organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-[(4-Hy­dr­oxy­phen­yl)diazenyl]-1,10-phenanthrolin-1-ium chloride monohydrate

aDepartment of Chemistry, 600 Lincoln Ave., Charleston, IL 61920, USA
*Correspondence e-mail: memcguire@eiu.edu

(Received 3 October 2011; accepted 26 October 2011; online 2 November 2011)

In the cation of the title mol­ecular salt, C18H13N4O+·Cl·H2O, the dihedral angle between the mean planes of the 1,10-phenanthroline system and the phenol ring is 14.40 (19)°. The crystal packing is stabilized by O—H⋯O hydrogen bonds, weak N—H⋯Cl and O—H⋯Cl inter­molecular inter­actions and ππ stacking inter­actions [centroid–centroid distance = 3.6944 (13) and 3.9702 (12) Å]

Related literature

For Ru(II)–polypyridyl complexes as solar energy conversion catalysts, see: Vos & Kelly (2006[Vos, J. G. & Kelly, J. M. (2006). Dalton Trans. pp. 4869-4883.]). For strongly absorbing Ru(II) complexes containing azo-dye ligands, see: McGuire et al. (1998[McGuire, M. E., Mao, M., Zhang, Y. & Pickens, K. L. (1998). 216th ACS National Meeting: Boston, MA. INOR 0174.]); Malinowski & McGuire (2003[Malinowski, L. & McGuire, M. E. (2003). ACS National Meeting: New Orleans, LA. CHED 673.]); For the pKa of the phenol portion of these complexes, see: Zhang (1999[Zhang, Y. (1999). MS thesis, Eastern Illinois University, USA.]). For the synthesis and characterization of 1,10-phenanthroline­azo­sulfonamide derivatives and their ternary Ni(II) complexes, see: Aly et al. (2006[Aly, A. A. M., Awad, I. M. A., Abd El- Mottaleb, M. & Abd El-Aal, K. (2006). Chem. Pap. 60, 143-148.]). For the synthesis of 5-nitro-1,10-phenanthroline, see: Amouyal et al. (1990[Amouyal, E., Homsi, A., Chambron, J.-C. & Sauvage, J.-P. (1990). J. Chem. Soc. Dalton Trans. pp. 1841-1845.]) and of 5-amino-1,10-phenanthroline, see: Nasielski-Hinkens et al. (1981[Nasielski-Hinkens, R., Benedek-Vamos, M., Maetens, D. & Nasielski, J. (1981). J. Organomet. Chem. 217, 179-182.]). For the crystal structure of 4-[(E)-1-naphthyl­diazen­yl]phenol, see: Aslanov et al. (2009[Aslanov, L. A., Paseshnichenko, K. A. & Yatsenko, A. V. (2009). Acta Cryst. E65, o820.]) and of 2-pyridyl-diazo-1,3 phenol, see: Xu et al. (1982[Xu, X., Li, G., Zhang, Z. & Tong, S. (1982). Gaodeng Xuexiao Huaxue Xuebao (Chin.) [Chem. J. Chin. Univ. (Chin. Ed.)], 3, 229.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13N4O+·Cl·H2O

  • Mr = 354.79

  • Triclinic, [P \overline 1]

  • a = 7.6732 (4) Å

  • b = 7.7894 (4) Å

  • c = 14.1225 (7) Å

  • α = 78.535 (3)°

  • β = 80.379 (3)°

  • γ = 78.212 (3)°

  • V = 802.73 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.28 mm−1

  • T = 100 K

  • 0.41 × 0.26 × 0.04 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.454, Tmax = 0.914

  • 15401 measured reflections

  • 2806 independent reflections

  • 2407 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.118

  • S = 1.03

  • 2806 reflections

  • 242 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H4⋯O2i 0.95 (3) 1.65 (3) 2.586 (2) 166 (3)
N2—H19⋯Cl1 0.87 (3) 2.35 (3) 3.1077 (19) 145 (2)
O2—H20⋯Cl1 0.84 (3) 2.25 (3) 3.0959 (16) 180 (3)
O2—H21⋯Cl1ii 0.85 (3) 2.30 (3) 3.1467 (17) 170 (2)
Symmetry codes: (i) x+1, y+1, z-1; (ii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Ru(II)-polypyridyl complexes have a long history as solar energy conversion catalysts (Vos & Kelly, 2006). The molecular prototype RuII(bpy)32+ (bpy = 2,2'-bipyridine) compound and many of its analogs show extremely strong absorption in the 440–500 nm range. This absorption arises from a metal-to- ligand charge transfer (1MLCT) transition which relaxes to and populates a charge transfer excited state from which photon emission (typically around 600 nm) or electron transfer can occur. In our prior work in this area, we have been trying to increase the molar absorptivity of these complexes by producing polypyridyl ligands that strongly absorb visible light between 400 and 600 nm and thus act as "antennae" in Ru(II) and related metal complexes (McGuire et al., 1998). Specifically, we have synthesized and characterized a 1,10-phenanthroline-based azo dye ligand (4-[1,10]-phenanthrolinium-1-ium-5-yl-phenol chloride hydrate) consisting of 1,10-phenanthroline bonded at the 5-position to the para position on phenol through a diazo linkage. This ligand shows absorption in the 390–544 nm range depending on the solvent and the presence or absence of added acid or base (Malinowski & McGuire, 2003). The pKa of the phenol portion has been measured at 7.6 in water (Zhang, 1999). The following related crystal structures have been reported: 4-[(E)-1-naphthyldiazenyl]phenol (Aslanov et al., 2009); 2-pyridyl-diazo-1,3 phenol (Xu et al., 1982).

In the title salt, (I), the ligand crystallized as the monohydrochloride monohydrate (Fig. 1). Crystal packing is stabilized by O1—H4···O2 hydrogen bonds, weak N2—H19···Cl1, O2—H20···Cl1, O2—H21···Cl1, intermolecular interactions (Table 1), N+ protonated cation (1,10-phenanthroline ring)— Cl- anion interactions (Fig. 2) and ππ stacking interactions [centroid-centroid distance = 3.6944 (13)Å (Cg3—Cg4) and 3.9702 (12)Å (Cg1—Cg4); Cg1 = N1/C1—C4/C12, Cg3 = C4/—C7/ C11/C12, Cg4 = C13—C18].

Related literature top

For Ru(II)–polypyridyl complexes as solar energy conversion catalysts, see: Vos & Kelly (2006). For strongly absorbing Ru(II) complexes containing azo-dye ligands, see: McGuire et al. (1998); Malinowski & McGuire (2003); For the pKa of the phenol portion of these complexes, see: Zhang (1999). For the synthesis and characterization of 1,10-phenanthrolineazosulfonamide derivatives and their ternary Ni(II) complexes, see: Aly et al. (2006). For the synthesis of 5-nitro-1,10-phenanthroline, see: Amouyal et al. (1990) and of 5-amino-1,10-phenanthroline, see: Nasielski-Hinkens et al. (1981). For the crystal structure of 4-[(E)-1-naphthyldiazenyl]phenol, see: Aslanov et al. (2009) and of 2-pyridyl-diazo-1,3 phenol, see: Xu et al. (1982).

Experimental top

5-Nitro-1,10-phenanthroline (Amouyal et al., 1990) was recrystallized from 95% ethanol and then converted to 5-amino-1,10-phenanthroline (5-NH2 phen) (Nasielski-Hinkens et al., 1981). The 5-NH2-phen was diazotized by dissolving 0.1962 g (1.006 mmol) in 6 M HCl (4 ml). The resulting red solution was immersed in an ice bath and stirred for 2 min. NaNO2 (0.0713 g, 1.03 mmol) was dissolved in water (2 ml) and immersed in an ice bath. The NaNO2 solution was then added to the 5-NH2phen solution and stirred for 3 min. Phenol (0.0950 g, 1.01 mmol) was dissolved in 10 ml of a 10%(w/w) aqueous solution of NaOH and the solution was stirred for 2 min in an ice bath. This solution was then added to the solution of diazotized phenanthroline. A dark red-orange precipitate formed immediately and the mixture (pH > 10) was left to stir in an ice-bath for 4 h. The pH was adjusted to 6 with 2M HCl. The mixture was stirred at room temperature for 30–45 min, and the solid was collected by vacuum filtration and washed with cold water. Yield of dried crude product: 0.2018 g (66.82% based on 5-NH2phen). Purification was performed on a 20 x 1-cm column of 80–200 mesh alumina (Fisher) that had been slurry- packed using 50:50 CH2Cl2:ab EtOH. A 50.1-mg sample of crude product was dissolved in 25:25:50 abEtOH:MeOH:CH2Cl2 and filtered on a fine frit. The filtrate was loaded on a column and eluted with 25:25:50 ab EtOH:MeOH:CH2Cl2 resulting in two bands: yellow-orange and pink. The pink band was eluted by MeOH followed by the yellow-orange band. Evaporation of the MeOH and vacuum drying resulted in 32 mg of purified product. Crystals were grown by dissolving a small amount of solid in 1 ml of THF along with one drop of conc. HCl. This mixture was filtered using a Pasteur pipette and glass wool. Crystallization occurred after one week by slow evaporation at room temperature.

Refinement top

H atoms attached to N and O atoms were found in a difference Fourier map and refined independently using isotropic atomic displacement parameters. All of the H atoms bonded to aromatic C atoms were placed in geometrically calculated positions (C—H = 0.95 Å) and were included in the refinement in a riding model approximation, with Uiso(H) = 1.2Ueq(C).

Structure description top

Ru(II)-polypyridyl complexes have a long history as solar energy conversion catalysts (Vos & Kelly, 2006). The molecular prototype RuII(bpy)32+ (bpy = 2,2'-bipyridine) compound and many of its analogs show extremely strong absorption in the 440–500 nm range. This absorption arises from a metal-to- ligand charge transfer (1MLCT) transition which relaxes to and populates a charge transfer excited state from which photon emission (typically around 600 nm) or electron transfer can occur. In our prior work in this area, we have been trying to increase the molar absorptivity of these complexes by producing polypyridyl ligands that strongly absorb visible light between 400 and 600 nm and thus act as "antennae" in Ru(II) and related metal complexes (McGuire et al., 1998). Specifically, we have synthesized and characterized a 1,10-phenanthroline-based azo dye ligand (4-[1,10]-phenanthrolinium-1-ium-5-yl-phenol chloride hydrate) consisting of 1,10-phenanthroline bonded at the 5-position to the para position on phenol through a diazo linkage. This ligand shows absorption in the 390–544 nm range depending on the solvent and the presence or absence of added acid or base (Malinowski & McGuire, 2003). The pKa of the phenol portion has been measured at 7.6 in water (Zhang, 1999). The following related crystal structures have been reported: 4-[(E)-1-naphthyldiazenyl]phenol (Aslanov et al., 2009); 2-pyridyl-diazo-1,3 phenol (Xu et al., 1982).

In the title salt, (I), the ligand crystallized as the monohydrochloride monohydrate (Fig. 1). Crystal packing is stabilized by O1—H4···O2 hydrogen bonds, weak N2—H19···Cl1, O2—H20···Cl1, O2—H21···Cl1, intermolecular interactions (Table 1), N+ protonated cation (1,10-phenanthroline ring)— Cl- anion interactions (Fig. 2) and ππ stacking interactions [centroid-centroid distance = 3.6944 (13)Å (Cg3—Cg4) and 3.9702 (12)Å (Cg1—Cg4); Cg1 = N1/C1—C4/C12, Cg3 = C4/—C7/ C11/C12, Cg4 = C13—C18].

For Ru(II)–polypyridyl complexes as solar energy conversion catalysts, see: Vos & Kelly (2006). For strongly absorbing Ru(II) complexes containing azo-dye ligands, see: McGuire et al. (1998); Malinowski & McGuire (2003); For the pKa of the phenol portion of these complexes, see: Zhang (1999). For the synthesis and characterization of 1,10-phenanthrolineazosulfonamide derivatives and their ternary Ni(II) complexes, see: Aly et al. (2006). For the synthesis of 5-nitro-1,10-phenanthroline, see: Amouyal et al. (1990) and of 5-amino-1,10-phenanthroline, see: Nasielski-Hinkens et al. (1981). For the crystal structure of 4-[(E)-1-naphthyldiazenyl]phenol, see: Aslanov et al. (2009) and of 2-pyridyl-diazo-1,3 phenol, see: Xu et al. (1982).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Perspective view of the title compound, with the atom numbering; displacement ellipsoids are at the 50% probability level.
[Figure 2] Fig. 2. : Packing diagram for the title compound viewed along the ac plane. Dashed lines indicate O1—H4···O2 hydrogen bonds.
6-[(4-Hydroxyphenyl)diazenyl]-1,10-phenanthrolin-1-ium chloride monohydrate top
Crystal data top
C18H13N4O+·Cl·H2OZ = 2
Mr = 354.79F(000) = 368
Triclinic, P1Dx = 1.468 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 7.6732 (4) ÅCell parameters from 4384 reflections
b = 7.7894 (4) Åθ = 3.2–66.7°
c = 14.1225 (7) ŵ = 2.28 mm1
α = 78.535 (3)°T = 100 K
β = 80.379 (3)°Transparent plate, orange
γ = 78.212 (3)°0.41 × 0.26 × 0.04 mm
V = 802.73 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2806 independent reflections
Radiation source: fine-focus sealed tube2407 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 8.33 pixels mm-1θmax = 67.4°, θmin = 3.2°
phi and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 79
Tmin = 0.454, Tmax = 0.914l = 1616
15401 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0805P)2 + 0.1676P]
where P = (Fo2 + 2Fc2)/3
2806 reflections(Δ/σ)max < 0.001
242 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H13N4O+·Cl·H2Oγ = 78.212 (3)°
Mr = 354.79V = 802.73 (7) Å3
Triclinic, P1Z = 2
a = 7.6732 (4) ÅCu Kα radiation
b = 7.7894 (4) ŵ = 2.28 mm1
c = 14.1225 (7) ÅT = 100 K
α = 78.535 (3)°0.41 × 0.26 × 0.04 mm
β = 80.379 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2806 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2407 reflections with I > 2σ(I)
Tmin = 0.454, Tmax = 0.914Rint = 0.051
15401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.40 e Å3
2806 reflectionsΔρmin = 0.21 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24720 (6)0.24063 (6)0.05019 (3)0.02974 (18)
O10.8362 (2)1.58116 (19)0.72107 (11)0.0356 (4)
O20.0147 (2)0.5892 (2)0.10617 (11)0.0319 (4)
N10.3212 (2)0.6808 (2)0.09907 (12)0.0286 (4)
N20.5247 (2)0.3608 (2)0.12489 (13)0.0278 (4)
N30.6421 (2)0.9679 (2)0.39335 (12)0.0289 (4)
N40.7403 (2)0.9508 (2)0.47300 (12)0.0288 (4)
C10.2241 (3)0.8387 (3)0.08742 (15)0.0301 (5)
H10.13530.84510.03200.036*
C20.2451 (3)0.9963 (3)0.15216 (16)0.0307 (5)
H20.17161.10590.14050.037*
C30.3723 (3)0.9915 (3)0.23242 (15)0.0289 (5)
H30.38781.09750.27710.035*
C40.4799 (3)0.8273 (3)0.24789 (14)0.0265 (4)
C50.6165 (3)0.8060 (3)0.33052 (14)0.0272 (4)
C60.7152 (3)0.6433 (3)0.34203 (15)0.0281 (4)
H60.80430.63270.39700.034*
C70.6860 (3)0.4882 (3)0.27224 (15)0.0277 (4)
C80.7851 (3)0.3169 (3)0.27964 (15)0.0302 (5)
H80.87550.30040.33350.036*
C90.7517 (3)0.1734 (3)0.20927 (16)0.0314 (5)
H90.81940.05800.21390.038*
C100.6177 (3)0.1993 (3)0.13131 (15)0.0298 (5)
H100.59280.10100.08260.036*
C110.5531 (3)0.5072 (3)0.19183 (14)0.0263 (4)
C120.4470 (3)0.6768 (3)0.17871 (14)0.0258 (4)
C130.7674 (3)1.1138 (3)0.53279 (15)0.0273 (4)
C140.6952 (3)1.2806 (3)0.50623 (16)0.0337 (5)
H140.62671.28790.44410.040*
C150.7232 (3)1.4333 (3)0.56975 (16)0.0344 (5)
H150.67581.54580.55080.041*
C160.8206 (3)1.4250 (3)0.66197 (15)0.0302 (5)
C170.8979 (3)1.2599 (3)0.68827 (15)0.0283 (4)
H170.96821.25270.74990.034*
C180.8705 (3)1.1070 (3)0.62302 (15)0.0284 (4)
H180.92360.99430.64050.034*
H40.902 (4)1.565 (4)0.783 (2)0.052 (8)*
H190.442 (4)0.377 (3)0.076 (2)0.045 (7)*
H200.077 (4)0.494 (4)0.091 (2)0.054 (8)*
H210.055 (4)0.622 (4)0.062 (2)0.050 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0299 (3)0.0235 (3)0.0305 (3)0.00016 (18)0.00177 (19)0.00097 (18)
O10.0425 (9)0.0243 (8)0.0323 (8)0.0014 (6)0.0041 (7)0.0007 (6)
O20.0383 (9)0.0256 (8)0.0288 (8)0.0005 (6)0.0038 (7)0.0041 (6)
N10.0299 (9)0.0255 (9)0.0280 (9)0.0050 (7)0.0016 (7)0.0011 (7)
N20.0282 (9)0.0249 (9)0.0272 (9)0.0021 (7)0.0023 (7)0.0013 (7)
N30.0283 (9)0.0280 (9)0.0276 (9)0.0033 (7)0.0025 (7)0.0010 (7)
N40.0277 (9)0.0292 (10)0.0262 (9)0.0026 (7)0.0035 (7)0.0005 (7)
C10.0291 (11)0.0284 (11)0.0298 (11)0.0026 (8)0.0014 (8)0.0049 (8)
C20.0345 (11)0.0226 (11)0.0330 (11)0.0016 (8)0.0031 (9)0.0048 (8)
C30.0324 (11)0.0233 (11)0.0298 (11)0.0056 (8)0.0043 (8)0.0011 (8)
C40.0256 (10)0.0268 (11)0.0268 (10)0.0040 (8)0.0065 (8)0.0017 (8)
C50.0279 (10)0.0253 (11)0.0267 (10)0.0035 (8)0.0067 (8)0.0005 (8)
C60.0268 (10)0.0307 (11)0.0251 (10)0.0040 (8)0.0005 (8)0.0040 (8)
C70.0261 (10)0.0264 (11)0.0290 (11)0.0014 (8)0.0049 (8)0.0034 (8)
C80.0286 (11)0.0291 (11)0.0309 (11)0.0008 (8)0.0024 (8)0.0059 (8)
C90.0321 (11)0.0235 (11)0.0358 (11)0.0001 (8)0.0045 (9)0.0033 (8)
C100.0321 (11)0.0215 (11)0.0337 (11)0.0022 (8)0.0067 (9)0.0002 (8)
C110.0277 (10)0.0236 (10)0.0274 (10)0.0047 (8)0.0067 (8)0.0014 (8)
C120.0254 (10)0.0246 (11)0.0269 (10)0.0032 (8)0.0049 (8)0.0032 (8)
C130.0258 (10)0.0268 (11)0.0271 (10)0.0022 (8)0.0054 (8)0.0001 (8)
C140.0363 (12)0.0315 (12)0.0280 (11)0.0025 (9)0.0030 (9)0.0026 (9)
C150.0403 (12)0.0244 (11)0.0334 (12)0.0009 (9)0.0024 (9)0.0040 (8)
C160.0306 (11)0.0268 (11)0.0300 (11)0.0031 (8)0.0046 (8)0.0013 (8)
C170.0274 (10)0.0286 (11)0.0267 (10)0.0024 (8)0.0023 (8)0.0029 (8)
C180.0281 (10)0.0266 (11)0.0276 (10)0.0007 (8)0.0053 (8)0.0025 (8)
Geometric parameters (Å, º) top
O1—C161.347 (2)C6—C71.430 (3)
O1—H40.95 (3)C6—H60.9500
O2—H200.84 (3)C7—C111.404 (3)
O2—H210.85 (3)C7—C81.408 (3)
N1—C11.327 (3)C8—C91.376 (3)
N1—C121.355 (3)C8—H80.9500
N2—C101.326 (3)C9—C101.391 (3)
N2—C111.358 (3)C9—H90.9500
N2—H190.87 (3)C10—H100.9500
N3—N41.259 (2)C11—C121.432 (3)
N3—C51.419 (3)C13—C181.388 (3)
N4—C131.411 (3)C13—C141.402 (3)
C1—C21.398 (3)C14—C151.372 (3)
C1—H10.9500C14—H140.9500
C2—C31.368 (3)C15—C161.396 (3)
C2—H20.9500C15—H150.9500
C3—C41.409 (3)C16—C171.395 (3)
C3—H30.9500C17—C181.384 (3)
C4—C121.405 (3)C17—H170.9500
C4—C51.444 (3)C18—H180.9500
C5—C61.362 (3)
C16—O1—H4112.0 (17)C7—C8—H8119.8
H20—O2—H21103 (3)C8—C9—C10119.17 (19)
C1—N1—C12116.57 (17)C8—C9—H9120.4
C10—N2—C11123.09 (19)C10—C9—H9120.4
C10—N2—H19120.1 (18)N2—C10—C9120.14 (19)
C11—N2—H19116.8 (18)N2—C10—H10119.9
N4—N3—C5115.16 (16)C9—C10—H10119.9
N3—N4—C13113.91 (16)N2—C11—C7119.06 (18)
N1—C1—C2123.65 (19)N2—C11—C12119.30 (18)
N1—C1—H1118.2C7—C11—C12121.64 (18)
C2—C1—H1118.2N1—C12—C4124.37 (18)
C3—C2—C1119.52 (18)N1—C12—C11117.06 (17)
C3—C2—H2120.2C4—C12—C11118.57 (18)
C1—C2—H2120.2C18—C13—C14118.72 (19)
C2—C3—C4119.12 (18)C18—C13—N4117.59 (18)
C2—C3—H3120.4C14—C13—N4123.69 (18)
C4—C3—H3120.4C15—C14—C13120.14 (19)
C12—C4—C3116.77 (18)C15—C14—H14119.9
C12—C4—C5119.30 (17)C13—C14—H14119.9
C3—C4—C5123.92 (18)C14—C15—C16120.64 (19)
C6—C5—N3124.55 (18)C14—C15—H15119.7
C6—C5—C4121.23 (18)C16—C15—H15119.7
N3—C5—C4114.16 (17)O1—C16—C17123.39 (19)
C5—C6—C7120.71 (19)O1—C16—C15116.79 (18)
C5—C6—H6119.6C17—C16—C15119.82 (19)
C7—C6—H6119.6C18—C17—C16118.89 (19)
C11—C7—C8118.16 (19)C18—C17—H17120.6
C11—C7—C6118.55 (18)C16—C17—H17120.6
C8—C7—C6123.28 (19)C17—C18—C13121.70 (18)
C9—C8—C7120.38 (19)C17—C18—H18119.2
C9—C8—H8119.8C13—C18—H18119.2
C5—N3—N4—C13178.33 (16)C8—C7—C11—C12179.75 (18)
C12—N1—C1—C20.2 (3)C6—C7—C11—C120.2 (3)
N1—C1—C2—C30.2 (3)C1—N1—C12—C40.2 (3)
C1—C2—C3—C40.2 (3)C1—N1—C12—C11179.76 (18)
C2—C3—C4—C120.6 (3)C3—C4—C12—N10.6 (3)
C2—C3—C4—C5179.22 (19)C5—C4—C12—N1179.33 (18)
N4—N3—C5—C613.2 (3)C3—C4—C12—C11179.85 (18)
N4—N3—C5—C4169.79 (17)C5—C4—C12—C111.1 (3)
C12—C4—C5—C60.7 (3)N2—C11—C12—N10.5 (3)
C3—C4—C5—C6179.33 (19)C7—C11—C12—N1179.51 (18)
C12—C4—C5—N3177.80 (17)N2—C11—C12—C4179.09 (17)
C3—C4—C5—N33.6 (3)C7—C11—C12—C40.9 (3)
N3—C5—C6—C7176.79 (18)N3—N4—C13—C18178.43 (17)
C4—C5—C6—C70.0 (3)N3—N4—C13—C141.1 (3)
C5—C6—C7—C110.2 (3)C18—C13—C14—C151.5 (3)
C5—C6—C7—C8179.3 (2)N4—C13—C14—C15178.00 (19)
C11—C7—C8—C90.3 (3)C13—C14—C15—C161.2 (3)
C6—C7—C8—C9179.22 (19)C14—C15—C16—O1177.6 (2)
C7—C8—C9—C100.7 (3)C14—C15—C16—C173.1 (3)
C11—N2—C10—C90.0 (3)O1—C16—C17—C18178.53 (18)
C8—C9—C10—N20.5 (3)C15—C16—C17—C182.3 (3)
C10—N2—C11—C70.4 (3)C16—C17—C18—C130.5 (3)
C10—N2—C11—C12179.60 (18)C14—C13—C18—C172.4 (3)
C8—C7—C11—N20.3 (3)N4—C13—C18—C17177.18 (17)
C6—C7—C11—N2179.78 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H4···O2i0.95 (3)1.65 (3)2.586 (2)166 (3)
N2—H19···Cl10.87 (3)2.35 (3)3.1077 (19)145 (2)
O2—H20···Cl10.84 (3)2.25 (3)3.0959 (16)180 (3)
O2—H21···Cl1ii0.85 (3)2.30 (3)3.1467 (17)170 (2)
Symmetry codes: (i) x+1, y+1, z1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H13N4O+·Cl·H2O
Mr354.79
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.6732 (4), 7.7894 (4), 14.1225 (7)
α, β, γ (°)78.535 (3), 80.379 (3), 78.212 (3)
V3)802.73 (7)
Z2
Radiation typeCu Kα
µ (mm1)2.28
Crystal size (mm)0.41 × 0.26 × 0.04
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.454, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
15401, 2806, 2407
Rint0.051
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.118, 1.03
No. of reflections2806
No. of parameters242
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.21

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H4···O2i0.95 (3)1.65 (3)2.586 (2)166 (3)
N2—H19···Cl10.87 (3)2.35 (3)3.1077 (19)145 (2)
O2—H20···Cl10.84 (3)2.25 (3)3.0959 (16)180 (3)
O2—H21···Cl1ii0.85 (3)2.30 (3)3.1467 (17)170 (2)
Symmetry codes: (i) x+1, y+1, z1; (ii) x, y+1, z.
 

Acknowledgements

We gratefully acknowledge the finanical support of the Petroleum Research Fund (PRF #31222-B3) to MEM and of the National Science Foundation (CHE-0722547) to KAW.

References

First citationAly, A. A. M., Awad, I. M. A., Abd El- Mottaleb, M. & Abd El-Aal, K. (2006). Chem. Pap. 60, 143–148.  Web of Science CrossRef CAS Google Scholar
First citationAmouyal, E., Homsi, A., Chambron, J.-C. & Sauvage, J.-P. (1990). J. Chem. Soc. Dalton Trans. pp. 1841–1845.  CrossRef Web of Science Google Scholar
First citationAslanov, L. A., Paseshnichenko, K. A. & Yatsenko, A. V. (2009). Acta Cryst. E65, o820.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMalinowski, L. & McGuire, M. E. (2003). ACS National Meeting: New Orleans, LA. CHED 673.  Google Scholar
First citationMcGuire, M. E., Mao, M., Zhang, Y. & Pickens, K. L. (1998). 216th ACS National Meeting: Boston, MA. INOR 0174.  Google Scholar
First citationNasielski-Hinkens, R., Benedek-Vamos, M., Maetens, D. & Nasielski, J. (1981). J. Organomet. Chem. 217, 179–182.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVos, J. G. & Kelly, J. M. (2006). Dalton Trans. pp. 4869–4883.  Web of Science CrossRef Google Scholar
First citationXu, X., Li, G., Zhang, Z. & Tong, S. (1982). Gaodeng Xuexiao Huaxue Xuebao (Chin.) [Chem. J. Chin. Univ. (Chin. Ed.)], 3, 229.  Google Scholar
First citationZhang, Y. (1999). MS thesis, Eastern Illinois University, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds