organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(3-Hy­dr­oxy-4-meth­­oxy­benzyl­­idene)-4-meth­­oxy­benzohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 11 November 2011; accepted 14 November 2011; online 19 November 2011)

The title mol­ecule, a benzohydrazide derivative, C16H16N2O4, is twisted with a dihedral angle of 69.97 (5)° between the two benzene rings. An intra­molecular O—H⋯O hydrogen bond generates an S(5) ring motif. In the crystal, mol­ecules are linked by N—H⋯O and weak C—H⋯O hydrogen bonds into a chain along the c axis. C—H⋯π inter­actions are also present.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Fun et al. (2011[Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644-o2645.]); Horkaew et al. (2011[Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.]); Promdet et al. (2011[Promdet, P., Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3224.]). For background and applications of benzohydrazide derivatives, see: Bedia et al. (2006[Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]); Loncle et al. (2004[Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067-1071.]); Melnyk et al. (2006[Melnyk, P., Leroux, V., Sergheraert, C. & Grellier, P. (2006). Bioorg. Med. Chem. Lett. 16, 31-35.]); Raj et al. (2007[Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425-429.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O4

  • Mr = 300.31

  • Monoclinic, P 21 /c

  • a = 12.1323 (19) Å

  • b = 12.9727 (15) Å

  • c = 9.6714 (12) Å

  • β = 113.213 (2)°

  • V = 1398.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.58 × 0.30 × 0.07 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.993

  • 14521 measured reflections

  • 3704 independent reflections

  • 3260 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.109

  • S = 1.03

  • 3704 reflections

  • 208 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O4 0.87 (2) 2.18 (2) 2.6692 (13) 115.9 (18)
N1—H1N1⋯O1i 0.887 (18) 1.992 (18) 2.8698 (13) 170.0 (16)
C8—H8A⋯O1i 0.93 2.47 3.2780 (15) 145
C15—H15CCg1ii 0.96 2.72 3.5664 (15) 148
C16—H16BCg1iii 0.96 2.76 3.4366 (16) 128
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+2, -z; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzohydrazide derivatives have been reported to possess various biological properties, such as antibacterial and antifungal (Loncle et al., 2004), antitubercular (Bedia et al., 2006), antimalarial (Melnyk et al., 2006) and antiproliferative (Raj et al., 2007) activities. We have previously reported some crystal structures of this type of compounds (Fun et al., 2011; Horkaew et al., 2011; Promdet et al., 2011). The title compound (I) was synthesized in order to study the effect of functional groups to their bioactivities comparing to the closely related structures. (I) was screened for antibacterial and antioxidant activities. Our results show that (I) exhibits moderate antibacterial activity whereas it is inactive for antioxidant activity. The three dimensional structure of (I) was studied in order to gain more details to explain the effect of structure on its bioactivity.

The molecule of the title benzohydrazide derivative (Fig. 1), C16H16N2O4, exists in a trans-configuration with respect to the C8N2 bond [1.2808 (14) Å] and the torsion angle of N1–N2–C8–C9 is 179.20 (9)°. The molecule is twisted as indicated by the dihedral angle between the two benzene rings being 69.97 (5)°. The middle bridge fragment (O1/C7/N1/N2/C8) is nearly planar with a torsion angle N2–N1–C7–O1 = -0.80 (16)°. The mean plane through this bridge makes dihedral angles of 27.88 (7) and 43.44 (7)° with the C1–C6 and C9–C14 benzene rings, respectively. The methoxy group of 4-methoxyphenyl (at atom C4) is co-planar with its bound benzene ring [torsion angle C15–O2–C4–C5 = -0.76 (16)° and r.m.s 0.0131 (1) Å for the seven non H atoms], whereas the methoxy group of the 3-hydroxy-4-methoxyphenyl (at atom C12) is slight deviated with a torsion angle C16–O4–C12–C13 = 10.02 (15)°. An intramolecular O3—H1O3···O4 hydrogen bond generates an S(5) ring motif (Bernstein et al., 1995). Bond distances are of normal values (Allen et al., 1987) and are comparable with the related structures (Fun et al., 2011; Horkaew et al., 2011; Promdet et al., 2011).

In the crystal packing (Fig. 2), the molecules are linked by N—H···O hydrogen bonds and weak C—H···O interactions (Table 1) into chains along the c axis. These chains are arranged in a face-to-face manner. The crystal is stabilized by N—H···O hydrogen bonds, weak C—H···O and C—H···π interactions (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2011); Horkaew et al. (2011); Promdet et al. (2011). For background and applications of benzohydrazide derivatives, see: Bedia et al. (2006); Loncle et al. (2004); Melnyk et al. (2006); Raj et al. (2007). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound (I) was prepared by dissolving 4-methoxybenzohydrazide (2 mmol, 0.33 g) in ethanol (10 ml). The solution of 3-hydroxy-4-methoxybenzaldehyde (2 mmol, 0.30 g) in ethanol (10 ml) was then added slowly to the reaction. The mixture was refluxed for around 3 hr. The solution was then cooled to room temperature. Colorless plate-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from methanol by slow evaporation of the solvent at room temperature after several days (m.p. 491-492 K).

Refinement top

Amide and hydroxy H atoms were located in difference maps and refined isotropically [N—H = 0.887 (18) Å and O—H = 0.87 (2) Å]. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å for aromatic and CH and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Structure description top

Benzohydrazide derivatives have been reported to possess various biological properties, such as antibacterial and antifungal (Loncle et al., 2004), antitubercular (Bedia et al., 2006), antimalarial (Melnyk et al., 2006) and antiproliferative (Raj et al., 2007) activities. We have previously reported some crystal structures of this type of compounds (Fun et al., 2011; Horkaew et al., 2011; Promdet et al., 2011). The title compound (I) was synthesized in order to study the effect of functional groups to their bioactivities comparing to the closely related structures. (I) was screened for antibacterial and antioxidant activities. Our results show that (I) exhibits moderate antibacterial activity whereas it is inactive for antioxidant activity. The three dimensional structure of (I) was studied in order to gain more details to explain the effect of structure on its bioactivity.

The molecule of the title benzohydrazide derivative (Fig. 1), C16H16N2O4, exists in a trans-configuration with respect to the C8N2 bond [1.2808 (14) Å] and the torsion angle of N1–N2–C8–C9 is 179.20 (9)°. The molecule is twisted as indicated by the dihedral angle between the two benzene rings being 69.97 (5)°. The middle bridge fragment (O1/C7/N1/N2/C8) is nearly planar with a torsion angle N2–N1–C7–O1 = -0.80 (16)°. The mean plane through this bridge makes dihedral angles of 27.88 (7) and 43.44 (7)° with the C1–C6 and C9–C14 benzene rings, respectively. The methoxy group of 4-methoxyphenyl (at atom C4) is co-planar with its bound benzene ring [torsion angle C15–O2–C4–C5 = -0.76 (16)° and r.m.s 0.0131 (1) Å for the seven non H atoms], whereas the methoxy group of the 3-hydroxy-4-methoxyphenyl (at atom C12) is slight deviated with a torsion angle C16–O4–C12–C13 = 10.02 (15)°. An intramolecular O3—H1O3···O4 hydrogen bond generates an S(5) ring motif (Bernstein et al., 1995). Bond distances are of normal values (Allen et al., 1987) and are comparable with the related structures (Fun et al., 2011; Horkaew et al., 2011; Promdet et al., 2011).

In the crystal packing (Fig. 2), the molecules are linked by N—H···O hydrogen bonds and weak C—H···O interactions (Table 1) into chains along the c axis. These chains are arranged in a face-to-face manner. The crystal is stabilized by N—H···O hydrogen bonds, weak C—H···O and C—H···π interactions (Table 1).

For bond-length data, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2011); Horkaew et al. (2011); Promdet et al. (2011). For background and applications of benzohydrazide derivatives, see: Bedia et al. (2006); Loncle et al. (2004); Melnyk et al. (2006); Raj et al. (2007). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 60% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bond was drawn as a dash line.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound viewed along the b axis, showing chains running along the c axis. Hydrogen bonds were drawn as dashed lines.
(E)-N'-(3-Hydroxy-4-methoxybenzylidene)-4-methoxybenzohydrazide top
Crystal data top
C16H16N2O4F(000) = 632
Mr = 300.31Dx = 1.426 Mg m3
Monoclinic, P21/cMelting point = 491–492 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.1323 (19) ÅCell parameters from 3704 reflections
b = 12.9727 (15) Åθ = 1.8–29.0°
c = 9.6714 (12) ŵ = 0.10 mm1
β = 113.213 (2)°T = 100 K
V = 1398.9 (3) Å3Plate, colorless
Z = 40.58 × 0.30 × 0.07 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3704 independent reflections
Radiation source: sealed tube3260 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 29.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1516
Tmin = 0.942, Tmax = 0.993k = 1716
14521 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.058P)2 + 0.5751P]
where P = (Fo2 + 2Fc2)/3
3704 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H16N2O4V = 1398.9 (3) Å3
Mr = 300.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1323 (19) ŵ = 0.10 mm1
b = 12.9727 (15) ÅT = 100 K
c = 9.6714 (12) Å0.58 × 0.30 × 0.07 mm
β = 113.213 (2)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3704 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3260 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.993Rint = 0.021
14521 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.39 e Å3
3704 reflectionsΔρmin = 0.23 e Å3
208 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29470 (7)0.79595 (6)0.37018 (8)0.01765 (17)
O20.47609 (8)1.16425 (6)0.09037 (9)0.02033 (18)
O30.02649 (8)0.33066 (7)0.26553 (10)0.02208 (19)
H1O30.0427 (18)0.2655 (17)0.262 (2)0.049 (6)*
O40.05699 (8)0.16672 (6)0.17060 (10)0.02052 (18)
N10.24563 (9)0.72966 (7)0.13517 (10)0.01662 (19)
H1N10.2597 (15)0.7299 (13)0.0519 (19)0.027 (4)*
N20.20136 (8)0.63908 (7)0.16926 (10)0.01754 (19)
C10.33802 (9)0.89609 (8)0.19231 (11)0.0143 (2)
C20.42433 (10)0.95553 (8)0.30308 (11)0.0169 (2)
H2A0.45110.93550.40330.020*
C30.47027 (10)1.04352 (8)0.26570 (11)0.0175 (2)
H3A0.52851.08180.34030.021*
C40.42906 (9)1.07495 (8)0.11550 (12)0.0158 (2)
C50.34465 (9)1.01566 (8)0.00388 (11)0.0162 (2)
H5A0.31841.03550.09640.019*
C60.29974 (9)0.92674 (8)0.04258 (11)0.0155 (2)
H6A0.24340.88720.03230.019*
C70.29096 (9)0.80337 (8)0.24151 (11)0.0143 (2)
C80.20399 (10)0.56293 (9)0.08631 (12)0.0174 (2)
H8A0.23310.57350.01170.021*
C90.16289 (9)0.46024 (8)0.10510 (11)0.0167 (2)
C100.08516 (9)0.44367 (8)0.17847 (11)0.0170 (2)
H10A0.05650.49940.21500.020*
C110.05118 (9)0.34488 (8)0.19644 (12)0.0168 (2)
C120.09594 (9)0.26028 (8)0.14405 (12)0.0167 (2)
C130.17260 (10)0.27633 (9)0.07125 (12)0.0192 (2)
H13A0.20220.22050.03620.023*
C140.20503 (10)0.37620 (9)0.05082 (12)0.0192 (2)
H14A0.25540.38690.00040.023*
C150.43662 (11)1.19826 (9)0.06160 (13)0.0221 (2)
H15A0.47791.26060.06550.033*
H15B0.35181.21100.10080.033*
H15C0.45351.14610.12080.033*
C160.11532 (11)0.07892 (9)0.14054 (14)0.0228 (2)
H16A0.08170.01710.16240.034*
H16B0.19950.08170.20250.034*
H16C0.10390.07900.03650.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0231 (4)0.0179 (4)0.0150 (3)0.0017 (3)0.0108 (3)0.0010 (3)
O20.0243 (4)0.0178 (4)0.0183 (4)0.0057 (3)0.0077 (3)0.0011 (3)
O30.0220 (4)0.0190 (4)0.0318 (4)0.0008 (3)0.0175 (3)0.0007 (3)
O40.0227 (4)0.0151 (4)0.0284 (4)0.0019 (3)0.0150 (3)0.0001 (3)
N10.0227 (4)0.0154 (4)0.0144 (4)0.0033 (3)0.0100 (3)0.0004 (3)
N20.0195 (4)0.0164 (4)0.0166 (4)0.0041 (3)0.0070 (3)0.0013 (3)
C10.0175 (5)0.0137 (4)0.0136 (4)0.0006 (4)0.0082 (4)0.0006 (3)
C20.0209 (5)0.0175 (5)0.0125 (4)0.0000 (4)0.0066 (4)0.0009 (4)
C30.0197 (5)0.0172 (5)0.0147 (4)0.0028 (4)0.0058 (4)0.0029 (4)
C40.0172 (5)0.0145 (5)0.0176 (5)0.0006 (4)0.0088 (4)0.0002 (4)
C50.0183 (5)0.0170 (5)0.0130 (4)0.0004 (4)0.0059 (4)0.0011 (4)
C60.0168 (5)0.0159 (5)0.0131 (4)0.0014 (4)0.0053 (4)0.0014 (3)
C70.0144 (4)0.0150 (5)0.0148 (4)0.0015 (4)0.0071 (4)0.0006 (3)
C80.0190 (5)0.0183 (5)0.0149 (4)0.0017 (4)0.0067 (4)0.0015 (4)
C90.0174 (5)0.0171 (5)0.0134 (4)0.0021 (4)0.0037 (4)0.0007 (4)
C100.0160 (5)0.0170 (5)0.0170 (4)0.0008 (4)0.0055 (4)0.0001 (4)
C110.0138 (4)0.0193 (5)0.0168 (4)0.0004 (4)0.0057 (4)0.0007 (4)
C120.0164 (5)0.0155 (5)0.0176 (4)0.0020 (4)0.0060 (4)0.0003 (4)
C130.0220 (5)0.0177 (5)0.0203 (5)0.0009 (4)0.0109 (4)0.0020 (4)
C140.0229 (5)0.0196 (5)0.0186 (5)0.0038 (4)0.0117 (4)0.0009 (4)
C150.0252 (5)0.0206 (5)0.0209 (5)0.0015 (4)0.0096 (4)0.0056 (4)
C160.0274 (6)0.0153 (5)0.0298 (6)0.0013 (4)0.0158 (5)0.0019 (4)
Geometric parameters (Å, º) top
O1—C71.2310 (13)C5—H5A0.9300
O2—C41.3550 (12)C6—H6A0.9300
O2—C151.4246 (13)C8—C91.4588 (15)
O3—C111.3656 (13)C8—H8A0.9300
O3—H1O30.87 (2)C9—C141.3918 (15)
O4—C121.3631 (13)C9—C101.4024 (15)
O4—C161.4300 (14)C10—C111.3779 (15)
N1—C71.3523 (13)C10—H10A0.9300
N1—N21.3847 (12)C11—C121.4046 (15)
N1—H1N10.887 (17)C12—C131.3858 (15)
N2—C81.2808 (14)C13—C141.3906 (15)
C1—C61.3930 (14)C13—H13A0.9300
C1—C21.3980 (14)C14—H14A0.9300
C1—C71.4877 (14)C15—H15A0.9600
C2—C31.3796 (15)C15—H15B0.9600
C2—H2A0.9300C15—H15C0.9600
C3—C41.3978 (14)C16—H16A0.9600
C3—H3A0.9300C16—H16B0.9600
C4—C51.3907 (14)C16—H16C0.9600
C5—C61.3888 (14)
C4—O2—C15117.11 (9)C14—C9—C10119.41 (10)
C11—O3—H1O3107.6 (13)C14—C9—C8118.29 (10)
C12—O4—C16115.78 (9)C10—C9—C8122.28 (10)
C7—N1—N2119.91 (9)C11—C10—C9120.04 (10)
C7—N1—H1N1121.5 (11)C11—C10—H10A120.0
N2—N1—H1N1116.8 (11)C9—C10—H10A120.0
C8—N2—N1113.42 (9)O3—C11—C10119.06 (10)
C6—C1—C2118.77 (10)O3—C11—C12120.68 (10)
C6—C1—C7123.40 (9)C10—C11—C12120.25 (10)
C2—C1—C7117.83 (9)O4—C12—C13125.55 (10)
C3—C2—C1120.90 (9)O4—C12—C11114.57 (9)
C3—C2—H2A119.6C13—C12—C11119.88 (10)
C1—C2—H2A119.6C12—C13—C14119.76 (10)
C2—C3—C4119.85 (9)C12—C13—H13A120.1
C2—C3—H3A120.1C14—C13—H13A120.1
C4—C3—H3A120.1C13—C14—C9120.64 (10)
O2—C4—C5124.53 (9)C13—C14—H14A119.7
O2—C4—C3115.62 (9)C9—C14—H14A119.7
C5—C4—C3119.85 (10)O2—C15—H15A109.5
C6—C5—C4119.82 (9)O2—C15—H15B109.5
C6—C5—H5A120.1H15A—C15—H15B109.5
C4—C5—H5A120.1O2—C15—H15C109.5
C5—C6—C1120.78 (9)H15A—C15—H15C109.5
C5—C6—H6A119.6H15B—C15—H15C109.5
C1—C6—H6A119.6O4—C16—H16A109.5
O1—C7—N1123.74 (10)O4—C16—H16B109.5
O1—C7—C1121.37 (9)H16A—C16—H16B109.5
N1—C7—C1114.89 (9)O4—C16—H16C109.5
N2—C8—C9122.15 (10)H16A—C16—H16C109.5
N2—C8—H8A118.9H16B—C16—H16C109.5
C9—C8—H8A118.9
C7—N1—N2—C8154.92 (10)N1—N2—C8—C9179.20 (9)
C6—C1—C2—C30.60 (16)N2—C8—C9—C14158.09 (11)
C7—C1—C2—C3178.84 (10)N2—C8—C9—C1020.44 (16)
C1—C2—C3—C40.97 (17)C14—C9—C10—C110.05 (15)
C15—O2—C4—C50.76 (16)C8—C9—C10—C11178.47 (9)
C15—O2—C4—C3179.62 (10)C9—C10—C11—O3178.69 (9)
C2—C3—C4—O2177.65 (10)C9—C10—C11—C121.23 (15)
C2—C3—C4—C52.00 (16)C16—O4—C12—C1310.02 (15)
O2—C4—C5—C6178.16 (10)C16—O4—C12—C11170.42 (9)
C3—C4—C5—C61.45 (16)O3—C11—C12—O41.02 (14)
C4—C5—C6—C10.14 (16)C10—C11—C12—O4179.07 (9)
C2—C1—C6—C51.16 (16)O3—C11—C12—C13178.58 (10)
C7—C1—C6—C5178.25 (10)C10—C11—C12—C131.34 (16)
N2—N1—C7—O10.80 (16)O4—C12—C13—C14179.72 (10)
N2—N1—C7—C1178.78 (9)C11—C12—C13—C140.17 (16)
C6—C1—C7—O1155.95 (10)C12—C13—C14—C91.11 (16)
C2—C1—C7—O123.46 (15)C10—C9—C14—C131.22 (16)
C6—C1—C7—N124.46 (14)C8—C9—C14—C13177.35 (10)
C2—C1—C7—N1156.13 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O40.87 (2)2.18 (2)2.6692 (13)115.9 (18)
N1—H1N1···O1i0.887 (18)1.992 (18)2.8698 (13)170.0 (16)
C8—H8A···O1i0.932.473.2780 (15)145
C15—H15C···Cg1ii0.962.723.5664 (15)148
C16—H16B···Cg1iii0.962.763.4366 (16)128
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+2, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H16N2O4
Mr300.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.1323 (19), 12.9727 (15), 9.6714 (12)
β (°) 113.213 (2)
V3)1398.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.58 × 0.30 × 0.07
Data collection
DiffractometerBruker APEX DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.942, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
14521, 3704, 3260
Rint0.021
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.109, 1.03
No. of reflections3704
No. of parameters208
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O40.87 (2)2.18 (2)2.6692 (13)115.9 (18)
N1—H1N1···O1i0.887 (18)1.992 (18)2.8698 (13)170.0 (16)
C8—H8A···O1i0.932.473.2780 (15)145
C15—H15C···Cg1ii0.962.723.5664 (15)148
C16—H16B···Cg1iii0.962.763.4366 (16)128
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+2, z; (iii) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5085-2009. Additional correspondence author, e-mail: suchada.c@psu.ac.thl.

Acknowledgements

PP thanks the Development and Promotion of Science and Technology Talents Project for a fellowship. JH thanks the Crystal Materials Research Unit, Prince of Songkla University, for financial support. The authors also thank the Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHorkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMelnyk, P., Leroux, V., Sergheraert, C. & Grellier, P. (2006). Bioorg. Med. Chem. Lett. 16, 31–35.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPromdet, P., Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds