metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[N-(pyridin-2-ylcarbon­yl)pyridine-2-carboxamidato]iron(III) perchlorate monohydrate

aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China
*Correspondence e-mail: lxf_52@yeah.net

(Received 19 September 2011; accepted 10 November 2011; online 16 November 2011)

The structure of the title salt complex, [Fe(C12H8N3O2)2]ClO4·H2O, contains one FeIII cation, two N-(pyridin-2-ylcarbon­yl)pyridine-2-carboxamidate (bpca) anions, one perchlorate anion and one water mol­ecule. The FeIII cation has an approximate octa­hedral geometry, defined by six N atoms from two bpca anions. The nearly parallel [dihedral angle = 1.50 (1)°] bpca anions form two-dimensional supermolecules along the a axis by the way of weak ππ stacking inteactirons [centroid–centroid distances = 3.948 (2), 4.000 (2), 3.948 (2), 3.911 (2), 3.897 (2), 3.984 (2) and 3.929 (2) Å]. Intra- and inter­molecular C—H⋯O hydrogen bonding occurs. The water mol­ecule [occupancies 0.520 (5) and 0.480 (5)], two carbonyl O atoms [occupancies 0.622 (7) and 0.378 (7)] and the four perchlorate O atoms [occupancies 0.887 (4) and 0.113 (4)] are each disordered over two positions.

Related literature

For the use of organic ligands containing nitro­gen hetero­atoms in the synthesis of transition-metal complexes, see: Feng et al. (2006[Feng, W.-J., Zhou, G.-P., Zheng, X.-F., Liu, Y.-G. & Xu, Y. (2006). Acta Cryst. E62, m2033-m2035.]); Wu et al. (2009[Wu, D. Y., Sato, O. & Duan, C. Y. (2009). Inorg. Chem. Commun. 12, 325-327.]); Xie & Huang (2011[Xie, J.-Y. & Huang, F. (2011). Acta Cryst. E67, m1326.]); Yu et al. (2010[Yu, X. Y., Ye, L., Zhang, X., Cui, X. B., Zhang, J. P., Xu, J. Q., Hou, Q. & Wang, T. G. (2010). Dalton Trans. 39, 10617-10625.]). For the N-donor tridentate rigid ligand Hbpca, see: Casellas et al. (2005[Casellas, H., Costantino, F., Mandonnet, A., Caneschi, A. & Gatteschi, D. (2005). Inorg. Chim. Acta, 358, 177-185.]); Kajiwara et al. (2002[Kajiwara, T., Sensui, R., Noguchi, T., Kamiyama, A. & Ito, T. (2002). Inorg. Chim. Acta, 337, 299-307.]). For mononuclear complexes of the tridentate ligand bpca, see: Madariaga et al. (1991[Madariaga, G., Zuñiga, F.-J., Rojo, T. & Folgado, J.-V. (1991). Acta Cryst. C47, 1632-1634.]); Marcos et al. (1989[Marcos, D., Martinez-Manez, R., Folgado, J.-V., Beltran-Porter, A. Beltran-Porter, D. & Fuertes, A. (1989). Inorg. Chim. Acta, 159, 11-18.], 1990[Marcos, D., Folgado, J.-V., Beltran-Porter, D., do Prado-Gambardella, M. T., Pulcinelli, S. H. & de Almeida-Santos, R. H. (1990). Polyhedron, 9, 2699-2704.]); Wocadlo & Massa (1993[Wocadlo, S. & Massa, W. (1993). Inorg. Chim. Acta, 207, 199-206.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C12H8N3O2)2]ClO4·H2O

  • Mr = 625.74

  • Triclinic, [P \overline 1]

  • a = 8.8828 (8) Å

  • b = 11.7228 (3) Å

  • c = 14.4551 (9) Å

  • α = 109.931 (3)°

  • β = 103.585 (4)°

  • γ = 99.456 (3)°

  • V = 1325.39 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 298 K

  • 0.20 × 0.14 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.867, Tmax = 0.930

  • 8065 measured reflections

  • 5880 independent reflections

  • 4516 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.165

  • S = 1.06

  • 5880 reflections

  • 407 parameters

  • 50 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—N5 1.902 (2)
Fe1—N2 1.914 (2)
Fe1—N4 1.964 (2)
Fe1—N3 1.974 (2)
Fe1—N6 1.976 (2)
Fe1—N1 1.979 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O3i 0.93 2.30 3.084 (3) 142
C12—H12⋯O4i 0.93 2.55 3.288 (4) 136
C2—H2⋯O5 0.93 2.52 3.292 (5) 140
C2—H2⋯O5A 0.93 2.41 3.116 (8) 133
C11—H11⋯O6i 0.93 2.62 3.385 (6) 140
C11—H11⋯O8Ai 0.93 2.32 3.191 (11) 156
C16—H16⋯O6Aii 0.93 2.58 3.431 (10) 153
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Organic ligands containing nitrogen heteroatoms play an important role in the assembling process of transition-metal complexes (Wu et al., 2009; Xie et al., 2011; Feng et al., 2006; Yu et al., 2010). The N-donor tridentate rigid ligand Hbpca (Hbpca = bis(2-pyridylcarbonyl)amine) has been attracting widespread attention (Kajiwara et al., 2002; Casellas et al., 2005). Mononuclear complexes of the tridentate ligand bpca-, [M(bpca)]+ (M = divalent metal ions] exemplify these types of complexed ligands (Marcos et al., 1989, 1990); Madariaga et al., 1991; Wocadlo et al., 1993).

As a continuation of our studies related to the behaviour of the bpca ligand with FeIII ions, we have synthesized the title salt complex [Fe(bpca)2(ClO4) . H2O]. As shown in Fig. 1, each asymmetric unit contains one FeIII cation, two bpca- anions, one perchlorate anion and one lattice water molecule. The bpca ligands are nearly parallel in the structure and form two-dimensional supermolecules by the way of weak ππ stacking inteactions [centroid to centroid distances = 3.9475Å, 3.9997Å, 3.9488Å, 3.9107Å, 3.8973Å, 3.9838Å and 3.9287Å, respectively]. The bond lengths for Fe—N vary from 1.902 (2)Å to 1.979 (2)Å, and the angles for N—Fe—N are between 81.65 (9)° and 178.54 (10)°. These bond lengths and angles are in agreement with those found in similar related FeIII compounds (Wocadlo et al., 1993).

Related literature top

For the use of organic ligands containing nitrogen heteroatoms in the synthesis of transition-metal complexes, see: Feng et al. (2006); Wu et al. (2009); Xie et al. (2011); Yu et al. (2010). For the N-donor tridentate rigid ligand Hbpca, see: Casellas et al. (2005); Kajiwara et al. (2002). For mononuclear complexes of the tridentate ligand bpca-, see: Madariaga et al. (1991); Marcos et al. (1989, 1990); Wocadlo & Massa (1993).

Experimental top

A mixture of methanol and water (1:1, 2 ml) was gently layered on the top of a solution of Fe(ClO4)3.6H2O (46.2 mg, 0.1 mmol) in water (3 ml). A solution of Hbpca = bis(2-pyridylcarbonyl)amine (22.7 mg, 0.1 mmol), in methanol (10 ml) was added carefully as the third layer. Red crystals suitable for X-ray diffraction were obtained after 3 weeks, washed with ethanol and ether, and dried in air.

Refinement top

Lattice water OW1 and OW1' atoms were disordered over two positions with approximate part occupancies of 0.520 (5) and 0.480 (5). Hydrogen atoms on OW1 and OW1' were also treated using the above two part model. The carbonyl oxygen atoms, O1A and O1B, were disordered over two positions with approximate part occupancies of 0.622 (7) and 0.378 (7). The four perchlorate oxygen atoms O5, O6, O7 and O8 were also disordered with approximate part occupancies of 0.887 (4) and 0.113 (4). All of the remaining H atoms were placed in calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH). Isotropic displacement parameters for these atoms were set to 1.2 (CH) times Ueq of the parent atom.

Structure description top

Organic ligands containing nitrogen heteroatoms play an important role in the assembling process of transition-metal complexes (Wu et al., 2009; Xie et al., 2011; Feng et al., 2006; Yu et al., 2010). The N-donor tridentate rigid ligand Hbpca (Hbpca = bis(2-pyridylcarbonyl)amine) has been attracting widespread attention (Kajiwara et al., 2002; Casellas et al., 2005). Mononuclear complexes of the tridentate ligand bpca-, [M(bpca)]+ (M = divalent metal ions] exemplify these types of complexed ligands (Marcos et al., 1989, 1990); Madariaga et al., 1991; Wocadlo et al., 1993).

As a continuation of our studies related to the behaviour of the bpca ligand with FeIII ions, we have synthesized the title salt complex [Fe(bpca)2(ClO4) . H2O]. As shown in Fig. 1, each asymmetric unit contains one FeIII cation, two bpca- anions, one perchlorate anion and one lattice water molecule. The bpca ligands are nearly parallel in the structure and form two-dimensional supermolecules by the way of weak ππ stacking inteactions [centroid to centroid distances = 3.9475Å, 3.9997Å, 3.9488Å, 3.9107Å, 3.8973Å, 3.9838Å and 3.9287Å, respectively]. The bond lengths for Fe—N vary from 1.902 (2)Å to 1.979 (2)Å, and the angles for N—Fe—N are between 81.65 (9)° and 178.54 (10)°. These bond lengths and angles are in agreement with those found in similar related FeIII compounds (Wocadlo et al., 1993).

For the use of organic ligands containing nitrogen heteroatoms in the synthesis of transition-metal complexes, see: Feng et al. (2006); Wu et al. (2009); Xie et al. (2011); Yu et al. (2010). For the N-donor tridentate rigid ligand Hbpca, see: Casellas et al. (2005); Kajiwara et al. (2002). For mononuclear complexes of the tridentate ligand bpca-, see: Madariaga et al. (1991); Marcos et al. (1989, 1990); Wocadlo & Massa (1993).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure for title salt with isplacement ellipsoids at the 30% probability level. OW1 and OW1' atoms were disordered over two positions with approximate part occupancies of 0.520 (5) and 0.480 (5). Hydrogen atoms on OW1 and OW1' were also treated using the above two part model. O1A and O1B, were disordered over two positions with approximate part occupancies of 0.622 (7) and 0.378 (7). O5, O6, O7 and O8 were disordered with approximate part occupancies of 0.887 (4) and 0.113 (4).
Bis[N-(pyridin-2-ylcarbonyl)pyridine-2-carboxamidato]iron(III) perchlorate monohydrate top
Crystal data top
[Fe(C12H8N3O2)2]ClO4·H2OZ = 2
Mr = 625.74F(000) = 638
Triclinic, P1Dx = 1.568 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8828 (8) ÅCell parameters from 3005 reflections
b = 11.7228 (3) Åθ = 2.7–23.6°
c = 14.4551 (9) ŵ = 0.73 mm1
α = 109.931 (3)°T = 298 K
β = 103.585 (4)°Block, red
γ = 99.456 (3)°0.20 × 0.14 × 0.10 mm
V = 1325.39 (15) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5880 independent reflections
Radiation source: fine-focus sealed tube4516 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 27.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 911
Tmin = 0.867, Tmax = 0.930k = 1510
8065 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0989P)2 + 0.1594P]
where P = (Fo2 + 2Fc2)/3
5880 reflections(Δ/σ)max = 0.005
407 parametersΔρmax = 0.70 e Å3
50 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Fe(C12H8N3O2)2]ClO4·H2Oγ = 99.456 (3)°
Mr = 625.74V = 1325.39 (15) Å3
Triclinic, P1Z = 2
a = 8.8828 (8) ÅMo Kα radiation
b = 11.7228 (3) ŵ = 0.73 mm1
c = 14.4551 (9) ÅT = 298 K
α = 109.931 (3)°0.20 × 0.14 × 0.10 mm
β = 103.585 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5880 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
4516 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.930Rint = 0.021
8065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05350 restraints
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.70 e Å3
5880 reflectionsΔρmin = 0.40 e Å3
407 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to z 56b8 ero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.58172 (4)0.31372 (3)0.72928 (3)0.03208 (11)
Cl10.08364 (11)0.27277 (9)0.31279 (8)0.0707 (3)
O1W0.3468 (9)0.0077 (8)0.1161 (7)0.138 (2)0.520 (5)
H1W10.260 (3)0.007 (9)0.100 (5)0.208*0.520 (5)
H1W20.409 (6)0.071 (7)0.064 (6)0.208*0.520 (5)
O1W'0.3403 (10)0.1088 (9)0.1280 (8)0.138 (2)0.480 (5)
H1W30.434 (4)0.075 (7)0.089 (6)0.208*0.480 (5)
H1W40.338 (13)0.074 (5)0.171 (4)0.208*0.480 (5)
O1A0.6988 (7)0.6549 (5)0.9646 (4)0.0645 (14)0.622 (7)
O2A0.8091 (7)0.4809 (5)1.0372 (4)0.0649 (14)0.622 (7)
O1B0.6349 (13)0.6377 (9)0.9628 (8)0.0645 (14)0.378 (7)
O2B0.7488 (13)0.4655 (10)1.0392 (8)0.0649 (14)0.378 (7)
O30.5582 (2)0.1375 (2)0.43325 (14)0.0472 (5)
O40.2819 (2)0.02485 (19)0.47266 (14)0.0438 (5)
O50.1944 (4)0.3923 (3)0.3485 (3)0.1119 (15)0.887 (4)
O60.0713 (5)0.2023 (4)0.2094 (2)0.153 (2)0.887 (4)
O70.0680 (3)0.2885 (4)0.3206 (3)0.1280 (16)0.887 (4)
O80.1436 (6)0.2088 (3)0.3751 (3)0.155 (2)0.887 (4)
O5A0.1129 (12)0.3944 (5)0.3903 (6)0.1119 (15)0.113 (4)
O6A0.0561 (7)0.1927 (8)0.3105 (8)0.153 (2)0.113 (4)
O7A0.0631 (15)0.2805 (10)0.2154 (4)0.1280 (16)0.113 (4)
O8A0.2168 (8)0.2240 (9)0.3367 (10)0.155 (2)0.113 (4)
N10.5132 (3)0.4529 (2)0.69872 (17)0.0360 (5)
N20.6593 (3)0.4400 (2)0.86762 (17)0.0415 (6)
N30.6736 (3)0.2127 (2)0.80085 (17)0.0361 (5)
N40.7769 (3)0.3479 (2)0.69072 (17)0.0366 (5)
N50.5024 (2)0.1912 (2)0.59060 (16)0.0335 (5)
N60.3654 (3)0.2409 (2)0.73032 (16)0.0355 (5)
C10.4350 (3)0.4494 (3)0.6055 (2)0.0417 (6)
H10.41020.37600.54660.050*
C20.3910 (4)0.5550 (3)0.5964 (3)0.0526 (8)
H20.33610.55100.53170.063*
C30.4283 (4)0.6644 (3)0.6823 (3)0.0615 (9)
H30.39980.73520.67660.074*
C40.5083 (5)0.6674 (3)0.7770 (3)0.0612 (9)
H40.53470.74020.83670.073*
C50.5489 (4)0.5612 (3)0.7822 (2)0.0449 (7)
C60.6359 (4)0.5582 (3)0.8833 (2)0.0559 (9)
C70.7348 (4)0.4089 (3)0.9468 (2)0.0538 (8)
C80.7429 (4)0.2746 (3)0.9043 (2)0.0470 (7)
C90.8163 (5)0.2199 (4)0.9657 (3)0.0657 (10)
H90.86660.26591.03630.079*
C100.8141 (5)0.0945 (4)0.9200 (3)0.0707 (10)
H100.86040.05400.95990.085*
C110.7430 (4)0.0316 (3)0.8159 (3)0.0568 (8)
H110.74170.05230.78400.068*
C120.6729 (3)0.0915 (3)0.7576 (2)0.0424 (6)
H120.62410.04700.68660.051*
C130.9227 (3)0.4269 (3)0.7516 (2)0.0467 (7)
H130.93850.47230.82150.056*
C141.0488 (4)0.4418 (3)0.7125 (3)0.0570 (9)
H141.14840.49630.75590.068*
C151.0272 (4)0.3770 (4)0.6108 (3)0.0609 (9)
H151.11140.38800.58390.073*
C160.8785 (3)0.2938 (3)0.5464 (3)0.0492 (7)
H160.86170.24770.47650.059*
C170.7584 (3)0.2822 (3)0.5893 (2)0.0373 (6)
C180.5952 (3)0.1934 (2)0.5270 (2)0.0356 (6)
C190.3515 (3)0.1088 (2)0.55652 (19)0.0330 (5)
C200.2785 (3)0.1384 (2)0.64330 (19)0.0345 (6)
C210.1325 (3)0.0665 (3)0.6333 (2)0.0464 (7)
H210.07820.00580.57390.056*
C220.0673 (4)0.1040 (4)0.7139 (3)0.0570 (9)
H220.03210.05770.70890.068*
C230.1517 (4)0.2100 (4)0.8003 (3)0.0559 (8)
H230.10890.23790.85420.067*
C240.3021 (3)0.2759 (3)0.8075 (2)0.0429 (7)
H240.36030.34640.86770.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03236 (19)0.03226 (19)0.02527 (17)0.00582 (14)0.00651 (14)0.00684 (14)
Cl10.0706 (5)0.0586 (5)0.0855 (6)0.0197 (4)0.0324 (5)0.0253 (5)
O1W0.112 (4)0.135 (4)0.175 (6)0.048 (4)0.013 (4)0.084 (5)
O1W'0.112 (4)0.135 (4)0.175 (6)0.048 (4)0.013 (4)0.084 (5)
O1A0.088 (4)0.0408 (16)0.0411 (13)0.015 (2)0.003 (2)0.0007 (12)
O2A0.076 (4)0.0571 (17)0.0343 (12)0.018 (2)0.009 (2)0.0030 (12)
O1B0.088 (4)0.0408 (16)0.0411 (13)0.015 (2)0.003 (2)0.0007 (12)
O2B0.076 (4)0.0571 (17)0.0343 (12)0.018 (2)0.009 (2)0.0030 (12)
O30.0503 (11)0.0521 (12)0.0297 (9)0.0037 (9)0.0138 (8)0.0086 (9)
O40.0392 (10)0.0434 (11)0.0308 (9)0.0001 (8)0.0061 (8)0.0017 (8)
O50.084 (2)0.071 (2)0.164 (4)0.0011 (19)0.025 (2)0.045 (2)
O60.146 (4)0.202 (5)0.093 (3)0.092 (4)0.040 (3)0.014 (3)
O70.089 (2)0.135 (4)0.187 (4)0.047 (2)0.084 (2)0.061 (3)
O80.213 (5)0.107 (3)0.169 (5)0.055 (3)0.043 (4)0.089 (3)
O5A0.084 (2)0.071 (2)0.164 (4)0.0011 (19)0.025 (2)0.045 (2)
O6A0.146 (4)0.202 (5)0.093 (3)0.092 (4)0.040 (3)0.014 (3)
O7A0.089 (2)0.135 (4)0.187 (4)0.047 (2)0.084 (2)0.061 (3)
O8A0.213 (5)0.107 (3)0.169 (5)0.055 (3)0.043 (4)0.089 (3)
N10.0355 (11)0.0365 (11)0.0351 (11)0.0074 (9)0.0103 (9)0.0147 (9)
N20.0504 (13)0.0337 (11)0.0282 (10)0.0090 (10)0.0025 (10)0.0052 (9)
N30.0358 (11)0.0370 (11)0.0333 (11)0.0090 (9)0.0107 (9)0.0115 (9)
N40.0338 (10)0.0342 (11)0.0350 (11)0.0042 (9)0.0040 (9)0.0125 (9)
N50.0301 (10)0.0370 (11)0.0265 (10)0.0049 (9)0.0088 (8)0.0060 (9)
N60.0361 (11)0.0378 (11)0.0284 (10)0.0075 (9)0.0101 (8)0.0092 (9)
C10.0352 (13)0.0517 (16)0.0361 (13)0.0072 (12)0.0089 (11)0.0184 (12)
C20.0504 (16)0.0660 (19)0.0548 (17)0.0216 (15)0.0160 (13)0.0375 (15)
C30.070 (2)0.0612 (19)0.075 (2)0.0331 (16)0.0305 (17)0.0400 (17)
C40.083 (2)0.0467 (17)0.0556 (19)0.0259 (17)0.0209 (17)0.0192 (15)
C50.0553 (16)0.0360 (14)0.0368 (14)0.0100 (13)0.0106 (12)0.0103 (12)
C60.080 (2)0.0402 (16)0.0366 (15)0.0173 (16)0.0085 (15)0.0087 (13)
C70.070 (2)0.0501 (17)0.0300 (14)0.0170 (16)0.0021 (13)0.0107 (13)
C80.0546 (17)0.0466 (16)0.0360 (14)0.0142 (14)0.0079 (12)0.0159 (12)
C90.086 (2)0.069 (2)0.0423 (17)0.0322 (19)0.0092 (16)0.0248 (16)
C100.090 (2)0.076 (2)0.071 (2)0.046 (2)0.0302 (19)0.0451 (19)
C110.0686 (19)0.0473 (16)0.069 (2)0.0259 (15)0.0326 (16)0.0277 (15)
C120.0433 (14)0.0413 (14)0.0449 (15)0.0119 (12)0.0204 (12)0.0153 (12)
C130.0346 (14)0.0465 (16)0.0463 (16)0.0011 (12)0.0009 (12)0.0155 (13)
C140.0333 (14)0.064 (2)0.066 (2)0.0034 (14)0.0050 (14)0.0280 (17)
C150.0365 (15)0.077 (2)0.075 (2)0.0094 (15)0.0228 (15)0.0366 (19)
C160.0407 (14)0.0607 (18)0.0533 (16)0.0136 (13)0.0218 (12)0.0261 (14)
C170.0361 (13)0.0408 (13)0.0377 (13)0.0106 (11)0.0131 (10)0.0177 (11)
C180.0386 (13)0.0373 (13)0.0305 (12)0.0100 (11)0.0114 (10)0.0125 (10)
C190.0328 (12)0.0337 (12)0.0271 (11)0.0074 (10)0.0054 (10)0.0088 (10)
C200.0319 (12)0.0367 (13)0.0303 (12)0.0081 (10)0.0071 (10)0.0100 (10)
C210.0363 (14)0.0549 (17)0.0410 (15)0.0045 (13)0.0113 (12)0.0146 (13)
C220.0376 (15)0.077 (2)0.0498 (17)0.0029 (15)0.0177 (13)0.0208 (16)
C230.0475 (16)0.077 (2)0.0464 (16)0.0181 (15)0.0254 (13)0.0199 (16)
C240.0480 (15)0.0450 (15)0.0330 (13)0.0125 (12)0.0173 (11)0.0091 (12)
Geometric parameters (Å, º) top
Fe1—N51.902 (2)N6—C201.353 (3)
Fe1—N21.914 (2)C1—C21.395 (4)
Fe1—N41.964 (2)C1—H10.9300
Fe1—N31.974 (2)C2—C31.371 (5)
Fe1—N61.976 (2)C2—H20.9300
Fe1—N11.979 (2)C3—C41.372 (5)
Cl1—O61.407 (3)C3—H30.9300
Cl1—O7A1.412 (4)C4—C51.372 (4)
Cl1—O6A1.414 (4)C4—H40.9300
Cl1—O71.414 (3)C5—C61.499 (4)
Cl1—O5A1.417 (4)C7—C81.503 (4)
Cl1—O8A1.418 (4)C8—C91.370 (5)
Cl1—O51.419 (3)C9—C101.386 (5)
Cl1—O81.422 (3)C9—H90.9300
O1W—H1W10.85 (2)C10—C111.361 (5)
O1W—H1W20.84 (2)C10—H100.9300
O1W—H1W31.43 (8)C11—C121.375 (4)
O1W—H1W40.99 (7)C11—H110.9300
O1W'—H1W30.828 (19)C12—H120.9300
O1W'—H1W40.85 (2)C13—C141.381 (5)
O1A—C61.246 (5)C13—H130.9300
O2A—C71.230 (6)C14—C151.354 (5)
O1B—C61.211 (10)C14—H140.9300
O2B—C71.237 (11)C15—C161.394 (4)
O3—C181.220 (3)C15—H150.9300
O4—C191.206 (3)C16—C171.365 (4)
N1—C51.346 (3)C16—H160.9300
N1—C11.347 (3)C17—C181.499 (4)
N2—C71.378 (4)C19—C201.508 (4)
N2—C61.385 (4)C20—C211.372 (4)
N3—C121.342 (4)C21—C221.392 (4)
N3—C81.350 (4)C21—H210.9300
N4—C131.351 (3)C22—C231.364 (5)
N4—C171.358 (3)C22—H220.9300
N5—C181.375 (3)C23—C241.391 (4)
N5—C191.383 (3)C23—H230.9300
N6—C241.337 (3)C24—H240.9300
N5—Fe1—N2178.54 (10)C2—C3—C4118.6 (3)
N5—Fe1—N482.29 (9)C2—C3—H3120.7
N2—Fe1—N497.79 (10)C4—C3—H3120.7
N5—Fe1—N399.81 (9)C3—C4—C5118.9 (3)
N2—Fe1—N381.65 (9)C3—C4—H4120.6
N4—Fe1—N390.49 (9)C5—C4—H4120.6
N5—Fe1—N682.06 (9)N1—C5—C4123.3 (3)
N2—Fe1—N697.90 (10)N1—C5—C6115.2 (3)
N4—Fe1—N6164.25 (9)C4—C5—C6121.5 (3)
N3—Fe1—N690.42 (9)O1B—C6—N2127.9 (6)
N5—Fe1—N196.77 (9)O1A—C6—N2126.1 (4)
N2—Fe1—N181.76 (10)O1B—C6—C5118.5 (6)
N4—Fe1—N191.62 (9)O1A—C6—C5122.9 (4)
N3—Fe1—N1163.41 (9)N2—C6—C5110.1 (2)
N6—Fe1—N191.98 (9)O2A—C7—N2127.3 (4)
O6—Cl1—O6A94.3 (5)O2B—C7—N2124.6 (6)
O7A—Cl1—O6A110.0 (4)O2A—C7—C8121.7 (4)
O6—Cl1—O7110.5 (2)O2B—C7—C8121.9 (6)
O7A—Cl1—O796.5 (6)N2—C7—C8110.1 (2)
O6A—Cl1—O746.1 (4)N3—C8—C9122.7 (3)
O6—Cl1—O5A146.3 (5)N3—C8—C7114.7 (3)
O7A—Cl1—O5A109.7 (4)C9—C8—C7122.5 (3)
O6A—Cl1—O5A109.4 (4)C8—C9—C10118.5 (3)
O7—Cl1—O5A73.5 (4)C8—C9—H9120.7
O6—Cl1—O8A84.0 (6)C10—C9—H9120.7
O7A—Cl1—O8A109.5 (4)C11—C10—C9118.8 (3)
O6A—Cl1—O8A109.3 (4)C11—C10—H10120.6
O7—Cl1—O8A150.4 (5)C9—C10—H10120.6
O5A—Cl1—O8A109.0 (4)C10—C11—C12120.4 (3)
O6—Cl1—O5109.3 (2)C10—C11—H11119.8
O7A—Cl1—O582.8 (4)C12—C11—H11119.8
O6A—Cl1—O5152.3 (4)N3—C12—C11121.4 (3)
O7—Cl1—O5109.7 (2)N3—C12—H12119.3
O8A—Cl1—O587.9 (4)C11—C12—H12119.3
O6—Cl1—O8108.8 (2)N4—C13—C14121.4 (3)
O7A—Cl1—O8144.5 (5)N4—C13—H13119.3
O6A—Cl1—O875.9 (4)C14—C13—H13119.3
O7—Cl1—O8110.1 (2)C15—C14—C13119.9 (3)
O5A—Cl1—O8100.3 (4)C15—C14—H14120.0
O5—Cl1—O8108.3 (2)C13—C14—H14120.0
H1W1—O1W—H1W299 (3)C14—C15—C16119.8 (3)
H1W1—O1W—H1W3115 (9)C14—C15—H15120.1
H1W2—O1W—H1W392 (8)C16—C15—H15120.1
H1W1—O1W—H1W4111 (8)C17—C16—C15117.8 (3)
H1W2—O1W—H1W4145 (8)C17—C16—H16121.1
H1W3—O1W—H1W461 (4)C15—C16—H16121.1
H1W3—O1W'—H1W4100 (3)N4—C17—C16123.3 (3)
C5—N1—C1118.1 (3)N4—C17—C18115.0 (2)
C5—N1—Fe1114.70 (19)C16—C17—C18121.8 (3)
C1—N1—Fe1127.2 (2)O3—C18—N5128.6 (2)
C7—N2—C6123.1 (2)O3—C18—C17121.5 (2)
C7—N2—Fe1118.6 (2)N5—C18—C17109.9 (2)
C6—N2—Fe1118.30 (19)O4—C19—N5128.7 (3)
C12—N3—C8118.1 (3)O4—C19—C20122.2 (2)
C12—N3—Fe1126.92 (19)N5—C19—C20109.0 (2)
C8—N3—Fe1114.95 (19)N6—C20—C21122.7 (3)
C13—N4—C17117.8 (2)N6—C20—C19115.6 (2)
C13—N4—Fe1128.3 (2)C21—C20—C19121.7 (2)
C17—N4—Fe1113.95 (17)C20—C21—C22118.7 (3)
C18—N5—C19122.9 (2)C20—C21—H21120.6
C18—N5—Fe1117.98 (16)C22—C21—H21120.6
C19—N5—Fe1119.04 (17)C23—C22—C21118.8 (3)
C24—N6—C20118.1 (2)C23—C22—H22120.6
C24—N6—Fe1127.95 (19)C21—C22—H22120.6
C20—N6—Fe1113.76 (17)C22—C23—C24119.7 (3)
N1—C1—C2120.7 (3)C22—C23—H23120.1
N1—C1—H1119.7C24—C23—H23120.1
C2—C1—H1119.7N6—C24—C23121.8 (3)
C3—C2—C1120.4 (3)N6—C24—H24119.1
C3—C2—H2119.8C23—C24—H24119.1
C1—C2—H2119.8
N5—Fe1—N1—C5179.5 (2)Fe1—N2—C6—O1A168.7 (5)
N2—Fe1—N1—C50.5 (2)C7—N2—C6—C5179.3 (3)
N4—Fe1—N1—C598.1 (2)Fe1—N2—C6—C50.3 (4)
N3—Fe1—N1—C50.9 (4)N1—C5—C6—O1B160.9 (7)
N6—Fe1—N1—C597.2 (2)C4—C5—C6—O1B18.5 (8)
N5—Fe1—N1—C10.3 (2)N1—C5—C6—O1A168.7 (4)
N2—Fe1—N1—C1179.7 (2)C4—C5—C6—O1A11.9 (7)
N4—Fe1—N1—C182.7 (2)N1—C5—C6—N20.7 (4)
N3—Fe1—N1—C1179.9 (3)C4—C5—C6—N2178.8 (3)
N6—Fe1—N1—C182.0 (2)C6—N2—C7—O2A10.2 (7)
N4—Fe1—N2—C789.8 (3)Fe1—N2—C7—O2A170.2 (5)
N3—Fe1—N2—C70.4 (2)C6—N2—C7—O2B21.4 (8)
N6—Fe1—N2—C788.8 (3)Fe1—N2—C7—O2B158.2 (7)
N1—Fe1—N2—C7179.7 (3)C6—N2—C7—C8179.3 (3)
N4—Fe1—N2—C690.6 (3)Fe1—N2—C7—C81.1 (4)
N3—Fe1—N2—C6180.0 (3)C12—N3—C8—C92.1 (5)
N6—Fe1—N2—C690.8 (3)Fe1—N3—C8—C9178.2 (3)
N1—Fe1—N2—C60.1 (2)C12—N3—C8—C7178.6 (3)
N5—Fe1—N3—C120.7 (2)Fe1—N3—C8—C71.2 (4)
N2—Fe1—N3—C12179.3 (2)O2A—C7—C8—N3171.2 (4)
N4—Fe1—N3—C1282.9 (2)O2B—C7—C8—N3158.5 (6)
N6—Fe1—N3—C1281.3 (2)N2—C7—C8—N31.4 (4)
N1—Fe1—N3—C12179.7 (3)O2A—C7—C8—C98.1 (7)
N5—Fe1—N3—C8179.6 (2)O2B—C7—C8—C922.1 (8)
N2—Fe1—N3—C80.5 (2)N2—C7—C8—C9177.9 (3)
N4—Fe1—N3—C897.3 (2)N3—C8—C9—C102.4 (6)
N6—Fe1—N3—C898.4 (2)C7—C8—C9—C10178.3 (4)
N1—Fe1—N3—C80.0 (4)C8—C9—C10—C111.7 (6)
N5—Fe1—N4—C13174.4 (3)C9—C10—C11—C120.8 (6)
N2—Fe1—N4—C137.1 (3)C8—N3—C12—C111.1 (4)
N3—Fe1—N4—C1374.6 (3)Fe1—N3—C12—C11179.2 (2)
N6—Fe1—N4—C13167.9 (3)C10—C11—C12—N30.5 (5)
N1—Fe1—N4—C1389.0 (3)C17—N4—C13—C140.6 (4)
N5—Fe1—N4—C175.74 (19)Fe1—N4—C13—C14179.3 (2)
N2—Fe1—N4—C17172.78 (19)N4—C13—C14—C150.5 (5)
N3—Fe1—N4—C17105.6 (2)C13—C14—C15—C161.1 (6)
N6—Fe1—N4—C1712.3 (5)C14—C15—C16—C170.7 (5)
N1—Fe1—N4—C1790.9 (2)C13—N4—C17—C161.0 (4)
N4—Fe1—N5—C189.1 (2)Fe1—N4—C17—C16178.9 (2)
N3—Fe1—N5—C1898.3 (2)C13—N4—C17—C18178.2 (2)
N6—Fe1—N5—C18172.7 (2)Fe1—N4—C17—C181.9 (3)
N1—Fe1—N5—C1881.6 (2)C15—C16—C17—N40.4 (5)
N4—Fe1—N5—C19174.3 (2)C15—C16—C17—C18178.8 (3)
N3—Fe1—N5—C1985.2 (2)C19—N5—C18—O38.5 (5)
N6—Fe1—N5—C193.9 (2)Fe1—N5—C18—O3167.9 (2)
N1—Fe1—N5—C1994.9 (2)C19—N5—C18—C17173.5 (2)
N5—Fe1—N6—C24178.0 (3)Fe1—N5—C18—C1710.0 (3)
N2—Fe1—N6—C240.5 (3)N4—C17—C18—O3173.2 (3)
N4—Fe1—N6—C24175.4 (3)C16—C17—C18—O37.6 (4)
N3—Fe1—N6—C2482.1 (3)N4—C17—C18—N54.9 (3)
N1—Fe1—N6—C2481.4 (2)C16—C17—C18—N5174.3 (3)
N5—Fe1—N6—C206.44 (19)C18—N5—C19—O44.4 (5)
N2—Fe1—N6—C20175.04 (19)Fe1—N5—C19—O4179.2 (2)
N4—Fe1—N6—C200.1 (5)C18—N5—C19—C20175.6 (2)
N3—Fe1—N6—C2093.42 (19)Fe1—N5—C19—C200.8 (3)
N1—Fe1—N6—C20103.00 (19)C24—N6—C20—C213.0 (4)
C5—N1—C1—C20.7 (4)Fe1—N6—C20—C21173.0 (2)
Fe1—N1—C1—C2178.4 (2)C24—N6—C20—C19176.1 (2)
N1—C1—C2—C30.7 (5)Fe1—N6—C20—C197.8 (3)
C1—C2—C3—C40.5 (5)O4—C19—C20—N6175.3 (2)
C2—C3—C4—C50.3 (6)N5—C19—C20—N64.7 (3)
C1—N1—C5—C40.6 (5)O4—C19—C20—C213.9 (4)
Fe1—N1—C5—C4178.6 (3)N5—C19—C20—C21176.1 (3)
C1—N1—C5—C6180.0 (3)N6—C20—C21—C223.3 (5)
Fe1—N1—C5—C60.8 (4)C19—C20—C21—C22175.8 (3)
C3—C4—C5—N10.4 (5)C20—C21—C22—C230.8 (5)
C3—C4—C5—C6179.8 (3)C21—C22—C23—C241.8 (5)
C7—N2—C6—O1B21.4 (9)C20—N6—C24—C230.3 (4)
Fe1—N2—C6—O1B158.2 (7)Fe1—N6—C24—C23175.1 (2)
C7—N2—C6—O1A11.7 (7)C22—C23—C24—N62.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O3i0.932.303.084 (3)142
C12—H12···O4i0.932.553.288 (4)136
C2—H2···O50.932.523.292 (5)140
C2—H2···O5A0.932.413.116 (8)133
C11—H11···O6i0.932.623.385 (6)140
C11—H11···O8Ai0.932.323.191 (11)156
C16—H16···O6Aii0.932.583.431 (10)153
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Fe(C12H8N3O2)2]ClO4·H2O
Mr625.74
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.8828 (8), 11.7228 (3), 14.4551 (9)
α, β, γ (°)109.931 (3), 103.585 (4), 99.456 (3)
V3)1325.39 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.20 × 0.14 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.867, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
8065, 5880, 4516
Rint0.021
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.165, 1.06
No. of reflections5880
No. of parameters407
No. of restraints50
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 0.40

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Fe1—N51.902 (2)Fe1—N31.974 (2)
Fe1—N21.914 (2)Fe1—N61.976 (2)
Fe1—N41.964 (2)Fe1—N11.979 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O3i0.932.303.084 (3)142.0
C12—H12···O4i0.932.553.288 (4)136.2
C2—H2···O50.932.523.292 (5)140.2
C2—H2···O5A0.932.413.116 (8)132.5
C11—H11···O6i0.932.623.385 (6)140.1
C11—H11···O8Ai0.932.323.191 (11)155.9
C16—H16···O6Aii0.932.583.431 (10)153.2
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z.
 

Acknowledgements

This study was supported by the Science and Technology Department of Henan Province (102102310321) and the Doctoral Research Fund of Henan Chinese Medicine (BSJJ2009–38)

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasellas, H., Costantino, F., Mandonnet, A., Caneschi, A. & Gatteschi, D. (2005). Inorg. Chim. Acta, 358, 177–185.  Web of Science CSD CrossRef CAS Google Scholar
First citationFeng, W.-J., Zhou, G.-P., Zheng, X.-F., Liu, Y.-G. & Xu, Y. (2006). Acta Cryst. E62, m2033–m2035.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKajiwara, T., Sensui, R., Noguchi, T., Kamiyama, A. & Ito, T. (2002). Inorg. Chim. Acta, 337, 299–307.  Web of Science CSD CrossRef CAS Google Scholar
First citationMadariaga, G., Zuñiga, F.-J., Rojo, T. & Folgado, J.-V. (1991). Acta Cryst. C47, 1632–1634.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMarcos, D., Folgado, J.-V., Beltran-Porter, D., do Prado-Gambardella, M. T., Pulcinelli, S. H. & de Almeida-Santos, R. H. (1990). Polyhedron, 9, 2699–2704.  CSD CrossRef CAS Web of Science Google Scholar
First citationMarcos, D., Martinez-Manez, R., Folgado, J.-V., Beltran-Porter, A. Beltran-Porter, D. & Fuertes, A. (1989). Inorg. Chim. Acta, 159, 11–18.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWocadlo, S. & Massa, W. (1993). Inorg. Chim. Acta, 207, 199–206.  CSD CrossRef CAS Web of Science Google Scholar
First citationWu, D. Y., Sato, O. & Duan, C. Y. (2009). Inorg. Chem. Commun. 12, 325–327.  Web of Science CSD CrossRef CAS Google Scholar
First citationXie, J.-Y. & Huang, F. (2011). Acta Cryst. E67, m1326.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, X. Y., Ye, L., Zhang, X., Cui, X. B., Zhang, J. P., Xu, J. Q., Hou, Q. & Wang, T. G. (2010). Dalton Trans. 39, 10617–10625.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds