organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-cyclo­hexyl-5-(4-meth­­oxy­phen­yl)-1H-pyrazole-4-carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Manipal Institute of Technology, Manipal 576 104, India, cMedicinal Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and dDepartment of Printing, Manipal Institute of Technology, Manipal 576 104, India
*Correspondence e-mail: hkfun@usm.my

(Received 15 November 2011; accepted 18 November 2011; online 30 November 2011)

In the title compound, C19H24N2O3, the benzene ring forms a dihedral angle of 65.34 (7)° with the pyrazole ring. The cyclo­hexane ring adopts a chair conformation. In the crystal, mol­ecules are linked into a inversion dimers by pairs of C—H⋯O hydrogen bonds, generating R22(22) ring motifs.

Related literature

For general background to pyrazole derivatives, see: Dhanya et al. (2009[Dhanya, S., Isloor, A. M. & Shetty, P. (2009). Der Pharm. Chem. 1, 19-26.]); Hall et al. (2008[Hall, A., Billinton, A., Brown, S. H., Clayton, N. M., Chowdhury, A., Gerald, M. P., Goldsmith, G. P., Hayhow, T. G., Hurst, D. N., Kilford, I. R., Naylor, A. & Passingham, B. (2008). Bioorg. Med. Chem. Lett. 18, 3392-3399.]); Isloor et al. (2000[Isloor, A. M., Kalluraya, B. & Rao, M. (2000). J. Saudi Chem. Soc. 4, 265-270.], 2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]); Ragavan et al. (2010[Ragavan, V., Vijay Kumar, V. & Kumari, S. N. (2010). Eur. J. Med. Chem. 45, 1173-1180.]); Premsai Rai et al. (2009[Premsai Rai, N., Narayanaswamy, V. K. & Shashikanth, S. (2009). Eur. J. Med. Chem. 44, 4522-4527.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Fun et al. (2010a[Fun, H.-K., Quah, C. K., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2010a). Acta Cryst. E66, o2228.],b[Fun, H.-K., Quah, C. K., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2010b). Acta Cryst. E66, o2282-o2283.], 2011[Fun, H.-K., Quah, C. K., Malladi, S., Hebbar, R. & Isloor, A. M. (2011). Acta Cryst. E67, o3105.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C19H24N2O3

  • Mr = 328.40

  • Triclinic, [P \overline 1]

  • a = 6.8959 (7) Å

  • b = 11.0858 (7) Å

  • c = 12.0142 (12) Å

  • α = 100.690 (2)°

  • β = 93.107 (1)°

  • γ = 95.354 (1)°

  • V = 896.16 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.40 × 0.31 × 0.15 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.988

  • 18767 measured reflections

  • 5159 independent reflections

  • 3928 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.164

  • S = 1.05

  • 5159 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O2i 0.96 2.44 3.358 (2) 159
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazoles and their derivatives play an important role in medicinal chemistry (Dhanya et al., 2009). Several derivatives of pyrazole are of pharmaceutical interest due to their analgesic action. Pyrazole molecules also exhibit anticancer (Hall et al., 2008), anti-inflammatory, antidepressant, anticonvulsant and anti-HIV properties (Isloor et al., 2000, 2009). During the past years, considerable evidence has been accumulated to demonstrate the efficacy of pyrazole derivatives. The incorporation of aryl system into the pyrazole ring enhances the biological activities to a great extent (Ragavan et al., 2010). Presence of different substituents, both on the pyrazole ring and on the phenyl ring, can severely modify the biological properties of such molecules (Premsai Rai et al., 2009). Keeping in view of the importance of the pyrazole derivatives, we hereby report the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. The benzene ring (C10–C15) forms a dihedral angle of 65.34 (7)° with the pyrazole ring (N1/N2/C1–C3). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2010a,b, 2011). The cyclohexane ring (C4–C9) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.5694 (17) Å, Θ = 177.82 (16)° and φ = 182 (5)°.

In the crystal (Fig. 2), molecules are linked into an inversion dimer by a pair of intermolecular C16—H16A···O2 hydrogen bonds (Table 1), generating an R22(22) ring motif (Bernstein et al., 1995).

Related literature top

For general background to pyrazole derivatives, see: Dhanya et al. (2009); Hall et al. (2008); Isloor et al. (2000, 2009); Ragavan et al. (2010); Premsai Rai et al. (2009). For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2010a,b, 2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975).

Experimental top

A mixture of ethyl 4-methoxy benzoyl acetate (2.0 g, 0.0090 mol) and N,N-dimethylformamide dimethyl acetal (20 ml) was heated to reflux for 18 h. The excess of acetal was distilled off under reduced pressure and the residue was purified by column chromatography using 60-120 silica gel mesh size with chloroform and methanol as an eluent to give yellow liquid (2.0 g, 95 %). A mixture of ethyl-3-(dimethylamino)-2-(4-methoxyphenylcarbonyl)prop-2-enoate (2.0 g, 0.0088 mol) and cyclohexyl hydrazine (1.1 g, 0.0096 mol) in absolute ethanol (20 ml) was refluxed for 2 h. On cooling, the separated colorless needle-shaped crystals of title compound were collected by filtration. Compound was recrystallized from ethanol (yield 2.5 g, 89%; m.p. 413-418 K).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 or 1.5Ueq(C). A rotating-group model was applied for the methyl groups.

Structure description top

Pyrazoles and their derivatives play an important role in medicinal chemistry (Dhanya et al., 2009). Several derivatives of pyrazole are of pharmaceutical interest due to their analgesic action. Pyrazole molecules also exhibit anticancer (Hall et al., 2008), anti-inflammatory, antidepressant, anticonvulsant and anti-HIV properties (Isloor et al., 2000, 2009). During the past years, considerable evidence has been accumulated to demonstrate the efficacy of pyrazole derivatives. The incorporation of aryl system into the pyrazole ring enhances the biological activities to a great extent (Ragavan et al., 2010). Presence of different substituents, both on the pyrazole ring and on the phenyl ring, can severely modify the biological properties of such molecules (Premsai Rai et al., 2009). Keeping in view of the importance of the pyrazole derivatives, we hereby report the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. The benzene ring (C10–C15) forms a dihedral angle of 65.34 (7)° with the pyrazole ring (N1/N2/C1–C3). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2010a,b, 2011). The cyclohexane ring (C4–C9) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.5694 (17) Å, Θ = 177.82 (16)° and φ = 182 (5)°.

In the crystal (Fig. 2), molecules are linked into an inversion dimer by a pair of intermolecular C16—H16A···O2 hydrogen bonds (Table 1), generating an R22(22) ring motif (Bernstein et al., 1995).

For general background to pyrazole derivatives, see: Dhanya et al. (2009); Hall et al. (2008); Isloor et al. (2000, 2009); Ragavan et al. (2010); Premsai Rai et al. (2009). For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2010a,b, 2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
Ethyl 1-cyclohexyl-5-(4-methoxyphenyl)-1H-pyrazole-4-carboxylate top
Crystal data top
C19H24N2O3Z = 2
Mr = 328.40F(000) = 352
Triclinic, P1Dx = 1.217 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8959 (7) ÅCell parameters from 6690 reflections
b = 11.0858 (7) Åθ = 2.8–30.0°
c = 12.0142 (12) ŵ = 0.08 mm1
α = 100.690 (2)°T = 296 K
β = 93.107 (1)°Needle, colourless
γ = 95.354 (1)°0.40 × 0.31 × 0.15 mm
V = 896.16 (14) Å3
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
5159 independent reflections
Radiation source: fine-focus sealed tube3928 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 30.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.968, Tmax = 0.988k = 1515
18767 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0889P)2 + 0.118P]
where P = (Fo2 + 2Fc2)/3
5159 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C19H24N2O3γ = 95.354 (1)°
Mr = 328.40V = 896.16 (14) Å3
Triclinic, P1Z = 2
a = 6.8959 (7) ÅMo Kα radiation
b = 11.0858 (7) ŵ = 0.08 mm1
c = 12.0142 (12) ÅT = 296 K
α = 100.690 (2)°0.40 × 0.31 × 0.15 mm
β = 93.107 (1)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
5159 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3928 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.988Rint = 0.021
18767 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
5159 reflectionsΔρmin = 0.23 e Å3
219 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24481 (16)0.40833 (10)0.42125 (10)0.0637 (3)
O20.1292 (2)0.87054 (11)0.39497 (11)0.0756 (4)
O30.17512 (15)1.04017 (9)0.32770 (9)0.0579 (3)
N10.20159 (16)0.93769 (11)0.08374 (10)0.0500 (3)
N20.24537 (14)0.83382 (9)0.12036 (9)0.0416 (2)
C10.15217 (15)0.81617 (10)0.21339 (9)0.0366 (2)
C20.04032 (16)0.91465 (11)0.23818 (10)0.0387 (2)
C30.07815 (18)0.98587 (12)0.15498 (12)0.0462 (3)
H3A0.02271.05830.15070.055*
C40.37555 (16)0.75420 (12)0.05627 (10)0.0424 (3)
H4A0.37590.67890.08800.051*
C50.3032 (2)0.71696 (17)0.06831 (13)0.0634 (4)
H5A0.29780.79010.10140.076*
H5B0.17240.67440.07500.076*
C60.4396 (2)0.63269 (18)0.13218 (14)0.0705 (5)
H6A0.43380.55600.10410.085*
H6B0.39600.61330.21220.085*
C70.6475 (2)0.69171 (17)0.11840 (13)0.0630 (4)
H7A0.73110.63330.15550.076*
H7B0.65640.76280.15500.076*
C80.7178 (2)0.73191 (17)0.00499 (13)0.0624 (4)
H8A0.84810.77500.01090.075*
H8B0.72480.65970.03930.075*
C90.58264 (18)0.81614 (15)0.06897 (13)0.0562 (4)
H9A0.62750.83670.14880.067*
H9B0.58570.89220.03980.067*
C100.17434 (16)0.70935 (10)0.26810 (10)0.0371 (2)
C110.35203 (17)0.69279 (12)0.32133 (11)0.0438 (3)
H11A0.45960.75040.32260.053*
C120.37068 (19)0.59210 (12)0.37225 (11)0.0481 (3)
H12A0.48990.58280.40800.058*
C130.21233 (19)0.50493 (11)0.37021 (10)0.0438 (3)
C140.03437 (19)0.52023 (12)0.31811 (12)0.0475 (3)
H14A0.07290.46240.31680.057*
C150.01701 (17)0.62194 (12)0.26809 (11)0.0463 (3)
H15A0.10300.63180.23370.056*
C160.0922 (3)0.31069 (15)0.41146 (16)0.0671 (4)
H16A0.13070.25150.45520.101*
H16B0.06670.27130.33320.101*
H16C0.02380.34330.43940.101*
C170.09192 (17)0.93662 (11)0.32911 (10)0.0424 (3)
C180.3166 (3)1.06986 (18)0.41045 (15)0.0714 (5)
H18A0.37920.99450.42850.086*
H18B0.25141.11940.47980.086*
C190.4606 (3)1.1369 (3)0.3653 (2)0.1087 (9)
H19A0.54821.16250.42250.163*
H19B0.53301.08480.30080.163*
H19C0.39711.20820.34250.163*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0735 (7)0.0545 (6)0.0701 (7)0.0126 (5)0.0038 (5)0.0302 (5)
O20.1033 (9)0.0716 (7)0.0721 (7)0.0383 (6)0.0486 (7)0.0396 (6)
O30.0665 (6)0.0570 (6)0.0602 (6)0.0274 (5)0.0281 (5)0.0204 (5)
N10.0516 (6)0.0506 (6)0.0567 (7)0.0129 (5)0.0173 (5)0.0252 (5)
N20.0395 (5)0.0447 (5)0.0454 (5)0.0100 (4)0.0123 (4)0.0157 (4)
C10.0346 (5)0.0399 (5)0.0369 (5)0.0044 (4)0.0046 (4)0.0108 (4)
C20.0374 (5)0.0404 (5)0.0406 (6)0.0067 (4)0.0065 (4)0.0114 (4)
C30.0460 (6)0.0441 (6)0.0541 (7)0.0108 (5)0.0121 (5)0.0186 (5)
C40.0385 (5)0.0477 (6)0.0432 (6)0.0088 (4)0.0110 (4)0.0103 (5)
C50.0411 (6)0.0889 (11)0.0523 (8)0.0073 (7)0.0009 (6)0.0055 (7)
C60.0559 (8)0.0873 (12)0.0561 (9)0.0050 (8)0.0041 (7)0.0169 (8)
C70.0519 (7)0.0856 (11)0.0487 (8)0.0122 (7)0.0155 (6)0.0000 (7)
C80.0382 (6)0.0885 (11)0.0556 (8)0.0132 (6)0.0064 (5)0.0025 (7)
C90.0371 (6)0.0732 (9)0.0508 (7)0.0023 (6)0.0061 (5)0.0066 (7)
C100.0382 (5)0.0387 (5)0.0358 (5)0.0079 (4)0.0045 (4)0.0086 (4)
C110.0398 (5)0.0452 (6)0.0463 (6)0.0042 (4)0.0009 (5)0.0098 (5)
C120.0456 (6)0.0515 (7)0.0485 (7)0.0114 (5)0.0056 (5)0.0127 (5)
C130.0548 (7)0.0409 (6)0.0384 (6)0.0121 (5)0.0034 (5)0.0110 (5)
C140.0466 (6)0.0438 (6)0.0536 (7)0.0008 (5)0.0007 (5)0.0159 (5)
C150.0391 (5)0.0485 (6)0.0536 (7)0.0045 (5)0.0016 (5)0.0171 (6)
C160.0854 (11)0.0509 (8)0.0738 (10)0.0118 (7)0.0184 (8)0.0292 (7)
C170.0428 (5)0.0434 (6)0.0428 (6)0.0089 (4)0.0073 (5)0.0098 (5)
C180.0777 (10)0.0834 (11)0.0647 (10)0.0400 (9)0.0340 (8)0.0200 (8)
C190.0807 (13)0.167 (2)0.0849 (15)0.0658 (15)0.0120 (11)0.0140 (15)
Geometric parameters (Å, º) top
O1—C131.3590 (15)C7—H7B0.9700
O1—C161.421 (2)C8—C91.5183 (19)
O2—C171.1962 (16)C8—H8A0.9700
O3—C171.3328 (15)C8—H8B0.9700
O3—C181.4463 (17)C9—H9A0.9700
N1—C31.3178 (16)C9—H9B0.9700
N1—N21.3598 (14)C10—C151.3856 (16)
N2—C11.3551 (14)C10—C111.3945 (16)
N2—C41.4657 (15)C11—C121.3814 (17)
C1—C21.3917 (15)C11—H11A0.9300
C1—C101.4729 (15)C12—C131.3849 (18)
C2—C31.4048 (16)C12—H12A0.9300
C2—C171.4611 (16)C13—C141.3862 (18)
C3—H3A0.9300C14—C151.3840 (17)
C4—C91.5128 (17)C14—H14A0.9300
C4—C51.520 (2)C15—H15A0.9300
C4—H4A0.9800C16—H16A0.9600
C5—C61.524 (2)C16—H16B0.9600
C5—H5A0.9700C16—H16C0.9600
C5—H5B0.9700C18—C191.436 (3)
C6—C71.507 (2)C18—H18A0.9700
C6—H6A0.9700C18—H18B0.9700
C6—H6B0.9700C19—H19A0.9600
C7—C81.506 (2)C19—H19B0.9600
C7—H7A0.9700C19—H19C0.9600
C13—O1—C16117.95 (11)C4—C9—C8110.74 (12)
C17—O3—C18116.56 (11)C4—C9—H9A109.5
C3—N1—N2104.76 (10)C8—C9—H9A109.5
C1—N2—N1112.70 (9)C4—C9—H9B109.5
C1—N2—C4128.17 (10)C8—C9—H9B109.5
N1—N2—C4119.08 (10)H9A—C9—H9B108.1
N2—C1—C2105.63 (10)C15—C10—C11117.99 (10)
N2—C1—C10122.86 (10)C15—C10—C1120.39 (10)
C2—C1—C10131.51 (10)C11—C10—C1121.63 (10)
C1—C2—C3105.00 (10)C12—C11—C10120.98 (11)
C1—C2—C17127.24 (10)C12—C11—H11A119.5
C3—C2—C17127.73 (11)C10—C11—H11A119.5
N1—C3—C2111.91 (11)C11—C12—C13120.19 (11)
N1—C3—H3A124.0C11—C12—H12A119.9
C2—C3—H3A124.0C13—C12—H12A119.9
N2—C4—C9110.98 (10)O1—C13—C12116.10 (11)
N2—C4—C5111.32 (10)O1—C13—C14124.31 (12)
C9—C4—C5110.76 (11)C12—C13—C14119.60 (11)
N2—C4—H4A107.9C15—C14—C13119.71 (11)
C9—C4—H4A107.9C15—C14—H14A120.1
C5—C4—H4A107.9C13—C14—H14A120.1
C4—C5—C6110.07 (12)C14—C15—C10121.53 (11)
C4—C5—H5A109.6C14—C15—H15A119.2
C6—C5—H5A109.6C10—C15—H15A119.2
C4—C5—H5B109.6O1—C16—H16A109.5
C6—C5—H5B109.6O1—C16—H16B109.5
H5A—C5—H5B108.2H16A—C16—H16B109.5
C7—C6—C5111.75 (14)O1—C16—H16C109.5
C7—C6—H6A109.3H16A—C16—H16C109.5
C5—C6—H6A109.3H16B—C16—H16C109.5
C7—C6—H6B109.3O2—C17—O3122.85 (12)
C5—C6—H6B109.3O2—C17—C2126.16 (12)
H6A—C6—H6B107.9O3—C17—C2110.95 (10)
C8—C7—C6111.45 (13)C19—C18—O3109.52 (15)
C8—C7—H7A109.3C19—C18—H18A109.8
C6—C7—H7A109.3O3—C18—H18A109.8
C8—C7—H7B109.3C19—C18—H18B109.8
C6—C7—H7B109.3O3—C18—H18B109.8
H7A—C7—H7B108.0H18A—C18—H18B108.2
C7—C8—C9111.41 (13)C18—C19—H19A109.5
C7—C8—H8A109.3C18—C19—H19B109.5
C9—C8—H8A109.3H19A—C19—H19B109.5
C7—C8—H8B109.3C18—C19—H19C109.5
C9—C8—H8B109.3H19A—C19—H19C109.5
H8A—C8—H8B108.0H19B—C19—H19C109.5
C3—N1—N2—C10.18 (14)C7—C8—C9—C456.03 (19)
C3—N1—N2—C4177.65 (11)N2—C1—C10—C15114.31 (13)
N1—N2—C1—C20.28 (13)C2—C1—C10—C1564.46 (18)
C4—N2—C1—C2177.31 (11)N2—C1—C10—C1165.81 (16)
N1—N2—C1—C10179.32 (10)C2—C1—C10—C11115.41 (14)
C4—N2—C1—C101.74 (18)C15—C10—C11—C120.16 (19)
N2—C1—C2—C30.25 (13)C1—C10—C11—C12179.97 (11)
C10—C1—C2—C3179.18 (12)C10—C11—C12—C130.6 (2)
N2—C1—C2—C17178.12 (11)C16—O1—C13—C12173.91 (13)
C10—C1—C2—C170.8 (2)C16—O1—C13—C146.2 (2)
N2—N1—C3—C20.01 (15)C11—C12—C13—O1179.25 (12)
C1—C2—C3—N10.15 (15)C11—C12—C13—C140.9 (2)
C17—C2—C3—N1178.20 (12)O1—C13—C14—C15179.74 (12)
C1—N2—C4—C9112.62 (14)C12—C13—C14—C150.4 (2)
N1—N2—C4—C969.93 (15)C13—C14—C15—C100.4 (2)
C1—N2—C4—C5123.52 (14)C11—C10—C15—C140.64 (19)
N1—N2—C4—C553.94 (15)C1—C10—C15—C14179.49 (11)
N2—C4—C5—C6179.09 (13)C18—O3—C17—O20.4 (2)
C9—C4—C5—C656.92 (18)C18—O3—C17—C2177.29 (13)
C4—C5—C6—C755.8 (2)C1—C2—C17—O22.4 (2)
C5—C6—C7—C854.9 (2)C3—C2—C17—O2175.59 (15)
C6—C7—C8—C954.7 (2)C1—C2—C17—O3179.98 (11)
N2—C4—C9—C8178.50 (12)C3—C2—C17—O31.97 (19)
C5—C4—C9—C857.32 (17)C17—O3—C18—C19149.67 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O2i0.962.443.358 (2)159
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H24N2O3
Mr328.40
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.8959 (7), 11.0858 (7), 12.0142 (12)
α, β, γ (°)100.690 (2), 93.107 (1), 95.354 (1)
V3)896.16 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.31 × 0.15
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.968, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
18767, 5159, 3928
Rint0.021
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.164, 1.05
No. of reflections5159
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O2i0.96002.44003.358 (2)159.00
Symmetry code: (i) x, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malysia for the Research University Grant (No. 1001/PFIZIK/811160). AMI thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, Government of India, for the Young Scientist award.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDhanya, S., Isloor, A. M. & Shetty, P. (2009). Der Pharm. Chem. 1, 19–26.  Google Scholar
First citationFun, H.-K., Quah, C. K., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2010a). Acta Cryst. E66, o2228.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2010b). Acta Cryst. E66, o2282–o2283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Malladi, S., Hebbar, R. & Isloor, A. M. (2011). Acta Cryst. E67, o3105.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHall, A., Billinton, A., Brown, S. H., Clayton, N. M., Chowdhury, A., Gerald, M. P., Goldsmith, G. P., Hayhow, T. G., Hurst, D. N., Kilford, I. R., Naylor, A. & Passingham, B. (2008). Bioorg. Med. Chem. Lett. 18, 3392–3399.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Rao, M. (2000). J. Saudi Chem. Soc. 4, 265–270.  CAS Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPremsai Rai, N., Narayanaswamy, V. K. & Shashikanth, S. (2009). Eur. J. Med. Chem. 44, 4522–4527.  Web of Science PubMed Google Scholar
First citationRagavan, V., Vijay Kumar, V. & Kumari, S. N. (2010). Eur. J. Med. Chem. 45, 1173–1180.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds