)°Block, colorless
V = 2054.35 (4) Å30.26 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6027 independent reflections
Radiation source: sealed tube4962 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 30.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2222
Tmin = 0.928, Tmax = 0.949k = 1010
23337 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.7947P]
where P = (Fo2 + 2Fc2)/3
6027 reflections(Δ/σ)max = 0.001
265 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C22H22O5S2V = 2054.35 (4) Å3
Mr = 430.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.1955 (2) ŵ = 0.29 mm1
b = 7.5777 (1) ÅT = 100 K
c = 16.7706 (2) Å0.26 × 0.20 × 0.18 mm
β = 93.490 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6027 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4962 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.949Rint = 0.030
23337 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.04Δρmax = 0.43 e Å3
6027 reflectionsΔρmin = 0.46 e Å3
265 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15320 (2)0.05956 (5)0.46899 (2)0.02686 (9)
S20.05511 (2)0.83742 (5)0.76099 (2)0.02604 (9)
O10.26302 (6)0.04470 (12)0.61509 (6)0.0210 (2)
O20.11405 (6)0.57870 (14)0.64643 (6)0.0245 (2)
O30.31333 (5)0.28911 (14)0.48626 (5)0.0200 (2)
O40.60447 (5)0.28712 (14)0.57867 (6)0.0221 (2)
O50.56590 (6)0.37664 (15)0.72042 (6)0.0228 (2)
C10.07060 (9)0.0369 (2)0.41872 (9)0.0287 (3)
H1A0.04690.00460.36900.034*
C20.04213 (9)0.1804 (2)0.45787 (9)0.0261 (3)
H2A0.00420.24840.43880.031*
C30.08930 (8)0.21756 (18)0.53040 (8)0.0203 (3)
H3A0.07900.31360.56480.024*
C40.15231 (8)0.09482 (17)0.54423 (8)0.0171 (2)
C50.21609 (7)0.08266 (16)0.60996 (7)0.0154 (2)
C60.22329 (7)0.23228 (17)0.66977 (7)0.0158 (2)
H6A0.25610.19200.71810.019*
H6B0.16740.26410.68580.019*
C70.26495 (7)0.39825 (16)0.63566 (7)0.0144 (2)
H7A0.23450.42930.58390.017*
C80.25704 (7)0.55376 (17)0.69304 (8)0.0169 (2)
H8A0.27530.51520.74770.020*
H8B0.29460.64930.67770.020*
C90.16998 (8)0.62670 (17)0.69406 (8)0.0176 (2)
C100.15454 (8)0.75825 (17)0.75553 (8)0.0172 (2)
C110.20817 (8)0.83333 (17)0.81330 (8)0.0184 (2)
H11A0.26560.80790.81940.022*
C120.16658 (9)0.95354 (18)0.86262 (8)0.0229 (3)
H12A0.19311.01690.90590.027*
C130.08427 (9)0.96710 (19)0.84048 (9)0.0269 (3)
H13A0.04721.04120.86680.032*
C140.35481 (7)0.36293 (16)0.61902 (7)0.0141 (2)
C150.37699 (7)0.31052 (16)0.54348 (7)0.0152 (2)
C160.46025 (7)0.28376 (17)0.52796 (7)0.0164 (2)
H16A0.47440.24850.47620.020*
C170.52174 (7)0.30865 (17)0.58790 (8)0.0163 (2)
C180.50086 (7)0.35820 (17)0.66468 (7)0.0161 (2)
C190.41810 (7)0.38428 (17)0.67889 (7)0.0155 (2)
H19A0.40400.41770.73090.019*
C200.33368 (9)0.2389 (2)0.40790 (8)0.0235 (3)
H20A0.28270.22130.37420.035*
H20B0.36550.12880.41070.035*
H20C0.36680.33200.38490.035*
C210.62830 (8)0.2351 (2)0.50147 (8)0.0224 (3)
H21A0.68880.22860.50180.034*
H21B0.60790.32190.46170.034*
H21C0.60460.11910.48800.034*
C220.54575 (8)0.39764 (19)0.80143 (8)0.0205 (3)
H22A0.59670.41180.83540.031*
H22B0.51580.29310.81840.031*
H22C0.51090.50240.80610.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02481 (18)0.0312 (2)0.02430 (18)0.00215 (14)0.00106 (13)0.00875 (14)
S20.01850 (16)0.02694 (18)0.0325 (2)0.00698 (13)0.00001 (13)0.00871 (14)
O10.0187 (4)0.0189 (5)0.0252 (5)0.0036 (4)0.0008 (4)0.0002 (4)
O20.0178 (4)0.0264 (5)0.0284 (5)0.0055 (4)0.0049 (4)0.0080 (4)
O30.0151 (4)0.0313 (5)0.0136 (4)0.0000 (4)0.0000 (3)0.0038 (4)
O40.0122 (4)0.0352 (6)0.0194 (5)0.0024 (4)0.0040 (3)0.0034 (4)
O50.0134 (4)0.0392 (6)0.0156 (4)0.0004 (4)0.0007 (3)0.0041 (4)
C10.0254 (7)0.0389 (9)0.0209 (7)0.0112 (6)0.0061 (5)0.0037 (6)
C20.0195 (6)0.0287 (7)0.0292 (7)0.0066 (5)0.0054 (5)0.0131 (6)
C30.0166 (6)0.0212 (6)0.0227 (6)0.0059 (5)0.0017 (5)0.0037 (5)
C40.0155 (5)0.0176 (6)0.0183 (6)0.0029 (4)0.0008 (4)0.0005 (5)
C50.0130 (5)0.0167 (6)0.0168 (6)0.0014 (4)0.0031 (4)0.0008 (4)
C60.0143 (5)0.0171 (6)0.0162 (6)0.0001 (4)0.0023 (4)0.0006 (4)
C70.0124 (5)0.0155 (5)0.0152 (5)0.0008 (4)0.0011 (4)0.0006 (4)
C80.0131 (5)0.0180 (6)0.0194 (6)0.0017 (4)0.0002 (4)0.0030 (5)
C90.0162 (6)0.0167 (6)0.0199 (6)0.0024 (4)0.0007 (5)0.0004 (5)
C100.0154 (5)0.0169 (6)0.0195 (6)0.0023 (4)0.0022 (4)0.0002 (5)
C110.0193 (6)0.0177 (6)0.0183 (6)0.0009 (5)0.0023 (5)0.0007 (5)
C120.0273 (7)0.0214 (6)0.0202 (6)0.0016 (5)0.0029 (5)0.0034 (5)
C130.0291 (7)0.0223 (7)0.0300 (7)0.0041 (6)0.0082 (6)0.0074 (6)
C140.0129 (5)0.0146 (5)0.0149 (5)0.0003 (4)0.0021 (4)0.0005 (4)
C150.0145 (5)0.0169 (6)0.0141 (5)0.0007 (4)0.0001 (4)0.0011 (4)
C160.0163 (5)0.0188 (6)0.0146 (6)0.0007 (4)0.0038 (4)0.0003 (4)
C170.0127 (5)0.0189 (6)0.0174 (6)0.0006 (4)0.0030 (4)0.0004 (5)
C180.0138 (5)0.0191 (6)0.0152 (6)0.0002 (4)0.0000 (4)0.0000 (4)
C190.0149 (5)0.0175 (6)0.0144 (5)0.0004 (4)0.0020 (4)0.0008 (4)
C200.0236 (6)0.0320 (7)0.0148 (6)0.0027 (6)0.0004 (5)0.0045 (5)
C210.0189 (6)0.0279 (7)0.0212 (6)0.0034 (5)0.0072 (5)0.0021 (5)
C220.0178 (6)0.0279 (7)0.0156 (6)0.0006 (5)0.0008 (5)0.0024 (5)
Geometric parameters (Å, º) top
S1—C11.7021 (16)C8—H8A0.9900
S1—C41.7214 (13)C8—H8B0.9900
S2—C131.6998 (15)C9—C101.4665 (18)
S2—C101.7261 (13)C10—C111.3835 (19)
O1—C51.2283 (15)C11—C121.4266 (18)
O2—C91.2259 (16)C11—H11A0.9500
O3—C151.3747 (15)C12—C131.366 (2)
O3—C201.4258 (15)C12—H12A0.9500
O4—C171.3678 (14)C13—H13A0.9500
O4—C211.4288 (16)C14—C151.3954 (16)
O5—C181.3722 (15)C14—C191.3998 (17)
O5—C221.4253 (15)C15—C161.4035 (16)
C1—C21.365 (2)C16—C171.3842 (18)
C1—H1A0.9500C16—H16A0.9500
C2—C31.425 (2)C17—C181.4022 (17)
C2—H2A0.9500C18—C191.3897 (16)
C3—C41.3897 (19)C19—H19A0.9500
C3—H3A0.9500C20—H20A0.9800
C4—C51.4669 (18)C20—H20B0.9800
C5—C61.5136 (17)C20—H20C0.9800
C6—C71.5527 (17)C21—H21A0.9800
C6—H6A0.9900C21—H21B0.9800
C6—H6B0.9900C21—H21C0.9800
C7—C141.5222 (16)C22—H22A0.9800
C7—C81.5317 (17)C22—H22B0.9800
C7—H7A1.0000C22—H22C0.9800
C8—C91.5155 (17)
C1—S1—C491.71 (7)C10—C11—H11A124.1
C13—S2—C1091.55 (7)C12—C11—H11A124.1
C15—O3—C20117.99 (10)C13—C12—C11112.20 (13)
C17—O4—C21117.13 (10)C13—C12—H12A123.9
C18—O5—C22116.74 (10)C11—C12—H12A123.9
C2—C1—S1112.47 (11)C12—C13—S2112.93 (11)
C2—C1—H1A123.8C12—C13—H13A123.5
S1—C1—H1A123.8S2—C13—H13A123.5
C1—C2—C3112.88 (13)C15—C14—C19117.79 (11)
C1—C2—H2A123.6C15—C14—C7121.22 (11)
C3—C2—H2A123.6C19—C14—C7120.98 (10)
C4—C3—C2111.13 (13)O3—C15—C14116.35 (10)
C4—C3—H3A124.4O3—C15—C16122.80 (11)
C2—C3—H3A124.4C14—C15—C16120.85 (11)
C3—C4—C5130.07 (12)C17—C16—C15120.17 (11)
C3—C4—S1111.80 (10)C17—C16—H16A119.9
C5—C4—S1118.11 (9)C15—C16—H16A119.9
O1—C5—C4120.42 (12)O4—C17—C16124.60 (11)
O1—C5—C6121.32 (12)O4—C17—C18115.38 (11)
C4—C5—C6118.25 (11)C16—C17—C18120.02 (11)
C5—C6—C7112.35 (10)O5—C18—C19125.25 (11)
C5—C6—H6A109.1O5—C18—C17115.77 (10)
C7—C6—H6A109.1C19—C18—C17118.98 (11)
C5—C6—H6B109.1C18—C19—C14122.17 (11)
C7—C6—H6B109.1C18—C19—H19A118.9
H6A—C6—H6B107.9C14—C19—H19A118.9
C14—C7—C8111.59 (10)O3—C20—H20A109.5
C14—C7—C6111.52 (10)O3—C20—H20B109.5
C8—C7—C6109.69 (10)H20A—C20—H20B109.5
C14—C7—H7A108.0O3—C20—H20C109.5
C8—C7—H7A108.0H20A—C20—H20C109.5
C6—C7—H7A108.0H20B—C20—H20C109.5
C9—C8—C7113.65 (10)O4—C21—H21A109.5
C9—C8—H8A108.8O4—C21—H21B109.5
C7—C8—H8A108.8H21A—C21—H21B109.5
C9—C8—H8B108.8O4—C21—H21C109.5
C7—C8—H8B108.8H21A—C21—H21C109.5
H8A—C8—H8B107.7H21B—C21—H21C109.5
O2—C9—C10120.59 (11)O5—C22—H22A109.5
O2—C9—C8122.38 (12)O5—C22—H22B109.5
C10—C9—C8117.03 (11)H22A—C22—H22B109.5
C11—C10—C9130.18 (11)O5—C22—H22C109.5
C11—C10—S2111.58 (9)H22A—C22—H22C109.5
C9—C10—S2118.23 (10)H22B—C22—H22C109.5
C10—C11—C12111.72 (12)
C4—S1—C1—C20.79 (12)C11—C12—C13—S20.05 (17)
S1—C1—C2—C31.29 (16)C10—S2—C13—C120.45 (12)
C1—C2—C3—C41.21 (17)C8—C7—C14—C15142.95 (12)
C2—C3—C4—C5178.95 (12)C6—C7—C14—C1593.99 (14)
C2—C3—C4—S10.60 (14)C8—C7—C14—C1936.21 (16)
C1—S1—C4—C30.09 (10)C6—C7—C14—C1986.85 (14)
C1—S1—C4—C5178.48 (10)C20—O3—C15—C14178.82 (12)
C3—C4—C5—O1174.25 (13)C20—O3—C15—C160.50 (18)
S1—C4—C5—O17.49 (16)C19—C14—C15—O3179.39 (11)
C3—C4—C5—C66.94 (19)C7—C14—C15—O31.42 (17)
S1—C4—C5—C6171.32 (9)C19—C14—C15—C161.26 (18)
O1—C5—C6—C7103.44 (13)C7—C14—C15—C16177.92 (11)
C4—C5—C6—C775.37 (13)O3—C15—C16—C17179.52 (11)
C5—C6—C7—C1465.51 (13)C14—C15—C16—C170.22 (19)
C5—C6—C7—C8170.36 (10)C21—O4—C17—C160.06 (19)
C14—C7—C8—C9164.10 (10)C21—O4—C17—C18179.46 (12)
C6—C7—C8—C971.81 (13)C15—C16—C17—O4179.56 (12)
C7—C8—C9—O28.19 (18)C15—C16—C17—C180.94 (19)
C7—C8—C9—C10171.37 (11)C22—O5—C18—C1910.08 (19)
O2—C9—C10—C11178.32 (14)C22—O5—C18—C17169.80 (12)
C8—C9—C10—C112.1 (2)O4—C17—C18—O50.66 (17)
O2—C9—C10—S22.17 (18)C16—C17—C18—O5178.88 (12)
C8—C9—C10—S2177.40 (9)O4—C17—C18—C19179.45 (11)
C13—S2—C10—C110.83 (11)C16—C17—C18—C191.01 (19)
C13—S2—C10—C9178.76 (11)O5—C18—C19—C14179.96 (12)
C9—C10—C11—C12178.53 (13)C17—C18—C19—C140.08 (19)
S2—C10—C11—C121.00 (15)C15—C14—C19—C181.20 (19)
C10—C11—C12—C130.68 (17)C7—C14—C19—C18177.99 (11)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.952.573.5002 (18)166
C3—H3A···O20.952.483.3677 (17)156
C8—H8B···O1ii0.992.583.3154 (16)131
C21—H21A···O1iii0.982.573.0692 (17)112
C22—H22A···O1iv0.982.393.3489 (16)165
C21—H21B···Cg2v0.982.913.8317 (16)158
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z+1; (iv) x+1, y+1/2, z+3/2; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H22O5S2
Mr430.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.1955 (2), 7.5777 (1), 16.7706 (2)
β (°) 93.490 (1)
V3)2054.35 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.26 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.928, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
23337, 6027, 4962
Rint0.030
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.04
No. of reflections6027
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.46

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.952.573.5002 (18)166
C3—H3A···O20.952.483.3677 (17)156
C8—H8B···O1ii0.992.583.3154 (16)131
C21—H21A···O1iii0.982.573.0692 (17)112
C22—H22A···O1iv0.982.393.3489 (16)165
C21—H21B···Cg2v0.982.913.8317 (16)158
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z+1; (iv) x+1, y+1/2, z+3/2; (v) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

TS thanks the Crystal Materials Research Unit for financial support. NW thanks the Prince of Songkla University for a postdoctoral fellowship. The authors also thank the Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAlagarsamy, V., Vijayakumar, S. & Solomon, V. R. (2007). Biomed. Pharmacother. 61, 285–291.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFavaro, G., Ortica, F. & Romani, A. (2002). Chem. Phys. 280, 163–175.  Web of Science CrossRef CAS Google Scholar
First citationHarrowven, D. C. & Hannam, J. C. (1999). Tetrahedron, 55, 9333–9340.  Web of Science CrossRef CAS Google Scholar
First citationPillai, A. D., Rathod, P. D., Franklin, P. X., Padh, H., Vasu, K. K. & Sudarsanam, V. (2004). Biochem. Biophys. Res. Commun. 317, 1067–1074.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S. & Fun, H.-K. (2011). Chem. Zvesti, 65, 890–897.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds