organic compounds
4-{4-[(4-Oxoquinazolin-3-yl)methyl]-1H-1,2,3-triazol-1-yl}butyl acetate
aLaboratoire de Chimie Bio-organique et Macromoléculaire, Faculté des Sciences et Techniques Guéliz, Marrakech, Morocco, bUnité de Chimie Biomoléculaire et Médicinale, Faculté des Sciences Semlalia, Marrakech, Morocco, cLaboratoire de la Matière Condensée et des Nanostructures, Faculté des Sciences et Techniques Guéliz, Marrakech, Morocco, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: m_elazhari52@yahoo.com
In the heterocyclic title compound, C17H19N5O3, the quinazolinone ring system forms a dihedral angle of 67.22 (7)° with the triazole ring. The butyl acetate group has a non-linear conformation, with an alternation of synclinal and antiperiplanar torsion angles [N—C—C—C = 58.5 (2)°, C—C—C—C = 170.72 (19)° and C—C—C—O = −65.9 (3)°]. The features intermolecular C—H⋯N and C—H⋯O non-classical hydrogen bonds, building an infinite one-dimensional network along the [100] direction.
Related literature
For details of the synthesis, see: Krim et al. (2009); Mani Chandrika et al. (2010). For background to the biological activity of quinazolinone derivatives, see: Alvarez et al. (1994); Xu et al. (2007); Apfel et al. (2001); Tobe et al. (2003); Fung-Tome et al. (1998); Genin et al. (2000).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536811045600/kj2192sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811045600/kj2192Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536811045600/kj2192Isup3.cml
The title compound was prepared by
of propargylated quinazolinone and azide under microwave conditions with CuI as catalyst and without solvent. The product was obtained with quantitative yield (96%) and short reaction time (Mani Chandrika et al. (2010); Krim et al. (2009)). The crude product was purified passing through a column packed with silica gel. Crystal suitable for X-ray analysis was obtained by slow evaporation of a methanol / methylene chloride (5:95 v/v) solution. The melting point of this crystal is in the range of 353–354 K.The structure is solved by direct method technique and refined by full-matrix least-squares using SHELXS97 and SHELXL97 program packages. H atoms were located in a difference map and treated as riding with C—H = 0.97 Å and 0.93 Å for –CH2– and aromatic CH respectively. All H atoms with Uiso(H) = 1.2 Ueq (aromatic, methylene) and Uiso(H) = 1.5 Ueq for the methyl group.
The most interesting classes of compounds possess a wide spectrum of biological activity, we can found the quinazolinones derivatives (Apfel et al. (2001)). They are broadly used in pharmaceuticals and agrochemicals (Tobe et al. (2003)). For example, diseases of agriculture are treated by fungicide fluquinconazole (Xu et al. (2007)). Also, the most encountered heterocycle in medicinal chemistry, five-membered nitrogen heterocycles, they have an important part in biological systems. Among these, 1,2,3-triazole heterocycles have several biological activities, including anti-HIV (Alvarez et al. (1994)), anti-fungal, and antimicrobial activities (Fung-Tome et al. (1998); Genin et al. (2000)). 1,2,3-triazoles are useful products in chemistry, stable metabolism, stable to moisture, oxygen, light, and also metabolism in the body.
The molecule of the title compound is built up from two fused six-membered rings linked to a five-membered ring which is connected to butyl acetate group as shown in Fig.1. The quinazolinone ring is almost planar, with a maximum deviation of 0.0502 (14) Å for O1. The dihedral angle between the quinazolinone mean plane and the triazol ring amount to 67.22 (7)°. The butylacetate group has a non-linear conformation, with an alternation of synclinal and antiperiplanar torsion angles N5—C12—C13—C14 = 58.52 (23)°, C12—C13—C14—C15 = 170.72 (19)° and C13 - C14 - C15 - O2 = -65.91 (28)°.
An intermolecular C–H···N and C–H···O non classic hydrogen bonds, building an infinite one-dimensional network along [1 0 0] direction ensure the cohesion of the
as schown in Fig.2 and Table 1.For details of the synthesis, see: Krim et al. (2009); Mani Chandrika et al. (2010). For background to the biological activity of quinazolinone derivatives, see: Alvarez et al. (1994); Xu et al. (2007); Apfel et al. (2001); Tobe et al. (2003); Fung-Tome et al. (1998); Genin et al. (2000).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C17H19N5O3 | F(000) = 1440 |
Mr = 341.37 | Dx = 1.344 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -p 2ac 2ab | Cell parameters from 3676 reflections |
a = 10.2546 (4) Å | θ = 2.3–27.0° |
b = 8.7643 (3) Å | µ = 0.10 mm−1 |
c = 37.5434 (13) Å | T = 296 K |
V = 3374.2 (2) Å3 | Parallelepiped, colourless |
Z = 8 | 0.46 × 0.35 × 0.18 mm |
Bruker X8 APEXII diffractometer | 2830 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.031 |
Graphite monochromator | θmax = 27.0°, θmin = 2.3° |
φ and ω scans | h = −12→13 |
19997 measured reflections | k = −10→11 |
3676 independent reflections | l = −47→47 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0594P)2 + 1.1103P] where P = (Fo2 + 2Fc2)/3 |
3676 reflections | (Δ/σ)max = 0.001 |
226 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
C17H19N5O3 | V = 3374.2 (2) Å3 |
Mr = 341.37 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 10.2546 (4) Å | µ = 0.10 mm−1 |
b = 8.7643 (3) Å | T = 296 K |
c = 37.5434 (13) Å | 0.46 × 0.35 × 0.18 mm |
Bruker X8 APEXII diffractometer | 2830 reflections with I > 2σ(I) |
19997 measured reflections | Rint = 0.031 |
3676 independent reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.31 e Å−3 |
3676 reflections | Δρmin = −0.17 e Å−3 |
226 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.44375 (15) | 0.12932 (18) | 0.58669 (4) | 0.0395 (4) | |
C2 | 0.42450 (16) | 0.18373 (19) | 0.62292 (4) | 0.0415 (4) | |
C3 | 0.5106 (2) | 0.1412 (2) | 0.65006 (5) | 0.0570 (5) | |
H3 | 0.5802 | 0.0765 | 0.6451 | 0.068* | |
C4 | 0.4924 (3) | 0.1948 (3) | 0.68401 (6) | 0.0746 (7) | |
H4 | 0.5492 | 0.1655 | 0.7021 | 0.090* | |
C5 | 0.3899 (3) | 0.2922 (3) | 0.69155 (6) | 0.0766 (7) | |
H5 | 0.3786 | 0.3281 | 0.7146 | 0.092* | |
C6 | 0.3051 (2) | 0.3361 (3) | 0.66543 (5) | 0.0640 (5) | |
H6 | 0.2369 | 0.4022 | 0.6708 | 0.077* | |
C7 | 0.32078 (17) | 0.2818 (2) | 0.63062 (4) | 0.0452 (4) | |
C8 | 0.25014 (17) | 0.27360 (19) | 0.57352 (4) | 0.0447 (4) | |
H8 | 0.1905 | 0.3024 | 0.5561 | 0.054* | |
C9 | 0.34796 (17) | 0.11979 (18) | 0.52617 (4) | 0.0420 (4) | |
H9A | 0.2615 | 0.0820 | 0.5205 | 0.050* | |
H9B | 0.4081 | 0.0347 | 0.5244 | 0.050* | |
C10 | 0.38543 (15) | 0.23769 (18) | 0.49936 (4) | 0.0370 (3) | |
C11 | 0.30920 (15) | 0.32006 (17) | 0.47674 (4) | 0.0379 (4) | |
H11 | 0.2189 | 0.3170 | 0.4747 | 0.045* | |
C12 | 0.36418 (18) | 0.5147 (2) | 0.42924 (4) | 0.0481 (4) | |
H12A | 0.3987 | 0.6141 | 0.4356 | 0.058* | |
H12B | 0.2705 | 0.5246 | 0.4266 | 0.058* | |
C13 | 0.4222 (2) | 0.4655 (2) | 0.39423 (5) | 0.0545 (5) | |
H13A | 0.4008 | 0.5414 | 0.3764 | 0.065* | |
H13B | 0.5164 | 0.4636 | 0.3966 | 0.065* | |
C14 | 0.3778 (3) | 0.3121 (2) | 0.38106 (5) | 0.0669 (6) | |
H14A | 0.4119 | 0.2336 | 0.3967 | 0.080* | |
H14B | 0.2833 | 0.3075 | 0.3821 | 0.080* | |
C15 | 0.4210 (3) | 0.2797 (3) | 0.34367 (6) | 0.0885 (9) | |
H15A | 0.5148 | 0.2914 | 0.3418 | 0.106* | |
H15B | 0.3986 | 0.1758 | 0.3372 | 0.106* | |
C16 | 0.3964 (3) | 0.3897 (3) | 0.28651 (6) | 0.0746 (7) | |
C17 | 0.3213 (3) | 0.4995 (3) | 0.26464 (6) | 0.0899 (8) | |
H17A | 0.3770 | 0.5419 | 0.2466 | 0.135* | |
H17B | 0.2889 | 0.5799 | 0.2796 | 0.135* | |
H17C | 0.2494 | 0.4478 | 0.2536 | 0.135* | |
N1 | 0.23250 (15) | 0.32838 (18) | 0.60483 (4) | 0.0506 (4) | |
N2 | 0.34803 (13) | 0.17690 (15) | 0.56310 (3) | 0.0371 (3) | |
N3 | 0.51154 (13) | 0.27696 (17) | 0.49359 (4) | 0.0455 (3) | |
N4 | 0.51522 (13) | 0.38114 (18) | 0.46833 (4) | 0.0477 (4) | |
N5 | 0.39226 (12) | 0.40645 (15) | 0.45805 (3) | 0.0390 (3) | |
O1 | 0.53465 (12) | 0.04938 (16) | 0.57675 (4) | 0.0590 (4) | |
O2 | 0.35600 (17) | 0.38607 (17) | 0.32010 (3) | 0.0707 (4) | |
O3 | 0.4835 (3) | 0.3124 (3) | 0.27576 (5) | 0.1304 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0329 (8) | 0.0366 (8) | 0.0489 (9) | −0.0002 (7) | 0.0029 (7) | 0.0085 (7) |
C2 | 0.0403 (9) | 0.0405 (8) | 0.0438 (8) | −0.0057 (7) | −0.0016 (7) | 0.0099 (7) |
C3 | 0.0551 (12) | 0.0599 (11) | 0.0561 (11) | 0.0029 (9) | −0.0081 (9) | 0.0153 (9) |
C4 | 0.0828 (16) | 0.0923 (17) | 0.0488 (11) | −0.0010 (14) | −0.0203 (11) | 0.0142 (11) |
C5 | 0.0904 (18) | 0.0976 (18) | 0.0420 (10) | 0.0011 (15) | −0.0043 (11) | −0.0044 (11) |
C6 | 0.0669 (13) | 0.0765 (14) | 0.0487 (10) | 0.0041 (11) | 0.0026 (9) | −0.0096 (10) |
C7 | 0.0430 (10) | 0.0475 (9) | 0.0451 (9) | −0.0034 (8) | 0.0010 (7) | −0.0002 (7) |
C8 | 0.0382 (8) | 0.0458 (9) | 0.0500 (9) | 0.0065 (7) | −0.0061 (8) | −0.0026 (7) |
C9 | 0.0435 (9) | 0.0384 (8) | 0.0441 (8) | −0.0019 (7) | 0.0025 (7) | −0.0045 (7) |
C10 | 0.0340 (8) | 0.0409 (8) | 0.0361 (7) | −0.0004 (7) | 0.0020 (6) | −0.0072 (6) |
C11 | 0.0300 (8) | 0.0425 (8) | 0.0411 (8) | −0.0030 (7) | 0.0007 (6) | −0.0070 (7) |
C12 | 0.0523 (10) | 0.0430 (9) | 0.0491 (9) | 0.0009 (8) | −0.0028 (8) | 0.0038 (7) |
C13 | 0.0651 (12) | 0.0525 (11) | 0.0460 (10) | −0.0046 (9) | 0.0008 (9) | 0.0100 (8) |
C14 | 0.1040 (18) | 0.0491 (11) | 0.0476 (10) | 0.0043 (11) | −0.0131 (11) | 0.0057 (8) |
C15 | 0.150 (3) | 0.0665 (14) | 0.0493 (11) | 0.0397 (16) | −0.0138 (14) | 0.0002 (10) |
C16 | 0.0973 (19) | 0.0825 (15) | 0.0439 (11) | 0.0087 (14) | −0.0073 (11) | −0.0063 (10) |
C17 | 0.113 (2) | 0.1042 (19) | 0.0524 (12) | 0.0041 (17) | −0.0111 (13) | 0.0192 (12) |
N1 | 0.0435 (8) | 0.0576 (9) | 0.0508 (8) | 0.0111 (7) | −0.0049 (7) | −0.0090 (7) |
N2 | 0.0348 (7) | 0.0363 (6) | 0.0401 (7) | 0.0000 (5) | 0.0010 (5) | 0.0017 (5) |
N3 | 0.0336 (7) | 0.0573 (9) | 0.0457 (8) | 0.0015 (6) | 0.0012 (6) | 0.0031 (7) |
N4 | 0.0343 (8) | 0.0620 (9) | 0.0470 (8) | −0.0009 (7) | 0.0032 (6) | 0.0050 (7) |
N5 | 0.0343 (7) | 0.0451 (7) | 0.0377 (7) | −0.0003 (6) | −0.0003 (5) | −0.0024 (6) |
O1 | 0.0455 (7) | 0.0673 (8) | 0.0642 (8) | 0.0195 (7) | 0.0041 (6) | 0.0048 (7) |
O2 | 0.0997 (12) | 0.0707 (9) | 0.0417 (7) | 0.0180 (9) | −0.0043 (7) | 0.0062 (6) |
O3 | 0.166 (2) | 0.170 (2) | 0.0556 (10) | 0.0787 (19) | 0.0028 (12) | −0.0119 (12) |
C1—O1 | 1.224 (2) | C11—N5 | 1.338 (2) |
C1—N2 | 1.386 (2) | C11—H11 | 0.9300 |
C1—C2 | 1.455 (2) | C12—N5 | 1.467 (2) |
C2—C7 | 1.398 (2) | C12—C13 | 1.506 (2) |
C2—C3 | 1.399 (2) | C12—H12A | 0.9700 |
C3—C4 | 1.371 (3) | C12—H12B | 0.9700 |
C3—H3 | 0.9300 | C13—C14 | 1.503 (3) |
C4—C5 | 1.383 (3) | C13—H13A | 0.9700 |
C4—H4 | 0.9300 | C13—H13B | 0.9700 |
C5—C6 | 1.366 (3) | C14—C15 | 1.499 (3) |
C5—H5 | 0.9300 | C14—H14A | 0.9700 |
C6—C7 | 1.400 (2) | C14—H14B | 0.9700 |
C6—H6 | 0.9300 | C15—O2 | 1.448 (2) |
C7—N1 | 1.387 (2) | C15—H15A | 0.9700 |
C8—N1 | 1.283 (2) | C15—H15B | 0.9700 |
C8—N2 | 1.371 (2) | C16—O3 | 1.191 (3) |
C8—H8 | 0.9300 | C16—O2 | 1.328 (3) |
C9—N2 | 1.474 (2) | C16—C17 | 1.481 (3) |
C9—C10 | 1.493 (2) | C17—H17A | 0.9600 |
C9—H9A | 0.9700 | C17—H17B | 0.9600 |
C9—H9B | 0.9700 | C17—H17C | 0.9600 |
C10—N3 | 1.356 (2) | N3—N4 | 1.317 (2) |
C10—C11 | 1.361 (2) | N4—N5 | 1.3372 (19) |
O1—C1—N2 | 121.10 (16) | C13—C12—H12B | 109.1 |
O1—C1—C2 | 125.16 (15) | H12A—C12—H12B | 107.9 |
N2—C1—C2 | 113.74 (14) | C14—C13—C12 | 115.05 (17) |
C7—C2—C3 | 119.57 (17) | C14—C13—H13A | 108.5 |
C7—C2—C1 | 119.89 (15) | C12—C13—H13A | 108.5 |
C3—C2—C1 | 120.53 (16) | C14—C13—H13B | 108.5 |
C4—C3—C2 | 120.0 (2) | C12—C13—H13B | 108.5 |
C4—C3—H3 | 120.0 | H13A—C13—H13B | 107.5 |
C2—C3—H3 | 120.0 | C15—C14—C13 | 112.8 (2) |
C3—C4—C5 | 120.36 (19) | C15—C14—H14A | 109.0 |
C3—C4—H4 | 119.8 | C13—C14—H14A | 109.0 |
C5—C4—H4 | 119.8 | C15—C14—H14B | 109.0 |
C6—C5—C4 | 120.7 (2) | C13—C14—H14B | 109.0 |
C6—C5—H5 | 119.6 | H14A—C14—H14B | 107.8 |
C4—C5—H5 | 119.6 | O2—C15—C14 | 108.32 (18) |
C5—C6—C7 | 120.1 (2) | O2—C15—H15A | 110.0 |
C5—C6—H6 | 120.0 | C14—C15—H15A | 110.0 |
C7—C6—H6 | 120.0 | O2—C15—H15B | 110.0 |
N1—C7—C2 | 122.22 (15) | C14—C15—H15B | 110.0 |
N1—C7—C6 | 118.47 (17) | H15A—C15—H15B | 108.4 |
C2—C7—C6 | 119.30 (17) | O3—C16—O2 | 122.8 (2) |
N1—C8—N2 | 126.59 (15) | O3—C16—C17 | 124.8 (2) |
N1—C8—H8 | 116.7 | O2—C16—C17 | 112.3 (2) |
N2—C8—H8 | 116.7 | C16—C17—H17A | 109.5 |
N2—C9—C10 | 113.52 (13) | C16—C17—H17B | 109.5 |
N2—C9—H9A | 108.9 | H17A—C17—H17B | 109.5 |
C10—C9—H9A | 108.9 | C16—C17—H17C | 109.5 |
N2—C9—H9B | 108.9 | H17A—C17—H17C | 109.5 |
C10—C9—H9B | 108.9 | H17B—C17—H17C | 109.5 |
H9A—C9—H9B | 107.7 | C8—N1—C7 | 115.95 (15) |
N3—C10—C11 | 108.27 (14) | C8—N2—C1 | 121.49 (13) |
N3—C10—C9 | 121.94 (14) | C8—N2—C9 | 118.55 (13) |
C11—C10—C9 | 129.78 (15) | C1—N2—C9 | 119.94 (13) |
N5—C11—C10 | 105.17 (13) | N4—N3—C10 | 108.56 (13) |
N5—C11—H11 | 127.4 | N3—N4—N5 | 107.21 (13) |
C10—C11—H11 | 127.4 | N4—N5—C11 | 110.78 (13) |
N5—C12—C13 | 112.37 (14) | N4—N5—C12 | 120.34 (13) |
N5—C12—H12A | 109.1 | C11—N5—C12 | 128.86 (14) |
C13—C12—H12A | 109.1 | C16—O2—C15 | 116.87 (19) |
N5—C12—H12B | 109.1 | ||
O1—C1—C2—C7 | 176.30 (16) | C2—C7—N1—C8 | 1.3 (3) |
N2—C1—C2—C7 | −3.4 (2) | C6—C7—N1—C8 | −179.03 (18) |
O1—C1—C2—C3 | −2.4 (3) | N1—C8—N2—C1 | −1.4 (3) |
N2—C1—C2—C3 | 177.87 (15) | N1—C8—N2—C9 | 176.86 (17) |
C7—C2—C3—C4 | 0.5 (3) | O1—C1—N2—C8 | −176.14 (16) |
C1—C2—C3—C4 | 179.16 (19) | C2—C1—N2—C8 | 3.6 (2) |
C2—C3—C4—C5 | −0.6 (3) | O1—C1—N2—C9 | 5.6 (2) |
C3—C4—C5—C6 | 0.2 (4) | C2—C1—N2—C9 | −174.61 (13) |
C4—C5—C6—C7 | 0.4 (4) | C10—C9—N2—C8 | 72.82 (19) |
C3—C2—C7—N1 | 179.81 (17) | C10—C9—N2—C1 | −108.91 (16) |
C1—C2—C7—N1 | 1.1 (3) | C11—C10—N3—N4 | 0.31 (18) |
C3—C2—C7—C6 | 0.2 (3) | C9—C10—N3—N4 | 179.09 (14) |
C1—C2—C7—C6 | −178.54 (17) | C10—N3—N4—N5 | −0.49 (18) |
C5—C6—C7—N1 | 179.7 (2) | N3—N4—N5—C11 | 0.50 (18) |
C5—C6—C7—C2 | −0.6 (3) | N3—N4—N5—C12 | −178.25 (14) |
N2—C9—C10—N3 | 79.07 (19) | C10—C11—N5—N4 | −0.30 (17) |
N2—C9—C10—C11 | −102.43 (19) | C10—C11—N5—C12 | 178.31 (15) |
N3—C10—C11—N5 | 0.00 (17) | C13—C12—N5—N4 | 63.2 (2) |
C9—C10—C11—N5 | −178.66 (15) | C13—C12—N5—C11 | −115.34 (19) |
N5—C12—C13—C14 | 58.5 (2) | O3—C16—O2—C15 | −1.4 (4) |
C12—C13—C14—C15 | 170.72 (19) | C17—C16—O2—C15 | 178.6 (2) |
C13—C14—C15—O2 | −65.9 (3) | C14—C15—O2—C16 | 170.4 (2) |
N2—C8—N1—C7 | −1.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···N4i | 0.93 | 2.58 | 3.180 (2) | 123 |
C9—H9A···N4i | 0.97 | 2.58 | 3.418 (2) | 145 |
C11—H11···N3i | 0.93 | 2.57 | 3.359 (2) | 143 |
C12—H12B···O1i | 0.97 | 2.51 | 3.433 (2) | 160 |
Symmetry code: (i) x−1/2, −y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C17H19N5O3 |
Mr | 341.37 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 296 |
a, b, c (Å) | 10.2546 (4), 8.7643 (3), 37.5434 (13) |
V (Å3) | 3374.2 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.46 × 0.35 × 0.18 |
Data collection | |
Diffractometer | Bruker X8 APEXII |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19997, 3676, 2830 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.133, 1.05 |
No. of reflections | 3676 |
No. of parameters | 226 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.31, −0.17 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···N4i | 0.93 | 2.58 | 3.180 (2) | 122.6 |
C9—H9A···N4i | 0.97 | 2.58 | 3.418 (2) | 144.7 |
C11—H11···N3i | 0.93 | 2.57 | 3.359 (2) | 142.7 |
C12—H12B···O1i | 0.97 | 2.51 | 3.433 (2) | 159.7 |
Symmetry code: (i) x−1/2, −y+1/2, −z+1. |
Acknowledgements
The authors thank Professor M. Saadi for the fruitful discussions and helpful assistance during the data collection. They also thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
References
Alvarez, R., Velazquez, S., San-Felix, A., Aquaro, S., De Clercq, E., Perno, C. F., Karlsson, A., Balzarini, J. & Camarasa, M. J. (1994). J. Med. Chem. 37, 4185–4194. CrossRef CAS PubMed Web of Science Google Scholar
Apfel, C., Banner, D. W., Bur, D., Dietz, M., Hubschwerlen, C., Locher, H., Marlin, F., Masciadri, R., Pirson, W. & Stalder, H. (2001). J. Med. Chem. 44, 1847–1852. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fung-Tome, J. C., Huczko, E., Minassian, B. & Bonner, D. P. (1998). Antimicrob. Agents Chemother. 42, 313–318. Web of Science PubMed Google Scholar
Genin, M. J., Allwine, D. A., Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. A., Graber, D. R., Grega, K. C., Hester, J. B., Hutchinson, D. K., Morris, J., Reischer, R. J., Ford, C. W., Zurenko, G. E., Hamel, J. C., Schaadt, R. D., Stapert, D. & Yagi, B. H. (2000). J. Med. Chem. 43, 953–970. Web of Science CrossRef PubMed CAS Google Scholar
Krim, J., Sillahi, B., Taourirte, M., Rakib, E. M. & Engels, J. W. (2009). ARKIVOC, xiii, 142–152. CrossRef Google Scholar
Mani Chandrika, P. T., Yakaiah Gayatri, G., Pranay Kumar, K., Narsaiah, B., Murthy, U. S. N. & Raghu Ram Rao, A. (2010). Eur. J. Med. Chem. 45, 78–84. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tobe, M., Isobe, Y., Tomizawa, H., Nagasaki, T., Obra, F. & Hayashi, H. (2003). Bioorg. Med. Chem. 11, 609–616. Web of Science CrossRef PubMed CAS Google Scholar
Xu, G.-F., Song, B.-A., Bhadury, P. S., Yang, S., Zhang, P.-Q., Jin, L.-H., Xue, W., Hu, D.-Y. & Lu, P. (2007). Bioorg. Med. Chem. 15, 3768–3774. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The most interesting classes of compounds possess a wide spectrum of biological activity, we can found the quinazolinones derivatives (Apfel et al. (2001)). They are broadly used in pharmaceuticals and agrochemicals (Tobe et al. (2003)). For example, diseases of agriculture are treated by fungicide fluquinconazole (Xu et al. (2007)). Also, the most encountered heterocycle in medicinal chemistry, five-membered nitrogen heterocycles, they have an important part in biological systems. Among these, 1,2,3-triazole heterocycles have several biological activities, including anti-HIV (Alvarez et al. (1994)), anti-fungal, and antimicrobial activities (Fung-Tome et al. (1998); Genin et al. (2000)). 1,2,3-triazoles are useful products in chemistry, stable metabolism, stable to moisture, oxygen, light, and also metabolism in the body.
The molecule of the title compound is built up from two fused six-membered rings linked to a five-membered ring which is connected to butyl acetate group as shown in Fig.1. The quinazolinone ring is almost planar, with a maximum deviation of 0.0502 (14) Å for O1. The dihedral angle between the quinazolinone mean plane and the triazol ring amount to 67.22 (7)°. The butylacetate group has a non-linear conformation, with an alternation of synclinal and antiperiplanar torsion angles N5—C12—C13—C14 = 58.52 (23)°, C12—C13—C14—C15 = 170.72 (19)° and C13 - C14 - C15 - O2 = -65.91 (28)°.
An intermolecular C–H···N and C–H···O non classic hydrogen bonds, building an infinite one-dimensional network along [1 0 0] direction ensure the cohesion of the crystal structure as schown in Fig.2 and Table 1.