metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(1,10-phenanthroline-κ2N,N′)(valinato-κ2N,O)copper(II) nitrate dihydrate

aFacultad de Química, Universidad Nacional Autónoma de México, Coyoacán 04510, DF, Mexico
*Correspondence e-mail: mfa@unam.mx

(Received 2 November 2011; accepted 9 November 2011; online 23 November 2011)

In the title compound, [Cu(C5H10NO2)(C12H8N2)(H2O)]NO3·2H2O, the CuII atom displays a distorted square-pyramidal coordination (τ = 0.03) where the water mol­ecule occupies the apical position and the base is defined by the N atom, one of the O atoms from the valinate ligand, and both phenanthroline N atoms. The phenanthroline chelate ring plane is slightly distorted from planarity (r.m.s. deviation = 0.0057 Å), whereas the five-membered ring formed by the valinate ligand presents an envelope conformation with the N atom being the flap atom. The crystal packing is stabilized by O—H⋯O and N—H⋯O hydrogen-bonding inter­actions, creating a three-dimensional network superstructure.

Related literature

For investigations related to anti­cancer compounds, see: Ruiz-Azuara (1996[Ruiz-Azuara, L. (1996). US Patent 5 576 326.], 1997[Ruiz-Azuara, L. (1997). US Patent RE 35 458.]). For a description of the geometry of complexes with five-coordinate CuII atoms, see: Rao et al. (1981[Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.]); Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]); Le et al. (2006[Le, X., Liao, S., Liu, X. & Feng, X. (2006). J. Coord. Chem. 59, 985-995.]); Dalhus & Görbitz (1999[Dalhus, B. & Görbitz, C. H. (1999). Acta Cryst. C55, 1547-1555.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C5H10NO2)(C12H8N2)(H2O)]NO3·2H2O

  • Mr = 475.94

  • Triclinic, [P \overline 1]

  • a = 7.9020 (19) Å

  • b = 9.610 (3) Å

  • c = 14.327 (4) Å

  • α = 81.89 (3)°

  • β = 75.04 (2)°

  • γ = 87.92 (2)°

  • V = 1040.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 298 K

  • 0.45 × 0.27 × 0.21 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1993[Siemens (1993). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.729, Tmax = 0.794

  • 5563 measured reflections

  • 4551 independent reflections

  • 3807 reflections with I > 2σ(I)

  • Rint = 0.024

  • 3 standard reflections every 97 reflections intensity decay: 4.9%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.094

  • S = 1.06

  • 4551 reflections

  • 297 parameters

  • 18 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 2.0320 (19)
Cu1—N2 1.9975 (19)
Cu1—N3 1.992 (2)
Cu1—O2 1.9349 (16)
Cu1—O3W 2.263 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3W—H3A⋯O1W 0.83 (2) 2.02 (2) 2.778 (3) 153 (3)
N3—H01⋯O1W 0.87 (3) 2.15 (3) 2.967 (4) 156 (2)
O3W—H3B⋯O2W 0.84 (2) 1.92 (2) 2.753 (3) 171 (3)
O1W—H1A⋯O4i 0.80 (2) 2.02 (2) 2.810 (4) 170 (3)
O1W—H1B⋯O4ii 0.82 (2) 2.19 (2) 2.881 (4) 143 (2)
O1W—H1B⋯O5ii 0.82 (2) 2.48 (2) 3.245 (5) 156 (3)
O2W—H2A⋯O1iii 0.80 (2) 2.05 (2) 2.836 (3) 167 (3)
O2W—H2B⋯O1iv 0.84 (2) 2.02 (2) 2.851 (3) 174 (3)
N3—H02⋯O3v 0.82 (3) 2.46 (3) 3.229 (4) 158 (2)
N3—H02⋯O5v 0.82 (3) 2.58 (3) 3.168 (4) 130 (2)
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+2, -z+1; (iv) x, y-1, z; (v) x+1, y+1, z.

Data collection: XSCANS (Siemens, 1993[Siemens (1993). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Investigations related to anticancer compounds (Ruiz-Azuara, 1996; 1997) that involve essential metals has been of considerable interest during the last three decades. In this context, we have prepared and crystallized the complex [Cu(H2O)(val)(phen)]NO3. 2H2O (val is valinate and phen is 1,10-phenantroline), (I).

The asymmetric unit consists of one [Cu(H2O)(val)(phen)] cationic complex, one nitrate anion and two water molecules. The metallic centre display a distorted square-pyramidal coordination (τ =0.03) where the water molecule occupies the apical position. The base is defined by the N and one of the O atoms from the valinate ligand, and both phenanthroline N atoms. The phenanthroline chelate-ring plane is slightly distorted from planarity (r.m.s. = 0.0057), whereas the five-membered ring formed by the valine ligand (defined by atoms N3, C14, C13, O2 and Cu), presents an envelope conformation on N3 (q2 = 0.2121 and φ = 141.74 °) (Rao et al., 1981). The CuII ion coordinates two nitrogen atoms of phen and the amino nitrogen and one carboxylate oxygen atoms of L-Val [Cu1–N1 = 2.0320 (19), Cu1–N2 = 1.9975 (19), Cu1–N3 = 1.992 (2), and Cu1–O2 = 1.9349 (16) Å], while one water oxygen atom is axial [Cu1–O3w = 2.263 (2) Å]. The resulting coordination geometries are in a distorted square-pyramidal orientation (figure 1), where N1,N2, N3, O2 and Cu1 for the complex deviate by -0.0079, 0.0085, -0.0085, 0.0079 and 0.2064 Å, respectively, from the least-squares plane (0.84710x+0.53076y+0.02687z = 12.60140) defined by the four ligating atoms N1,N2, N3, and O2. This indicates that the five atoms in the equatorial positions are approximately coplanar with τ of 0.03 (Addison, et al., 1984). The bond angles observed around the central Cu atom range from 82.13 (8) – 99.01 (8)° in equatorial positions and from 93.90 (8) – 98.54 (8)° for apical positions, showing the angle variability in the geometry adopted by the five coordinate CuII complexe (Le et al., 2006). The carboxyl group of the amino acid coordinates to CuII via one oxygen atom as an unidentate group. Electron delocalization has been observed in the carboxyl group. However, the bond distances (1.270 (3) Å) between the coordinated oxygen atoms and the carbon atoms are slightly longer (1.254 Å) than those between the uncoordinated oxygen atoms and the carbon atoms as expected (Dalhus & Görbitz, 1999).

The nitrate ion and two water molecules are not involved in the coordination sphere of the Cu ion, but are in the crystal lattice. In the supramolecular network there are O—H···O and N—H···O hydrogen bond interactions and weak O—H···O and N—H···O intermolecular interactions (table 1) that help stabilize crystal packing. The O1w donor-acceptor atom of water molecule solvate interacts with O4 acceptor atom of the nitrate group and the N3 donor atom of the amino group, forming R42(6) and 2R21(6) motifs, respectively. In addition the hydrogen bond formed from the O3w donor atom of the water coordinated to the metal and O2w donor-acceptor atom of the water solvate and O1 acceptor atom of carboxylate group form a C22(5) motif. All these interactions lead to infinite three-dimensional network superstructure with base vectors: #1 = [0 1 0], #2 = [1 0 0], #3 = [0 0 1].

Related literature top

For investigations related to anticancer compounds, see: Ruiz-Azuara (1996, 1997). For a description of the geometry of complexes with five-coordinate CuII atoms, see: Rao et al. (1981); Addison et al. (1984); Le et al. (2006); Dalhus & Görbitz (1999).

Experimental top

1 mmol (0.232 g) of hemi-pentahydrated Cu(NO3)2 was dissolved in 5 ml of water and mixed with the corresponding amount of 1,10-phenanthroline (1 mmol, 0.180 g) previously dissolved in alcohol (5 ml). To the resulting a deprotonated solution (10 ml) of L-valine (1 mmol, 0.117 g) was added under constant stirring to get a deep-blue product. Further purification was done washing the solid several times with water. The solid was isolated with 95% yield. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of MeOH. Anal. calcd. for C17H24N4O8Cu (475.94 g/mol): C, 42.90; H, 5.08; N, 11.77. Found: C, 42.53; H, 5.11; N, 11.81.

Refinement top

H atoms bonded to N and O atoms were located in difference maps and were refined with free coordinates and Uiso(H) = 1.2Ueq(N) and 1.2Ueq(N). H atoms attached to C atoms were placed in geometrically idealized positions, and refined as riding on their parent atoms, with C—H distances fixed to 0.930 (aromatic CH), 0.960 (methyl CH3) and 0.980 Å (methine CH2) with Uiso(H) = 1.5 Ueq(methyl C) or 1.2 Ueq(C).

Structure description top

Investigations related to anticancer compounds (Ruiz-Azuara, 1996; 1997) that involve essential metals has been of considerable interest during the last three decades. In this context, we have prepared and crystallized the complex [Cu(H2O)(val)(phen)]NO3. 2H2O (val is valinate and phen is 1,10-phenantroline), (I).

The asymmetric unit consists of one [Cu(H2O)(val)(phen)] cationic complex, one nitrate anion and two water molecules. The metallic centre display a distorted square-pyramidal coordination (τ =0.03) where the water molecule occupies the apical position. The base is defined by the N and one of the O atoms from the valinate ligand, and both phenanthroline N atoms. The phenanthroline chelate-ring plane is slightly distorted from planarity (r.m.s. = 0.0057), whereas the five-membered ring formed by the valine ligand (defined by atoms N3, C14, C13, O2 and Cu), presents an envelope conformation on N3 (q2 = 0.2121 and φ = 141.74 °) (Rao et al., 1981). The CuII ion coordinates two nitrogen atoms of phen and the amino nitrogen and one carboxylate oxygen atoms of L-Val [Cu1–N1 = 2.0320 (19), Cu1–N2 = 1.9975 (19), Cu1–N3 = 1.992 (2), and Cu1–O2 = 1.9349 (16) Å], while one water oxygen atom is axial [Cu1–O3w = 2.263 (2) Å]. The resulting coordination geometries are in a distorted square-pyramidal orientation (figure 1), where N1,N2, N3, O2 and Cu1 for the complex deviate by -0.0079, 0.0085, -0.0085, 0.0079 and 0.2064 Å, respectively, from the least-squares plane (0.84710x+0.53076y+0.02687z = 12.60140) defined by the four ligating atoms N1,N2, N3, and O2. This indicates that the five atoms in the equatorial positions are approximately coplanar with τ of 0.03 (Addison, et al., 1984). The bond angles observed around the central Cu atom range from 82.13 (8) – 99.01 (8)° in equatorial positions and from 93.90 (8) – 98.54 (8)° for apical positions, showing the angle variability in the geometry adopted by the five coordinate CuII complexe (Le et al., 2006). The carboxyl group of the amino acid coordinates to CuII via one oxygen atom as an unidentate group. Electron delocalization has been observed in the carboxyl group. However, the bond distances (1.270 (3) Å) between the coordinated oxygen atoms and the carbon atoms are slightly longer (1.254 Å) than those between the uncoordinated oxygen atoms and the carbon atoms as expected (Dalhus & Görbitz, 1999).

The nitrate ion and two water molecules are not involved in the coordination sphere of the Cu ion, but are in the crystal lattice. In the supramolecular network there are O—H···O and N—H···O hydrogen bond interactions and weak O—H···O and N—H···O intermolecular interactions (table 1) that help stabilize crystal packing. The O1w donor-acceptor atom of water molecule solvate interacts with O4 acceptor atom of the nitrate group and the N3 donor atom of the amino group, forming R42(6) and 2R21(6) motifs, respectively. In addition the hydrogen bond formed from the O3w donor atom of the water coordinated to the metal and O2w donor-acceptor atom of the water solvate and O1 acceptor atom of carboxylate group form a C22(5) motif. All these interactions lead to infinite three-dimensional network superstructure with base vectors: #1 = [0 1 0], #2 = [1 0 0], #3 = [0 0 1].

For investigations related to anticancer compounds, see: Ruiz-Azuara (1996, 1997). For a description of the geometry of complexes with five-coordinate CuII atoms, see: Rao et al. (1981); Addison et al. (1984); Le et al. (2006); Dalhus & Görbitz (1999).

Computing details top

Data collection: XSCANS (Siemens, 1993); cell refinement: XSCANS (Siemens, 1993); data reduction: XSCANS (Siemens, 1993); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.
Aqua(1,10-phenanthroline-κ2N,N')(valinato- κ2N,O)copper(II) nitrate dihydrate top
Crystal data top
[Cu(C5H10NO2)(C12H8N2)(H2O)]NO3·2H2OZ = 2
Mr = 475.94F(000) = 494
Triclinic, P1Dx = 1.519 Mg m3
a = 7.9020 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.610 (3) ÅCell parameters from 43 reflections
c = 14.327 (4) Åθ = 3.4–12.5°
α = 81.89 (3)°µ = 1.10 mm1
β = 75.04 (2)°T = 298 K
γ = 87.92 (2)°Prism, blue
V = 1040.6 (5) Å30.45 × 0.27 × 0.21 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.024
Graphite monochromatorθmax = 27.0°, θmin = 2.1°
2θ/ω scansh = 110
Absorption correction: ψ scan
(XSCANS; Siemens, 1993)
k = 1212
Tmin = 0.729, Tmax = 0.794l = 1818
5563 measured reflections3 standard reflections every 97 reflections
4551 independent reflections intensity decay: 4.9%
3807 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.2653P]
where P = (Fo2 + 2Fc2)/3
4551 reflections(Δ/σ)max = 0.002
297 parametersΔρmax = 0.45 e Å3
18 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cu(C5H10NO2)(C12H8N2)(H2O)]NO3·2H2Oγ = 87.92 (2)°
Mr = 475.94V = 1040.6 (5) Å3
Triclinic, P1Z = 2
a = 7.9020 (19) ÅMo Kα radiation
b = 9.610 (3) ŵ = 1.10 mm1
c = 14.327 (4) ÅT = 298 K
α = 81.89 (3)°0.45 × 0.27 × 0.21 mm
β = 75.04 (2)°
Data collection top
Siemens P4
diffractometer
3807 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1993)
Rint = 0.024
Tmin = 0.729, Tmax = 0.7943 standard reflections every 97 reflections
5563 measured reflections intensity decay: 4.9%
4551 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03718 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.45 e Å3
4551 reflectionsΔρmin = 0.33 e Å3
297 parameters
Special details top

Experimental. IR (KBr disc, cm-1): 3426 w, 3285 m, 1623s, 1609 s, 1526 m, 1427 m, 1384 s, 1052 br, 871 m, 725 m.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7560 (3)0.9436 (3)0.53537 (17)0.0414 (5)
H10.67171.01310.54890.05*
C20.7973 (4)0.8559 (3)0.6127 (2)0.0516 (6)
H20.74170.86750.67680.062*
C30.9208 (4)0.7526 (3)0.5934 (2)0.0532 (7)
H30.94880.69360.64460.064*
C41.0053 (3)0.7357 (2)0.4965 (2)0.0466 (6)
C51.1376 (4)0.6333 (3)0.4671 (3)0.0613 (8)
H51.17380.57210.51460.074*
C61.2105 (4)0.6237 (3)0.3725 (3)0.0622 (8)
H61.29440.55470.35610.075*
C71.1626 (3)0.7164 (3)0.2966 (2)0.0507 (7)
C81.2337 (4)0.7153 (3)0.1953 (3)0.0636 (8)
H81.32070.6510.17360.076*
C91.1755 (4)0.8078 (3)0.1297 (2)0.0651 (8)
H91.2220.80680.06310.078*
C101.0460 (4)0.9041 (3)0.1627 (2)0.0534 (7)
H101.00610.96620.11720.064*
C111.0336 (3)0.8191 (2)0.32296 (19)0.0386 (5)
C120.9551 (3)0.8280 (2)0.42369 (18)0.0365 (5)
C130.6115 (3)1.2912 (2)0.34579 (17)0.0358 (5)
C140.6524 (3)1.2917 (2)0.23517 (17)0.0405 (5)
H140.54571.25980.22180.049*
C150.6933 (4)1.4373 (2)0.17649 (19)0.0482 (6)
H150.59341.49780.20010.058*
C160.8549 (5)1.5035 (3)0.1919 (3)0.0712 (9)
H16A0.84091.5050.26040.107*
H16B0.86871.59790.15850.107*
H16C0.95671.44940.16660.107*
C170.7096 (6)1.4343 (3)0.0687 (2)0.0808 (11)
H17A0.81311.38330.04150.121*
H17B0.71731.52880.03540.121*
H17C0.60851.38910.06110.121*
N10.9771 (3)0.91087 (19)0.25678 (14)0.0400 (4)
N20.8335 (2)0.93059 (18)0.44303 (14)0.0350 (4)
N30.7883 (3)1.1840 (2)0.20673 (15)0.0401 (4)
N40.2440 (4)0.2073 (3)0.0776 (2)0.0687 (7)
O10.5238 (2)1.38833 (16)0.38275 (13)0.0476 (4)
O20.6628 (2)1.18555 (16)0.39525 (11)0.0420 (4)
O1W0.6192 (4)0.9891 (3)0.11506 (19)0.0879 (8)
O30.2044 (4)0.2401 (4)0.1587 (2)0.1056 (10)
O2W0.6251 (3)0.6568 (2)0.41289 (15)0.0551 (5)
O40.3953 (4)0.1763 (3)0.0356 (2)0.1061 (10)
O3W0.5655 (3)0.91409 (19)0.31501 (14)0.0492 (4)
O50.1312 (4)0.2054 (3)0.0322 (2)0.0906 (8)
Cu10.79360 (4)1.04401 (3)0.322595 (19)0.03449 (10)
H1A0.547 (3)1.035 (3)0.094 (2)0.052*
H1B0.653 (4)0.925 (2)0.082 (2)0.052*
H2A0.587 (4)0.658 (3)0.4705 (12)0.052*
H2B0.591 (4)0.581 (2)0.4010 (18)0.052*
H020.885 (4)1.221 (3)0.188 (2)0.041*
H3A0.572 (4)0.908 (3)0.2571 (12)0.052*
H010.752 (4)1.144 (3)0.165 (2)0.041*
H3B0.578 (4)0.832 (2)0.3410 (16)0.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0417 (13)0.0409 (12)0.0405 (12)0.0020 (10)0.0096 (10)0.0033 (9)
C20.0562 (16)0.0562 (15)0.0420 (13)0.0161 (13)0.0152 (12)0.0040 (11)
C30.0598 (17)0.0465 (14)0.0583 (16)0.0121 (12)0.0331 (14)0.0134 (12)
C40.0440 (14)0.0351 (12)0.0664 (17)0.0038 (10)0.0296 (13)0.0036 (11)
C50.0549 (17)0.0399 (13)0.099 (3)0.0068 (12)0.0439 (18)0.0021 (14)
C60.0470 (16)0.0438 (14)0.103 (3)0.0183 (12)0.0325 (17)0.0148 (15)
C70.0365 (13)0.0360 (12)0.082 (2)0.0076 (10)0.0166 (13)0.0149 (12)
C80.0462 (16)0.0553 (16)0.087 (2)0.0151 (13)0.0041 (15)0.0294 (16)
C90.0649 (19)0.0583 (17)0.0625 (18)0.0075 (15)0.0063 (15)0.0206 (14)
C100.0624 (17)0.0427 (13)0.0468 (14)0.0065 (12)0.0013 (13)0.0088 (11)
C110.0315 (11)0.0279 (10)0.0568 (14)0.0023 (9)0.0111 (10)0.0076 (9)
C120.0338 (11)0.0263 (10)0.0508 (13)0.0007 (8)0.0154 (10)0.0012 (9)
C130.0386 (12)0.0268 (10)0.0420 (12)0.0026 (9)0.0095 (10)0.0067 (8)
C140.0457 (13)0.0302 (10)0.0450 (13)0.0044 (9)0.0121 (11)0.0031 (9)
C150.0595 (16)0.0289 (11)0.0527 (14)0.0057 (11)0.0134 (12)0.0031 (10)
C160.081 (2)0.0494 (16)0.077 (2)0.0162 (16)0.0099 (18)0.0042 (15)
C170.125 (3)0.0559 (18)0.0584 (19)0.001 (2)0.031 (2)0.0153 (14)
N10.0427 (11)0.0303 (9)0.0430 (11)0.0062 (8)0.0047 (9)0.0045 (8)
N20.0361 (10)0.0297 (8)0.0388 (10)0.0011 (7)0.0098 (8)0.0025 (7)
N30.0490 (12)0.0303 (9)0.0372 (10)0.0061 (9)0.0058 (9)0.0037 (8)
N40.0638 (17)0.0525 (14)0.0730 (19)0.0042 (12)0.0036 (15)0.0074 (13)
O10.0562 (11)0.0321 (8)0.0531 (10)0.0152 (8)0.0100 (8)0.0125 (7)
O20.0544 (10)0.0344 (8)0.0368 (8)0.0153 (7)0.0114 (7)0.0076 (6)
O1W0.116 (2)0.101 (2)0.0612 (15)0.0010 (17)0.0442 (15)0.0188 (13)
O30.115 (2)0.133 (3)0.0578 (15)0.011 (2)0.0038 (15)0.0138 (16)
O2W0.0665 (13)0.0449 (10)0.0520 (11)0.0081 (9)0.0089 (10)0.0100 (9)
O40.0671 (17)0.103 (2)0.131 (3)0.0137 (15)0.0094 (17)0.0271 (19)
O3W0.0577 (11)0.0433 (9)0.0466 (10)0.0016 (8)0.0122 (9)0.0078 (8)
O50.091 (2)0.0889 (19)0.0850 (18)0.0104 (15)0.0212 (16)0.0139 (14)
Cu10.04126 (17)0.02603 (13)0.03374 (15)0.00937 (10)0.00668 (11)0.00374 (9)
Geometric parameters (Å, º) top
C1—N21.328 (3)C14—C151.526 (3)
C1—C21.395 (4)C14—H140.98
C1—H10.93C15—C171.520 (4)
C2—C31.372 (4)C15—C161.526 (4)
C2—H20.93C15—H150.98
C3—C41.407 (4)C16—H16A0.96
C3—H30.93C16—H16B0.96
C4—C121.399 (3)C16—H16C0.96
C4—C51.433 (4)C17—H17A0.96
C5—C61.344 (5)C17—H17B0.96
C5—H50.93C17—H17C0.96
C6—C71.426 (4)Cu1—N12.0320 (19)
C6—H60.93Cu1—N21.9975 (19)
C7—C111.410 (3)Cu1—N31.992 (2)
C7—C81.416 (5)N3—H020.82 (3)
C8—C91.358 (5)N3—H010.87 (3)
C8—H80.93N4—O31.207 (4)
C9—C101.390 (4)N4—O51.233 (4)
C9—H90.93N4—O41.238 (4)
C10—N11.326 (3)Cu1—O21.9349 (16)
C10—H100.93O1W—H1A0.802 (15)
C11—N11.353 (3)O1W—H1B0.822 (15)
C11—C121.430 (4)O2W—O2W0
C12—N21.357 (3)O2W—H2A0.804 (15)
C13—O11.239 (3)O2W—H2B0.840 (15)
C13—O21.270 (3)Cu1—O3W2.263 (2)
C13—C141.533 (3)O3W—H3A0.828 (15)
C14—N31.484 (3)O3W—H3B0.841 (15)
N2—C1—C2121.9 (2)C16—C15—C14112.7 (2)
N2—C1—H1119C17—C15—H15107.1
C2—C1—H1119C16—C15—H15107.1
C3—C2—C1119.4 (3)C14—C15—H15107.1
C3—C2—H2120.3C15—C16—H16A109.5
C1—C2—H2120.3C15—C16—H16B109.5
C2—C3—C4120.2 (2)H16A—C16—H16B109.5
C2—C3—H3119.9C15—C16—H16C109.5
C4—C3—H3119.9H16A—C16—H16C109.5
C12—C4—C3116.4 (2)H16B—C16—H16C109.5
C12—C4—C5118.2 (3)C15—C17—H17A109.5
C3—C4—C5125.4 (2)C15—C17—H17B109.5
C6—C5—C4121.4 (3)H17A—C17—H17B109.5
C6—C5—H5119.3C15—C17—H17C109.5
C4—C5—H5119.3H17A—C17—H17C109.5
C5—C6—C7121.7 (2)H17B—C17—H17C109.5
C5—C6—H6119.1C10—N1—C11118.6 (2)
C7—C6—H6119.1C10—N1—Cu1129.92 (18)
C11—C7—C8116.0 (3)C11—N1—Cu1111.50 (15)
C11—C7—C6118.3 (3)C1—N2—C12118.8 (2)
C8—C7—C6125.7 (3)C1—N2—Cu1128.22 (16)
C9—C8—C7120.3 (2)C12—N2—Cu1112.97 (15)
C9—C8—H8119.8C14—N3—Cu1109.71 (14)
C7—C8—H8119.8C14—N3—H02109.7 (19)
C8—C9—C10119.4 (3)Cu1—N3—H02106.4 (19)
C8—C9—H9120.3C14—N3—H01103.7 (18)
C10—C9—H9120.3Cu1—N3—H01109.8 (18)
N1—C10—C9122.6 (3)H02—N3—H01117 (3)
N1—C10—H10118.7O3—N4—O5119.8 (3)
C9—C10—H10118.7O3—N4—O4123.2 (4)
N1—C11—C7123.0 (2)O5—N4—O4117.0 (3)
N1—C11—C12117.17 (19)C13—O2—Cu1116.53 (15)
C7—C11—C12119.8 (2)H1A—O1W—H1B109 (2)
N2—C12—C4123.2 (2)H2A—O2W—H2B106 (2)
N2—C12—C11116.22 (19)Cu1—O3W—H3A109 (2)
C4—C12—C11120.5 (2)Cu1—O3W—H3B108 (2)
O1—C13—O2123.5 (2)H3A—O3W—H3B105.7 (19)
O1—C13—C14119.28 (19)O2—Cu1—N384.00 (8)
O2—C13—C14117.12 (18)O2—Cu1—N292.38 (7)
N3—C14—C15114.5 (2)N3—Cu1—N2168.37 (9)
N3—C14—C13108.83 (18)O2—Cu1—N1166.85 (8)
C15—C14—C13113.78 (19)N3—Cu1—N199.01 (8)
N3—C14—H14106.4N2—Cu1—N182.13 (8)
C15—C14—H14106.4O2—Cu1—O3W98.54 (8)
C13—C14—H14106.4N3—Cu1—O3W95.92 (9)
C17—C15—C16111.1 (3)N2—Cu1—O3W95.55 (8)
C17—C15—C14111.4 (2)N1—Cu1—O3W93.90 (8)
N2—C1—C2—C30.3 (4)C7—C11—N1—Cu1179.17 (19)
C1—C2—C3—C40.2 (4)C12—C11—N1—Cu11.5 (3)
C2—C3—C4—C120.4 (4)C2—C1—N2—C120.7 (3)
C2—C3—C4—C5179.2 (3)C2—C1—N2—Cu1179.91 (18)
C12—C4—C5—C61.0 (4)C4—C12—N2—C10.9 (3)
C3—C4—C5—C6179.4 (3)C11—C12—N2—C1179.9 (2)
C4—C5—C6—C71.2 (5)C4—C12—N2—Cu1179.74 (18)
C5—C6—C7—C110.8 (4)C11—C12—N2—Cu10.5 (2)
C5—C6—C7—C8179.2 (3)C15—C14—N3—Cu1149.15 (18)
C11—C7—C8—C91.1 (4)C13—C14—N3—Cu120.5 (2)
C6—C7—C8—C9179.0 (3)O1—C13—O2—Cu1178.54 (18)
C7—C8—C9—C100.3 (5)C14—C13—O2—Cu12.4 (3)
C8—C9—C10—N10.8 (5)C13—O2—Cu1—N38.10 (18)
C8—C7—C11—N10.9 (4)C13—O2—Cu1—N2177.01 (18)
C6—C7—C11—N1179.1 (2)C13—O2—Cu1—N1112.1 (3)
C8—C7—C11—C12179.8 (2)C13—O2—Cu1—O3W87.02 (18)
C6—C7—C11—C120.2 (4)C14—N3—Cu1—O216.23 (17)
C3—C4—C12—N20.8 (3)C14—N3—Cu1—N288.6 (4)
C5—C4—C12—N2178.8 (2)C14—N3—Cu1—N1176.68 (17)
C3—C4—C12—C11180.0 (2)C14—N3—Cu1—O3W81.77 (17)
C5—C4—C12—C110.4 (3)C1—N2—Cu1—O213.0 (2)
N1—C11—C12—N21.4 (3)C12—N2—Cu1—O2167.75 (16)
C7—C11—C12—N2179.3 (2)C1—N2—Cu1—N384.5 (4)
N1—C11—C12—C4179.3 (2)C12—N2—Cu1—N396.2 (4)
C7—C11—C12—C40.0 (3)C1—N2—Cu1—N1179.0 (2)
O1—C13—C14—N3168.0 (2)C12—N2—Cu1—N10.24 (15)
O2—C13—C14—N315.7 (3)C1—N2—Cu1—O3W85.8 (2)
O1—C13—C14—C1538.9 (3)C12—N2—Cu1—O3W93.43 (16)
O2—C13—C14—C15144.7 (2)C10—N1—Cu1—O2114.1 (4)
N3—C14—C15—C1761.3 (3)C11—N1—Cu1—O265.0 (4)
C13—C14—C15—C17172.6 (3)C10—N1—Cu1—N311.8 (3)
N3—C14—C15—C1664.4 (3)C11—N1—Cu1—N3167.33 (17)
C13—C14—C15—C1661.7 (3)C10—N1—Cu1—N2179.9 (2)
C9—C10—N1—C111.0 (4)C11—N1—Cu1—N20.96 (16)
C9—C10—N1—Cu1178.1 (2)C10—N1—Cu1—O3W84.8 (2)
C7—C11—N1—C100.1 (4)C11—N1—Cu1—O3W96.04 (17)
C12—C11—N1—C10179.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3A···O1W0.83 (2)2.02 (2)2.778 (3)153 (3)
N3—H01···O1W0.87 (3)2.15 (3)2.967 (4)156 (2)
O3W—H3B···O2W0.84 (2)1.92 (2)2.753 (3)171 (3)
O1W—H1A···O4i0.80 (2)2.02 (2)2.810 (4)170 (3)
O1W—H1B···O4ii0.82 (2)2.19 (2)2.881 (4)143 (2)
O1W—H1B···O5ii0.82 (2)2.48 (2)3.245 (5)156 (3)
O2W—H2A···O1iii0.80 (2)2.05 (2)2.836 (3)167 (3)
O2W—H2B···O1iv0.84 (2)2.02 (2)2.851 (3)174 (3)
N3—H02···O3v0.82 (3)2.46 (3)3.229 (4)158 (2)
N3—H02···O5v0.82 (3)2.58 (3)3.168 (4)130 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+2, z+1; (iv) x, y1, z; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C5H10NO2)(C12H8N2)(H2O)]NO3·2H2O
Mr475.94
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.9020 (19), 9.610 (3), 14.327 (4)
α, β, γ (°)81.89 (3), 75.04 (2), 87.92 (2)
V3)1040.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.45 × 0.27 × 0.21
Data collection
DiffractometerSiemens P4
Absorption correctionψ scan
(XSCANS; Siemens, 1993)
Tmin, Tmax0.729, 0.794
No. of measured, independent and
observed [I > 2σ(I)] reflections
5563, 4551, 3807
Rint0.024
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.06
No. of reflections4551
No. of parameters297
No. of restraints18
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.33

Computer programs: XSCANS (Siemens, 1993), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cu1—N12.0320 (19)Cu1—O21.9349 (16)
Cu1—N21.9975 (19)Cu1—O3W2.263 (2)
Cu1—N31.992 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3A···O1W0.828 (15)2.017 (16)2.778 (3)153 (3)
N3—H01···O1W0.87 (3)2.15 (3)2.967 (4)156 (2)
O3W—H3B···O2W0.841 (15)1.919 (15)2.753 (3)171 (3)
O1W—H1A···O4i0.802 (15)2.016 (16)2.810 (4)170 (3)
O1W—H1B···O4ii0.822 (15)2.19 (2)2.881 (4)143 (2)
O1W—H1B···O5ii0.822 (15)2.478 (19)3.245 (5)156 (3)
O2W—H2A···O1iii0.804 (15)2.048 (18)2.836 (3)167 (3)
O2W—H2B···O1iv0.840 (15)2.015 (16)2.851 (3)174 (3)
N3—H02···O3v0.82 (3)2.46 (3)3.229 (4)158 (2)
N3—H02···O5v0.82 (3)2.58 (3)3.168 (4)130 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+2, z+1; (iv) x, y1, z; (v) x+1, y+1, z.
 

Acknowledgements

We thank CONACYT 87806, PAPIIT IN 227110 and PICSA10–61 for their financial support of this work. MFA is indebted to Dr A. L. Maldonado-Hermenegildo for useful comments.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDalhus, B. & Görbitz, C. H. (1999). Acta Cryst. C55, 1547–1555.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLe, X., Liao, S., Liu, X. & Feng, X. (2006). J. Coord. Chem. 59, 985–995.  Web of Science CSD CrossRef CAS Google Scholar
First citationRao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRuiz-Azuara, L. (1996). US Patent 5 576 326.  Google Scholar
First citationRuiz-Azuara, L. (1997). US Patent RE 35 458.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1993). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds