organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-[1-(2-Chloro­phen­yl)ethyl­­idene]-2-(2,4-di­nitro­phen­yl)hydrazine

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 11 November 2011; accepted 22 November 2011; online 30 November 2011)

The title mol­ecule, C14H11ClN4O4, is in an E configuration and is twisted with the dihedral angle between the two benzene rings being 38.48 (8)°. The ethyl­idenehydrazine plane makes dihedral angles of 6.03 (10) and 44.04 (11)°, respectively, with the dinitro- and chloro-substituted benzene rings. The two nitro groups are essentially coplanar with the bound benzene ring, making dihedral angles of 0.9 (2) and 1.65 (18)°. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked by a weak C—H⋯O inter­action into a chain along the c axis. The chains are further stacked along the b axis by a ππ inter­action with a centroid–centroid distance of 3.6088 (10) Å.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Jansrisewangwong, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o2401-o2402.], 2011[Fun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202-o3203.]); Jansrisewangwong et al. (2010[Jansrisewangwong, P., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2170.]); Nilwanna et al. (2011[Nilwanna, B., Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2011). Acta Cryst. E67, o3084-o3085.]). For background to and the biological activity of hydro­zones, see: Angelusiu et al. (2010[Angelusiu, M.-V., Barbuceanu, S.-F., Draghici, C. & Almajan, G.-L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]); Bendre et al. (1998[Bendre, R., Murugkar, A., Padhye, S., Kulkarni, P. & Karve, M. (1998). Met. Based Drugs, 5, 59-66.]); Gokce et al. (2009[Gokce, M., Utku, S. & Kupeli, E. (2009). Eur. J. Med. Chem. 44, 3760-3764.]); Li et al. (2008[Li, T.-R., Yang, Z.-Y., Wang, B.-D. & Qin, D.-D. (2008). Eur. J. Med. Chem. 43, 1688-1695.]); Loncle et al. (2004[Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067-1071.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClN4O4

  • Mr = 334.72

  • Monoclinic, C 2/c

  • a = 32.660 (3) Å

  • b = 7.1435 (7) Å

  • c = 13.4798 (13) Å

  • β = 112.215 (2)°

  • V = 2911.5 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 297 K

  • 0.36 × 0.26 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.904, Tmax = 0.957

  • 16146 measured reflections

  • 4458 independent reflections

  • 3036 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.127

  • S = 1.04

  • 4458 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N1⋯O1 0.85 (2) 1.97 (2) 2.6081 (19) 131.2 (17)
C6—H6A⋯O3i 0.93 2.52 3.251 (2) 135
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazones have been known to be responsible for various bioactivities such as antibacterial (Angelusiu et al., 2010), antioxidant (Li et al., 2008), antifungal (Loncle et al., 2004), anti-inflammatory (Gokce et al., 2009) and also tyrosinase inhibitory (Bendre et al., 1998) activities. With our on-going research on medicinal chemistry, we previously reported the syntheses and crystal structures of some hydrazone derivatives (Fun et al., 2010, 2011; Jansrisewangwong et al., 2010; Nilwanna et al., 2011). Herein we report the crystal structure of the title compound. It was screened for antioxidant and antibacterial activities and found to be inactive.

The title molecule (Fig. 1), C14H11ClN4O4, is twisted and exists in an E configuration with respect to the ethylidene C7N1 double bond [1.2877 (17) Å] with the torsion angle N2–N1–C7–C8 = -176.69 (13)°. The dihedral angle between the benzene rings of the 2,4-dinitrophenyl and 2-chlorophenyl groups is 38.48 (8)°. The middle ethylidenehydrazine unit (C7/C14/N1/N2) is planar with an r.m.s deviation of 0.0040 (1) Å and the torsion angle of N2–N1–C7–C14 is -1.3 (2)°. This middle C/C/N/N plane makes the dihedral angles of 6.03 (10) and 44.04 (11)° with the 2,4-dinitrophenyl and 2-chlorophenyl rings, respectively. The two nitro groups of 2,4-dinitrophenyl are essentially co-planar with the bound benzene ring with an r.m.s. deviation of 0.0081 (1) Å for the twelve non H-atoms and the O–N–C–C angles are -0.3 (2), 0.2 (2), 0.1 (3) and -0.1 (3)°. An intramolecular N—H···O hydrogen bond between the hydrazone-NH and the ortho nitro group (Fig. 1 and Table 1) generates an S(6) ring motif (Bernstein et al., 1995). The bond distances are within the normal range (Allen et al., 1987) and are comparable with related structures (Fun et al., 2010, 2011; Jansrisewangwong et al., 2010; Nilwanna et al., 2011).

In the crystal structure (Fig. 2), the molecules are linked by weak C—H···O interactions (Table 1) into chains along the c axis in a head-to-head manner. These chains are further stacked along the b axis by a ππ interaction with Cg1···Cg2ii distance of 3.6088 (10) Å [symmetry code: (ii) x, 1 - y, 1/2 + z]; Cg1 and Cg2 are the centroids of C1–C6 and C8–C13 benzene rings, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2010, 2011); Jansrisewangwong et al. (2010); Nilwanna et al. (2011). For background to and the biological activity of hydrozones, see: Angelusiu et al. (2010); Bendre et al. (1998); Gokce et al. (2009); Li et al. (2008); Loncle et al. (2004).

Experimental top

The title compound (I) was synthesized by dissolving 2,4-dinitrophenylhydrazine (0.40 g, 2 mmol) in ethanol (10.00 ml) and H2SO4 (conc.) (98%, 0.50 ml) was slowly added with stirring. 2-Chloroacetophenone (0.30 ml, 2 mmol) was then added to the solution with continuous stirring. The solution was refluxed for 1 h yielding a yellow solid, which was filtered off and washed with methanol. Yellow block-shaped single crystals of the title compound suitable for X-ray diffraction were recrystalized from ethanol by slow evaporation of the solvent at room temperature over several days (m.p. 478–479).

Refinement top

Amide H atom was located in a difference map and refined isotropically [N—H = 0.85 (2) Å]. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Structure description top

Hydrazones have been known to be responsible for various bioactivities such as antibacterial (Angelusiu et al., 2010), antioxidant (Li et al., 2008), antifungal (Loncle et al., 2004), anti-inflammatory (Gokce et al., 2009) and also tyrosinase inhibitory (Bendre et al., 1998) activities. With our on-going research on medicinal chemistry, we previously reported the syntheses and crystal structures of some hydrazone derivatives (Fun et al., 2010, 2011; Jansrisewangwong et al., 2010; Nilwanna et al., 2011). Herein we report the crystal structure of the title compound. It was screened for antioxidant and antibacterial activities and found to be inactive.

The title molecule (Fig. 1), C14H11ClN4O4, is twisted and exists in an E configuration with respect to the ethylidene C7N1 double bond [1.2877 (17) Å] with the torsion angle N2–N1–C7–C8 = -176.69 (13)°. The dihedral angle between the benzene rings of the 2,4-dinitrophenyl and 2-chlorophenyl groups is 38.48 (8)°. The middle ethylidenehydrazine unit (C7/C14/N1/N2) is planar with an r.m.s deviation of 0.0040 (1) Å and the torsion angle of N2–N1–C7–C14 is -1.3 (2)°. This middle C/C/N/N plane makes the dihedral angles of 6.03 (10) and 44.04 (11)° with the 2,4-dinitrophenyl and 2-chlorophenyl rings, respectively. The two nitro groups of 2,4-dinitrophenyl are essentially co-planar with the bound benzene ring with an r.m.s. deviation of 0.0081 (1) Å for the twelve non H-atoms and the O–N–C–C angles are -0.3 (2), 0.2 (2), 0.1 (3) and -0.1 (3)°. An intramolecular N—H···O hydrogen bond between the hydrazone-NH and the ortho nitro group (Fig. 1 and Table 1) generates an S(6) ring motif (Bernstein et al., 1995). The bond distances are within the normal range (Allen et al., 1987) and are comparable with related structures (Fun et al., 2010, 2011; Jansrisewangwong et al., 2010; Nilwanna et al., 2011).

In the crystal structure (Fig. 2), the molecules are linked by weak C—H···O interactions (Table 1) into chains along the c axis in a head-to-head manner. These chains are further stacked along the b axis by a ππ interaction with Cg1···Cg2ii distance of 3.6088 (10) Å [symmetry code: (ii) x, 1 - y, 1/2 + z]; Cg1 and Cg2 are the centroids of C1–C6 and C8–C13 benzene rings, respectively.

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2010, 2011); Jansrisewangwong et al. (2010); Nilwanna et al. (2011). For background to and the biological activity of hydrozones, see: Angelusiu et al. (2010); Bendre et al. (1998); Gokce et al. (2009); Li et al. (2008); Loncle et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound viewed along the a axis, showing chains running along the c axis. Hydrogen bonds are shown as dashed lines.
(E)-1-[1-(2-Chlorophenyl)ethylidene]-2-(2,4-dinitrophenyl)hydrazine top
Crystal data top
C14H11ClN4O4F(000) = 1376
Mr = 334.72Dx = 1.527 Mg m3
Monoclinic, C2/cMelting point = 478–479 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 32.660 (3) ÅCell parameters from 4458 reflections
b = 7.1435 (7) Åθ = 1.4–30.6°
c = 13.4798 (13) ŵ = 0.29 mm1
β = 112.215 (2)°T = 297 K
V = 2911.5 (5) Å3Block, yellow
Z = 80.36 × 0.26 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4458 independent reflections
Radiation source: sealed tube3036 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 30.6°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 4646
Tmin = 0.904, Tmax = 0.957k = 1010
16146 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0537P)2 + 1.2234P]
where P = (Fo2 + 2Fc2)/3
4458 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H11ClN4O4V = 2911.5 (5) Å3
Mr = 334.72Z = 8
Monoclinic, C2/cMo Kα radiation
a = 32.660 (3) ŵ = 0.29 mm1
b = 7.1435 (7) ÅT = 297 K
c = 13.4798 (13) Å0.36 × 0.26 × 0.15 mm
β = 112.215 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4458 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3036 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.957Rint = 0.028
16146 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.24 e Å3
4458 reflectionsΔρmin = 0.27 e Å3
213 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.015926 (14)0.34149 (7)0.42093 (4)0.06172 (16)
O10.06808 (4)0.2345 (2)0.95156 (10)0.0573 (3)
O20.09965 (5)0.2876 (2)1.12043 (10)0.0700 (4)
O30.24764 (5)0.5021 (3)1.28114 (10)0.0848 (5)
O40.28607 (4)0.5486 (3)1.18505 (11)0.0805 (5)
N10.11688 (4)0.28366 (18)0.72895 (9)0.0409 (3)
N20.10981 (4)0.2894 (2)0.82297 (10)0.0419 (3)
H1N10.0863 (7)0.249 (3)0.8280 (15)0.053 (5)*
N30.10020 (4)0.2853 (2)1.03026 (11)0.0449 (3)
N40.25170 (5)0.5037 (2)1.19483 (11)0.0556 (4)
C10.14355 (5)0.3406 (2)0.91423 (11)0.0360 (3)
C20.14038 (4)0.3427 (2)1.01624 (11)0.0367 (3)
C30.17560 (5)0.3958 (2)1.10769 (11)0.0408 (3)
H3A0.17290.39591.17390.049*
C40.21443 (5)0.4482 (2)1.09923 (11)0.0421 (3)
C50.21904 (5)0.4482 (2)1.00072 (12)0.0457 (4)
H5A0.24570.48440.99640.055*
C60.18447 (5)0.3951 (2)0.91068 (11)0.0433 (3)
H6A0.18790.39470.84530.052*
C70.08535 (5)0.2174 (2)0.64630 (11)0.0385 (3)
C80.09681 (5)0.2063 (2)0.54960 (11)0.0388 (3)
C90.06866 (5)0.2561 (2)0.44575 (12)0.0425 (3)
C100.08208 (6)0.2441 (3)0.35979 (13)0.0516 (4)
H10A0.06280.27810.29150.062*
C110.12381 (7)0.1822 (3)0.37579 (14)0.0565 (4)
H11A0.13290.17380.31830.068*
C120.15241 (6)0.1321 (3)0.47736 (15)0.0539 (4)
H12A0.18070.09000.48820.065*
C130.13910 (5)0.1445 (2)0.56248 (13)0.0456 (3)
H13A0.15880.11090.63040.055*
C140.04246 (5)0.1437 (3)0.64700 (14)0.0546 (4)
H14A0.04820.06420.70820.082*
H14B0.02760.07320.58270.082*
H14C0.02410.24650.65050.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0465 (2)0.0735 (3)0.0510 (2)0.0134 (2)0.00243 (17)0.0014 (2)
O10.0378 (6)0.0795 (9)0.0541 (7)0.0125 (6)0.0168 (5)0.0065 (6)
O20.0663 (8)0.1052 (11)0.0496 (7)0.0225 (8)0.0345 (6)0.0097 (7)
O30.0585 (8)0.1510 (16)0.0417 (7)0.0191 (9)0.0154 (6)0.0282 (8)
O40.0416 (7)0.1350 (14)0.0594 (8)0.0233 (8)0.0127 (6)0.0197 (9)
N10.0388 (6)0.0484 (7)0.0323 (6)0.0033 (5)0.0097 (5)0.0021 (5)
N20.0358 (6)0.0539 (8)0.0343 (6)0.0052 (6)0.0114 (5)0.0027 (5)
N30.0421 (7)0.0511 (8)0.0458 (7)0.0034 (6)0.0214 (6)0.0025 (6)
N40.0406 (7)0.0801 (11)0.0413 (7)0.0039 (7)0.0099 (6)0.0137 (7)
C10.0336 (6)0.0390 (7)0.0335 (6)0.0020 (5)0.0106 (5)0.0000 (5)
C20.0334 (6)0.0403 (7)0.0381 (7)0.0004 (5)0.0152 (5)0.0013 (5)
C30.0409 (7)0.0491 (8)0.0338 (6)0.0015 (6)0.0156 (6)0.0038 (6)
C40.0338 (7)0.0522 (9)0.0358 (7)0.0005 (6)0.0079 (5)0.0063 (6)
C50.0331 (7)0.0616 (10)0.0427 (8)0.0019 (7)0.0147 (6)0.0037 (7)
C60.0367 (7)0.0597 (10)0.0345 (7)0.0025 (7)0.0147 (6)0.0016 (6)
C70.0343 (7)0.0400 (7)0.0359 (7)0.0005 (6)0.0072 (5)0.0002 (6)
C80.0371 (7)0.0383 (7)0.0345 (6)0.0045 (6)0.0062 (5)0.0045 (5)
C90.0408 (7)0.0411 (8)0.0366 (7)0.0020 (6)0.0046 (6)0.0049 (6)
C100.0599 (10)0.0528 (10)0.0349 (7)0.0056 (8)0.0099 (7)0.0042 (6)
C110.0673 (11)0.0608 (11)0.0454 (9)0.0083 (9)0.0257 (8)0.0083 (8)
C120.0476 (9)0.0564 (10)0.0600 (10)0.0022 (8)0.0229 (8)0.0086 (8)
C130.0394 (7)0.0494 (9)0.0415 (7)0.0004 (6)0.0080 (6)0.0041 (6)
C140.0411 (8)0.0684 (12)0.0477 (9)0.0113 (8)0.0094 (7)0.0021 (8)
Geometric parameters (Å, º) top
Cl1—C91.7364 (16)C5—H5A0.9300
O1—N31.2314 (17)C6—H6A0.9300
O2—N31.2224 (17)C7—C81.488 (2)
O3—N41.2198 (19)C7—C141.500 (2)
O4—N41.2213 (19)C8—C131.397 (2)
N1—C71.2877 (17)C8—C91.399 (2)
N1—N21.3720 (17)C9—C101.388 (2)
N2—C11.3551 (18)C10—C111.370 (3)
N2—H1N10.85 (2)C10—H10A0.9300
N3—C21.4537 (19)C11—C121.381 (3)
N4—C41.4537 (19)C11—H11A0.9300
C1—C61.410 (2)C12—C131.375 (2)
C1—C21.4176 (19)C12—H12A0.9300
C2—C31.384 (2)C13—H13A0.9300
C3—C41.368 (2)C14—H14A0.9600
C3—H3A0.9300C14—H14B0.9600
C4—C51.392 (2)C14—H14C0.9600
C5—C61.362 (2)
C7—N1—N2116.82 (13)N1—C7—C8113.18 (13)
C1—N2—N1118.92 (13)N1—C7—C14124.54 (14)
C1—N2—H1N1118.0 (13)C8—C7—C14122.11 (13)
N1—N2—H1N1122.6 (13)C13—C8—C9116.70 (14)
O2—N3—O1122.17 (13)C13—C8—C7118.19 (13)
O2—N3—C2118.61 (13)C9—C8—C7125.09 (14)
O1—N3—C2119.21 (12)C10—C9—C8121.61 (15)
O3—N4—O4122.76 (14)C10—C9—Cl1117.66 (12)
O3—N4—C4119.10 (14)C8—C9—Cl1120.71 (12)
O4—N4—C4118.13 (14)C11—C10—C9119.86 (15)
N2—C1—C6119.97 (13)C11—C10—H10A120.1
N2—C1—C2123.43 (13)C9—C10—H10A120.1
C6—C1—C2116.60 (12)C10—C11—C12119.94 (16)
C3—C2—C1121.74 (13)C10—C11—H11A120.0
C3—C2—N3116.67 (12)C12—C11—H11A120.0
C1—C2—N3121.58 (12)C13—C12—C11120.12 (16)
C4—C3—C2119.05 (13)C13—C12—H12A119.9
C4—C3—H3A120.5C11—C12—H12A119.9
C2—C3—H3A120.5C12—C13—C8121.76 (15)
C3—C4—C5121.16 (13)C12—C13—H13A119.1
C3—C4—N4119.52 (13)C8—C13—H13A119.1
C5—C4—N4119.31 (14)C7—C14—H14A109.5
C6—C5—C4119.88 (14)C7—C14—H14B109.5
C6—C5—H5A120.1H14A—C14—H14B109.5
C4—C5—H5A120.1C7—C14—H14C109.5
C5—C6—C1121.56 (13)H14A—C14—H14C109.5
C5—C6—H6A119.2H14B—C14—H14C109.5
C1—C6—H6A119.2
C7—N1—N2—C1173.61 (14)C4—C5—C6—C10.4 (3)
N1—N2—C1—C62.9 (2)N2—C1—C6—C5179.70 (15)
N1—N2—C1—C2176.94 (14)C2—C1—C6—C50.5 (2)
N2—C1—C2—C3179.97 (14)N2—N1—C7—C8176.69 (13)
C6—C1—C2—C30.1 (2)N2—N1—C7—C141.3 (2)
N2—C1—C2—N31.3 (2)N1—C7—C8—C1341.4 (2)
C6—C1—C2—N3178.56 (14)C14—C7—C8—C13134.06 (16)
O2—N3—C2—C30.2 (2)N1—C7—C8—C9137.42 (16)
O1—N3—C2—C3179.10 (15)C14—C7—C8—C947.1 (2)
O2—N3—C2—C1179.01 (15)C13—C8—C9—C100.2 (2)
O1—N3—C2—C10.3 (2)C7—C8—C9—C10179.06 (15)
C1—C2—C3—C40.2 (2)C13—C8—C9—Cl1178.03 (12)
N3—C2—C3—C4178.97 (14)C7—C8—C9—Cl10.8 (2)
C2—C3—C4—C50.2 (3)C8—C9—C10—C110.0 (3)
C2—C3—C4—N4179.79 (15)Cl1—C9—C10—C11178.32 (14)
O3—N4—C4—C30.1 (3)C9—C10—C11—C120.1 (3)
O4—N4—C4—C3179.51 (17)C10—C11—C12—C130.1 (3)
O3—N4—C4—C5179.43 (18)C11—C12—C13—C80.3 (3)
O4—N4—C4—C50.1 (3)C9—C8—C13—C120.4 (2)
C3—C4—C5—C60.1 (3)C7—C8—C13—C12179.31 (15)
N4—C4—C5—C6179.48 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N1···O10.85 (2)1.97 (2)2.6081 (19)131.2 (17)
C6—H6A···O3i0.932.523.251 (2)135
Symmetry code: (i) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC14H11ClN4O4
Mr334.72
Crystal system, space groupMonoclinic, C2/c
Temperature (K)297
a, b, c (Å)32.660 (3), 7.1435 (7), 13.4798 (13)
β (°) 112.215 (2)
V3)2911.5 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.36 × 0.26 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.904, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
16146, 4458, 3036
Rint0.028
(sin θ/λ)max1)0.716
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.127, 1.04
No. of reflections4458
No. of parameters213
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N1···O10.85 (2)1.97 (2)2.6081 (19)131.2 (17)
C6—H6A···O3i0.932.523.251 (2)135
Symmetry code: (i) x, y+1, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

BN, PJ and TK thank the Crystal Materials Research Unit, Prince of Songkla University, for financial support. The authors also thank the Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAngelusiu, M.-V., Barbuceanu, S.-F., Draghici, C. & Almajan, G.-L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBendre, R., Murugkar, A., Padhye, S., Kulkarni, P. & Karve, M. (1998). Met. Based Drugs, 5, 59–66.  CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Jansrisewangwong, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o2401–o2402.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202–o3203.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGokce, M., Utku, S. & Kupeli, E. (2009). Eur. J. Med. Chem. 44, 3760–3764.  Web of Science CrossRef PubMed Google Scholar
First citationJansrisewangwong, P., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, T.-R., Yang, Z.-Y., Wang, B.-D. & Qin, D.-D. (2008). Eur. J. Med. Chem. 43, 1688–1695.  Web of Science CrossRef PubMed Google Scholar
First citationLoncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNilwanna, B., Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2011). Acta Cryst. E67, o3084–o3085.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds