organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-(4-Benz­yl­oxy-2-hy­dr­oxy­benzyl­­idene)-N-phenyl­hydrazinecarbo­thio­amide

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: eesans@yahoo.com

(Received 8 November 2011; accepted 21 November 2011; online 25 November 2011)

The title compound, C21H19N3O2S, exists in the thione form. The configuration about the C=N bond is E. The hydrazinecarbothio­amide unit adopts an almost planar arrangement, with maximum deviations of 0.016 (3) and −0.016 (2) Å for the two thio­urea N atoms. An intra­molecular O—H⋯N hydrogen bond occurs. Weak inter­molecular N—H⋯S, C—H⋯O and C—H⋯π inter­actions are observed in the crystal structure.

Related literature

For applications of hydrazinecarbothio­amide and its derivatives, see: Casas et al. (2000[Casas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]); Lukevics et al. (1995[Lukevics, E., Jansone, D., Rubina, K., Abele, E., Germane, S., Leite, L., Shymaska, M. & Popelis, J. (1995). Eur. J. Med. Chem. 30, 983-986.]). For the synthesis, see: Joseph et al. (2004[Joseph, M., Suni, V., Kurup, M. R. P., Nethaji, M., Kishore, A. & Bhat, S. G. (2004). Polyhedron, 23, 3069-3080.]). For related hydrazine­carbothio­amide structures, see: Seena et al. (2008[Seena, E. B., Kurup, M. R. P. & Suresh, E. (2008). J. Chem. Crystallogr. 38, 93-96.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19N3O2S

  • Mr = 377.45

  • Monoclinic, C 2/c

  • a = 24.099 (3) Å

  • b = 16.173 (2) Å

  • c = 9.8370 (11) Å

  • β = 95.906 (7)°

  • V = 3813.5 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.945, Tmax = 0.954

  • 14236 measured reflections

  • 3351 independent reflections

  • 1848 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.148

  • S = 1.01

  • 3351 reflections

  • 256 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C16–C21 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1 0.85 (4) 1.99 (4) 2.679 (3) 137 (4)
N2—H2B⋯S1i 0.85 (1) 2.55 (1) 3.392 (3) 170 (3)
C13—H13⋯O1ii 0.93 2.47 3.388 (4) 171
C5—H5⋯Cgiii 0.93 2.80 3.643 (4) 152
C12—H12⋯Cgii 0.93 2.87 3.741 (4) 157
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Derivatives of hydrazinecarbothioamide are an important group of multidentate ligands with potential binding sites available for an extensive diversity of metal ions. A large number of studies have been devoted to the search for derivatives of hydrazinecarbothioamide, which have been used as drugs and have the ability to form complexes (Casas et al., 2000). These compounds find substantial applications in different aspects of modern scientific research (Lukevics et al., 1995).

The title compound (E)-2-[4-(benzyloxy)-2-hydroxybenzylidene]-N-πhenylhydrazinecarbothioamide is found to exist in an E configuration having N3 and N1 atoms cis to each other with respect to C15–N2 bond (Fig. 1). The S1/C15/N12/N1 torsion-angle [-178.27 (19)°] suggests that the thionyl atom S1 is located trans to the azomethane nitrogen atom N1. The closeness of the C13S1 bond distance [1.665 (3) Å] to the expected distance of a CS bond (1.60 Å) (Allen et al., 1987; Seena et al., 2008) indicates that the compound exists in the thione form and it is further confirmed by the N1—N2 and N2—C15 bond distances. The hydrazinecarbothioamide moiety, (N1/N2/N3/C15/S1/C16), is nearly planar with a maximum deviation of 0.016 (3) and -0.016 (2) Å for atoms N3 and N2 from its least squares plane value. The three aromatic rings are twisted with a dihedral angle of 86.43 (17) Å between the least squares plane of the rings C1—C6 and C8—C13, 67.99 (19) Å between rings C1—C6 and C16—C21 and 29.77 (16) Å between rings C8—C13 and C16—C21, respectively.

An O2–H2A···N1 intramolecular hydrogen bond (Table 1), is observed which contributes to the planarity of the N1/C14/C11/C10/O2 group with a maximum deivation of 0.146 (2) Å for atom N1. Weak N—H···S, C—H···O and C—H···Cg π-ring intermolecular interactions (Table 1) are also observed.

Related literature top

For applications of hydrazinecarbothioamide and its derivatives, see: Casas et al. (2000); Lukevics et al. (1995). For the synthesis, see: Joseph et al. (2004). For related hydrazinecarbothioamide structures, see: Seena et al. (2008). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was prepared by adapting a reported procedure (Joseph et al., 2004) by refluxing a mixture of methanolic solutions of N-phenylhydrazinecarbothioamide (1.672 g, 10 mmol) and 4-(benzyloxy)-2-hydroxybenzaldehyde (2.282 g, 10 mmol) for four hours after adding 5 drops of acetic acid. Colorless crystals were collected, washed with few drops of methanol and dried over P4O10 in vacuo. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation from its methanolic solution.

Refinement top

All H atoms on C were placed in calculated positions, guided by Fourier difference maps, with C—H bond distances 0.93Å (CH) or 0.97Å (CH2). H atoms were assigned as Uiso=1.2Ueq. H3A and H2B hydrogen atoms were located from Fourier diffrence maps and restrained using the DFIX instruction. H2A was located from a Fourier difference map and freely refined.

Structure description top

Derivatives of hydrazinecarbothioamide are an important group of multidentate ligands with potential binding sites available for an extensive diversity of metal ions. A large number of studies have been devoted to the search for derivatives of hydrazinecarbothioamide, which have been used as drugs and have the ability to form complexes (Casas et al., 2000). These compounds find substantial applications in different aspects of modern scientific research (Lukevics et al., 1995).

The title compound (E)-2-[4-(benzyloxy)-2-hydroxybenzylidene]-N-πhenylhydrazinecarbothioamide is found to exist in an E configuration having N3 and N1 atoms cis to each other with respect to C15–N2 bond (Fig. 1). The S1/C15/N12/N1 torsion-angle [-178.27 (19)°] suggests that the thionyl atom S1 is located trans to the azomethane nitrogen atom N1. The closeness of the C13S1 bond distance [1.665 (3) Å] to the expected distance of a CS bond (1.60 Å) (Allen et al., 1987; Seena et al., 2008) indicates that the compound exists in the thione form and it is further confirmed by the N1—N2 and N2—C15 bond distances. The hydrazinecarbothioamide moiety, (N1/N2/N3/C15/S1/C16), is nearly planar with a maximum deviation of 0.016 (3) and -0.016 (2) Å for atoms N3 and N2 from its least squares plane value. The three aromatic rings are twisted with a dihedral angle of 86.43 (17) Å between the least squares plane of the rings C1—C6 and C8—C13, 67.99 (19) Å between rings C1—C6 and C16—C21 and 29.77 (16) Å between rings C8—C13 and C16—C21, respectively.

An O2–H2A···N1 intramolecular hydrogen bond (Table 1), is observed which contributes to the planarity of the N1/C14/C11/C10/O2 group with a maximum deivation of 0.146 (2) Å for atom N1. Weak N—H···S, C—H···O and C—H···Cg π-ring intermolecular interactions (Table 1) are also observed.

For applications of hydrazinecarbothioamide and its derivatives, see: Casas et al. (2000); Lukevics et al. (1995). For the synthesis, see: Joseph et al. (2004). For related hydrazinecarbothioamide structures, see: Seena et al. (2008). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids are drawn at 50% probability level.
(E)-2-(4-Benzyloxy-2-hydroxybenzylidene)-N- phenylhydrazinecarbothioamide top
Crystal data top
C21H19N3O2SF(000) = 1584
Mr = 377.45Dx = 1.315 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1946 reflections
a = 24.099 (3) Åθ = 5.0–28.5°
b = 16.173 (2) ŵ = 0.19 mm1
c = 9.8370 (11) ÅT = 296 K
β = 95.906 (7)°Block, colorless
V = 3813.5 (8) Å30.30 × 0.25 × 0.25 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3351 independent reflections
Radiation source: fine-focus sealed tube1848 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 2.5°
ω and φ scanh = 2828
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
k = 1719
Tmin = 0.945, Tmax = 0.954l = 1111
14236 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0662P)2 + 0.0863P]
where P = (Fo2 + 2Fc2)/3
3351 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.19 e Å3
2 restraintsΔρmin = 0.22 e Å3
Crystal data top
C21H19N3O2SV = 3813.5 (8) Å3
Mr = 377.45Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.099 (3) ŵ = 0.19 mm1
b = 16.173 (2) ÅT = 296 K
c = 9.8370 (11) Å0.30 × 0.25 × 0.25 mm
β = 95.906 (7)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3351 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
1848 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.954Rint = 0.073
14236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0492 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.19 e Å3
3351 reflectionsΔρmin = 0.22 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.49744 (4)0.63473 (5)1.03069 (9)0.0709 (3)
O10.76193 (9)0.36630 (13)0.4043 (2)0.0729 (7)
O20.65146 (10)0.57793 (14)0.5709 (2)0.0737 (7)
N10.59125 (9)0.53647 (16)0.7749 (2)0.0511 (6)
N20.55333 (10)0.54839 (17)0.8682 (2)0.0550 (7)
N30.57110 (11)0.68512 (18)0.8607 (3)0.0664 (8)
C10.79384 (15)0.3466 (2)0.1029 (4)0.0845 (12)
H10.75610.35710.08000.101*
C20.82307 (18)0.3021 (3)0.0138 (4)0.1015 (14)
H20.80510.28300.06830.122*
C30.87770 (18)0.2865 (3)0.0463 (5)0.0936 (13)
H30.89740.25720.01440.112*
C40.90424 (15)0.3129 (3)0.1665 (5)0.0871 (12)
H40.94180.30100.18900.104*
C50.87465 (14)0.3584 (2)0.2567 (4)0.0787 (11)
H50.89270.37710.33910.094*
C60.81945 (14)0.3754 (2)0.2240 (3)0.0630 (9)
C70.78667 (13)0.4237 (2)0.3182 (3)0.0681 (10)
H7A0.81100.46140.37300.082*
H7B0.75790.45580.26580.082*
C80.72517 (12)0.3956 (2)0.4887 (3)0.0562 (8)
C90.70723 (11)0.47536 (19)0.4902 (3)0.0530 (8)
H90.72120.51430.43310.064*
C100.66811 (11)0.49850 (19)0.5768 (3)0.0496 (7)
C110.64668 (11)0.44162 (19)0.6633 (3)0.0493 (7)
C120.66643 (13)0.3615 (2)0.6596 (3)0.0701 (10)
H120.65290.32250.71730.084*
C130.70480 (14)0.3371 (2)0.5751 (3)0.0751 (10)
H130.71710.28270.57520.090*
C140.60610 (11)0.4627 (2)0.7560 (3)0.0534 (8)
H140.59040.42050.80360.064*
C150.54245 (11)0.62420 (19)0.9143 (3)0.0513 (7)
C160.57073 (14)0.7713 (2)0.8776 (3)0.0637 (9)
C170.61716 (16)0.8131 (3)0.8441 (3)0.0847 (11)
H170.64750.78360.81830.102*
C180.6191 (2)0.8979 (3)0.8485 (4)0.1049 (14)
H180.65060.92550.82480.126*
C190.5749 (2)0.9422 (3)0.8877 (4)0.1129 (16)
H190.57590.99960.89160.135*
C200.5290 (2)0.8994 (3)0.9210 (4)0.1051 (14)
H200.49880.92870.94750.126*
C210.52644 (15)0.8151 (2)0.9165 (3)0.0814 (11)
H210.49480.78780.93960.098*
H2A0.6261 (15)0.589 (2)0.621 (4)0.110 (14)*
H3A0.5945 (10)0.665 (2)0.811 (3)0.091 (12)*
H2B0.5385 (10)0.5062 (10)0.901 (3)0.056 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0775 (6)0.0587 (6)0.0858 (6)0.0045 (5)0.0530 (5)0.0059 (4)
O10.0896 (15)0.0552 (15)0.0845 (14)0.0196 (12)0.0601 (12)0.0102 (11)
O20.0914 (17)0.0506 (16)0.0884 (16)0.0192 (13)0.0544 (14)0.0081 (12)
N10.0532 (14)0.0533 (18)0.0511 (14)0.0046 (13)0.0266 (11)0.0048 (11)
N20.0573 (15)0.0492 (19)0.0637 (16)0.0012 (14)0.0309 (12)0.0037 (13)
N30.0770 (18)0.0537 (19)0.0762 (18)0.0036 (15)0.0453 (15)0.0097 (14)
C10.083 (2)0.090 (3)0.086 (3)0.020 (2)0.035 (2)0.003 (2)
C20.102 (3)0.119 (4)0.089 (3)0.022 (3)0.040 (2)0.019 (2)
C30.097 (3)0.091 (3)0.103 (3)0.013 (3)0.063 (3)0.007 (3)
C40.068 (2)0.084 (3)0.118 (3)0.017 (2)0.051 (2)0.011 (2)
C50.072 (2)0.085 (3)0.084 (2)0.011 (2)0.0340 (18)0.0091 (19)
C60.075 (2)0.052 (2)0.069 (2)0.0108 (18)0.0398 (17)0.0087 (17)
C70.077 (2)0.063 (2)0.072 (2)0.0151 (18)0.0440 (17)0.0118 (16)
C80.0612 (18)0.051 (2)0.0612 (18)0.0105 (16)0.0308 (15)0.0032 (15)
C90.0587 (18)0.052 (2)0.0527 (17)0.0045 (15)0.0244 (14)0.0025 (14)
C100.0536 (16)0.044 (2)0.0539 (17)0.0046 (16)0.0171 (13)0.0049 (14)
C110.0540 (17)0.046 (2)0.0511 (17)0.0008 (15)0.0226 (13)0.0017 (13)
C120.088 (2)0.052 (2)0.079 (2)0.0073 (19)0.0501 (18)0.0112 (16)
C130.094 (2)0.047 (2)0.094 (2)0.0149 (19)0.058 (2)0.0077 (18)
C140.0564 (18)0.054 (2)0.0546 (17)0.0014 (16)0.0256 (14)0.0009 (15)
C150.0523 (17)0.047 (2)0.0569 (17)0.0016 (16)0.0181 (13)0.0051 (15)
C160.084 (2)0.054 (2)0.0575 (19)0.0069 (19)0.0316 (16)0.0037 (16)
C170.107 (3)0.069 (3)0.086 (3)0.011 (2)0.049 (2)0.001 (2)
C180.146 (4)0.075 (3)0.101 (3)0.032 (3)0.051 (3)0.007 (2)
C190.180 (5)0.052 (3)0.115 (3)0.011 (3)0.056 (3)0.005 (2)
C200.147 (4)0.058 (3)0.118 (3)0.005 (3)0.047 (3)0.009 (2)
C210.099 (3)0.055 (3)0.097 (3)0.000 (2)0.043 (2)0.010 (2)
Geometric parameters (Å, º) top
S1—C151.665 (3)C7—H7A0.9700
O1—C81.360 (3)C7—H7B0.9700
O1—C71.428 (3)C8—C91.360 (4)
O2—C101.345 (3)C8—C131.395 (4)
O2—H2A0.85 (4)C9—C101.386 (3)
N1—C141.264 (4)C9—H90.9300
N1—N21.374 (3)C10—C111.388 (4)
N2—C151.342 (4)C11—C121.382 (4)
N2—H2B0.8501 (10)C11—C141.445 (3)
N3—C151.341 (4)C12—C131.363 (4)
N3—C161.403 (4)C12—H120.9300
N3—H3A0.8501 (11)C13—H130.9300
C1—C61.366 (5)C14—H140.9300
C1—C21.382 (4)C16—C211.369 (4)
C1—H10.9300C16—C171.376 (4)
C2—C31.346 (5)C17—C181.373 (6)
C2—H20.9300C17—H170.9300
C3—C41.354 (5)C18—C191.372 (6)
C3—H30.9300C18—H180.9300
C4—C51.403 (5)C19—C201.371 (6)
C4—H40.9300C19—H190.9300
C5—C61.364 (4)C20—C211.364 (5)
C5—H50.9300C20—H200.9300
C6—C71.498 (4)C21—H210.9300
C8—O1—C7118.2 (2)C10—C9—H9120.0
C10—O2—H2A114 (3)O2—C10—C9116.8 (3)
C14—N1—N2116.6 (2)O2—C10—C11122.1 (2)
C15—N2—N1121.3 (2)C9—C10—C11121.2 (3)
C15—N2—H2B119.9 (19)C12—C11—C10117.0 (2)
N1—N2—H2B118.6 (19)C12—C11—C14119.7 (3)
C15—N3—C16132.3 (2)C10—C11—C14123.3 (3)
C15—N3—H3A110 (2)C13—C12—C11123.0 (3)
C16—N3—H3A117 (2)C13—C12—H12118.5
C6—C1—C2121.1 (4)C11—C12—H12118.5
C6—C1—H1119.4C12—C13—C8118.6 (3)
C2—C1—H1119.4C12—C13—H13120.7
C3—C2—C1119.8 (4)C8—C13—H13120.7
C3—C2—H2120.1N1—C14—C11122.4 (3)
C1—C2—H2120.1N1—C14—H14118.8
C2—C3—C4120.7 (3)C11—C14—H14118.8
C2—C3—H3119.7N3—C15—N2114.3 (2)
C4—C3—H3119.7N3—C15—S1126.4 (2)
C3—C4—C5119.5 (4)N2—C15—S1119.3 (2)
C3—C4—H4120.2C21—C16—C17119.3 (3)
C5—C4—H4120.2C21—C16—N3124.2 (3)
C6—C5—C4120.2 (4)C17—C16—N3116.4 (3)
C6—C5—H5119.9C18—C17—C16120.6 (4)
C4—C5—H5119.9C18—C17—H17119.7
C5—C6—C1118.6 (3)C16—C17—H17119.7
C5—C6—C7121.5 (3)C19—C18—C17120.3 (4)
C1—C6—C7119.8 (3)C19—C18—H18119.8
O1—C7—C6107.9 (3)C17—C18—H18119.8
O1—C7—H7A110.1C20—C19—C18118.2 (4)
C6—C7—H7A110.1C20—C19—H19120.9
O1—C7—H7B110.1C18—C19—H19120.9
C6—C7—H7B110.1C21—C20—C19122.1 (4)
H7A—C7—H7B108.4C21—C20—H20118.9
O1—C8—C9124.4 (3)C19—C20—H20118.9
O1—C8—C13115.3 (3)C20—C21—C16119.5 (4)
C9—C8—C13120.3 (2)C20—C21—H21120.3
C8—C9—C10120.0 (3)C16—C21—H21120.3
C8—C9—H9120.0
C14—N1—N2—C15167.7 (3)C10—C11—C12—C130.6 (5)
C6—C1—C2—C30.1 (6)C14—C11—C12—C13179.8 (3)
C1—C2—C3—C41.0 (7)C11—C12—C13—C80.1 (6)
C2—C3—C4—C51.2 (6)O1—C8—C13—C12178.0 (3)
C3—C4—C5—C60.4 (6)C9—C8—C13—C120.5 (5)
C4—C5—C6—C10.6 (5)N2—N1—C14—C11178.5 (2)
C4—C5—C6—C7179.9 (3)C12—C11—C14—N1171.9 (3)
C2—C1—C6—C50.9 (6)C10—C11—C14—N17.2 (5)
C2—C1—C6—C7179.8 (3)C16—N3—C15—N2177.7 (3)
C8—O1—C7—C6173.0 (3)C16—N3—C15—S13.7 (5)
C5—C6—C7—O191.8 (4)N1—N2—C15—N30.5 (4)
C1—C6—C7—O187.5 (4)N1—N2—C15—S1178.3 (2)
C7—O1—C8—C94.8 (5)C15—N3—C16—C2124.8 (6)
C7—O1—C8—C13176.8 (3)C15—N3—C16—C17159.3 (3)
O1—C8—C9—C10177.7 (3)C21—C16—C17—C180.5 (5)
C13—C8—C9—C100.7 (5)N3—C16—C17—C18175.6 (3)
C8—C9—C10—O2178.7 (3)C16—C17—C18—C190.6 (6)
C8—C9—C10—C110.2 (5)C17—C18—C19—C200.5 (7)
O2—C10—C11—C12179.3 (3)C18—C19—C20—C210.2 (7)
C9—C10—C11—C120.5 (4)C19—C20—C21—C160.0 (6)
O2—C10—C11—C141.5 (5)C17—C16—C21—C200.2 (5)
C9—C10—C11—C14179.6 (3)N3—C16—C21—C20175.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C16–C21 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.85 (4)1.99 (4)2.679 (3)137 (4)
N2—H2B···S1i0.85 (1)2.55 (1)3.392 (3)170 (3)
C13—H13···O1ii0.932.473.388 (4)171
C5—H5···Cgiii0.932.803.643 (4)152
C12—H12···Cgii0.932.873.741 (4)157
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+3/2, y+1/2, z+1; (iii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC21H19N3O2S
Mr377.45
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)24.099 (3), 16.173 (2), 9.8370 (11)
β (°) 95.906 (7)
V3)3813.5 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.30 × 0.25 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.945, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
14236, 3351, 1848
Rint0.073
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.148, 1.01
No. of reflections3351
No. of parameters256
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.22

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1994), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C16–C21 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.85 (4)1.99 (4)2.679 (3)137 (4)
N2—H2B···S1i0.8501 (10)2.552 (5)3.392 (3)170 (3)
C13—H13···O1ii0.932.473.388 (4)171.4
C5—H5···Cgiii0.932.803.643 (4)152
C12—H12···Cgii0.932.873.741 (4)157
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+3/2, y+1/2, z+1; (iii) x+3/2, y1/2, z+3/2.
 

Acknowledgements

KN is thankful to the Council of Scientific and Industrial Research, New Delhi, India, for financial support in the form of a Junior Research Fellowship. The authors are thankful to the Sophisticated Analytical Instrument Facility, Cochin University of Science & Technology, Kochi, India, for providing the single-crystal XRD data.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJoseph, M., Suni, V., Kurup, M. R. P., Nethaji, M., Kishore, A. & Bhat, S. G. (2004). Polyhedron, 23, 3069–3080.  Web of Science CSD CrossRef CAS Google Scholar
First citationLukevics, E., Jansone, D., Rubina, K., Abele, E., Germane, S., Leite, L., Shymaska, M. & Popelis, J. (1995). Eur. J. Med. Chem. 30, 983–986.  CrossRef CAS Web of Science Google Scholar
First citationSeena, E. B., Kurup, M. R. P. & Suresh, E. (2008). J. Chem. Crystallogr. 38, 93–96.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds