organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{4-[(4-Oxoquinazolin-3-yl)meth­yl]-1H-1,2,3-triazol-1-yl}butyl acetate

aLaboratoire de Chimie Bio-organique et Macromoléculaire, Faculté des Sciences et Techniques Guéliz, Marrakech, Morocco, bUnité de Chimie Biomoléculaire et Médicinale, Faculté des Sciences Semlalia, Marrakech, Morocco, cLaboratoire de la Matière Condensée et des Nanostructures, Faculté des Sciences et Techniques Guéliz, Marrakech, Morocco, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: m_elazhari52@yahoo.com

(Received 5 October 2011; accepted 30 October 2011; online 5 November 2011)

In the heterocyclic title compound, C17H19N5O3, the quinazolinone ring system forms a dihedral angle of 67.22 (7)° with the triazole ring. The butyl acetate group has a non-linear conformation, with an alternation of synclinal and anti­periplanar torsion angles [N—C—C—C = 58.5 (2)°, C—C—C—C = 170.72 (19)° and C—C—C—O = −65.9 (3)°]. The crystal structure features inter­molecular C—H⋯N and C—H⋯O non-classical hydrogen bonds, building an infinite one-dimensional network along the [100] direction.

Related literature

For details of the synthesis, see: Krim et al. (2009[Krim, J., Sillahi, B., Taourirte, M., Rakib, E. M. & Engels, J. W. (2009). ARKIVOC, xiii, 142-152.]); Mani Chandrika et al. (2010[Mani Chandrika, P. T., Yakaiah Gayatri, G., Pranay Kumar, K., Narsaiah, B., Murthy, U. S. N. & Raghu Ram Rao, A. (2010). Eur. J. Med. Chem. 45, 78-84.]). For background to the biological activity of quinazolinone derivatives, see: Alvarez et al. (1994[Alvarez, R., Velazquez, S., San-Felix, A., Aquaro, S., De Clercq, E., Perno, C. F., Karlsson, A., Balzarini, J. & Camarasa, M. J. (1994). J. Med. Chem. 37, 4185-4194.]); Xu et al. (2007[Xu, G.-F., Song, B.-A., Bhadury, P. S., Yang, S., Zhang, P.-Q., Jin, L.-H., Xue, W., Hu, D.-Y. & Lu, P. (2007). Bioorg. Med. Chem. 15, 3768-3774.]); Apfel et al. (2001[Apfel, C., Banner, D. W., Bur, D., Dietz, M., Hubschwerlen, C., Locher, H., Marlin, F., Masciadri, R., Pirson, W. & Stalder, H. (2001). J. Med. Chem. 44, 1847-1852.]); Tobe et al. (2003[Tobe, M., Isobe, Y., Tomizawa, H., Nagasaki, T., Obra, F. & Hayashi, H. (2003). Bioorg. Med. Chem. 11, 609-616.]); Fung-Tome et al. (1998[Fung-Tome, J. C., Huczko, E., Minassian, B. & Bonner, D. P. (1998). Antimicrob. Agents Chemother. 42, 313-318.]); Genin et al. (2000[Genin, M. J., Allwine, D. A., Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. A., Graber, D. R., Grega, K. C., Hester, J. B., Hutchinson, D. K., Morris, J., Reischer, R. J., Ford, C. W., Zurenko, G. E., Hamel, J. C., Schaadt, R. D., Stapert, D. & Yagi, B. H. (2000). J. Med. Chem. 43, 953-970.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19N5O3

  • Mr = 341.37

  • Orthorhombic, P b c a

  • a = 10.2546 (4) Å

  • b = 8.7643 (3) Å

  • c = 37.5434 (13) Å

  • V = 3374.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.46 × 0.35 × 0.18 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • 19997 measured reflections

  • 3676 independent reflections

  • 2830 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.133

  • S = 1.05

  • 3676 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯N4i 0.93 2.58 3.180 (2) 123
C9—H9A⋯N4i 0.97 2.58 3.418 (2) 145
C11—H11⋯N3i 0.93 2.57 3.359 (2) 143
C12—H12B⋯O1i 0.97 2.51 3.433 (2) 160
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The most interesting classes of compounds possess a wide spectrum of biological activity, we can found the quinazolinones derivatives (Apfel et al. (2001)). They are broadly used in pharmaceuticals and agrochemicals (Tobe et al. (2003)). For example, diseases of agriculture are treated by fungicide fluquinconazole (Xu et al. (2007)). Also, the most encountered heterocycle in medicinal chemistry, five-membered nitrogen heterocycles, they have an important part in biological systems. Among these, 1,2,3-triazole heterocycles have several biological activities, including anti-HIV (Alvarez et al. (1994)), anti-fungal, and antimicrobial activities (Fung-Tome et al. (1998); Genin et al. (2000)). 1,2,3-triazoles are useful products in chemistry, stable metabolism, stable to moisture, oxygen, light, and also metabolism in the body.

The molecule of the title compound is built up from two fused six-membered rings linked to a five-membered ring which is connected to butyl acetate group as shown in Fig.1. The quinazolinone ring is almost planar, with a maximum deviation of 0.0502 (14) Å for O1. The dihedral angle between the quinazolinone mean plane and the triazol ring amount to 67.22 (7)°. The butylacetate group has a non-linear conformation, with an alternation of synclinal and antiperiplanar torsion angles N5—C12—C13—C14 = 58.52 (23)°, C12—C13—C14—C15 = 170.72 (19)° and C13 - C14 - C15 - O2 = -65.91 (28)°.

An intermolecular C–H···N and C–H···O non classic hydrogen bonds, building an infinite one-dimensional network along [1 0 0] direction ensure the cohesion of the crystal structure as schown in Fig.2 and Table 1.

Related literature top

For details of the synthesis, see: Krim et al. (2009); Mani Chandrika et al. (2010). For background to the biological activity of quinazolinone derivatives, see: Alvarez et al. (1994); Xu et al. (2007); Apfel et al. (2001); Tobe et al. (2003); Fung-Tome et al. (1998); Genin et al. (2000).

Experimental top

The title compound was prepared by cycloaddition of propargylated quinazolinone and azide under microwave conditions with CuI as catalyst and without solvent. The product was obtained with quantitative yield (96%) and short reaction time (Mani Chandrika et al. (2010); Krim et al. (2009)). The crude product was purified passing through a column packed with silica gel. Crystal suitable for X-ray analysis was obtained by slow evaporation of a methanol / methylene chloride (5:95 v/v) solution. The melting point of this crystal is in the range of 353–354 K.

Refinement top

The structure is solved by direct method technique and refined by full-matrix least-squares using SHELXS97 and SHELXL97 program packages. H atoms were located in a difference map and treated as riding with C—H = 0.97 Å and 0.93 Å for –CH2– and aromatic CH respectively. All H atoms with Uiso(H) = 1.2 Ueq (aromatic, methylene) and Uiso(H) = 1.5 Ueq for the methyl group.

Structure description top

The most interesting classes of compounds possess a wide spectrum of biological activity, we can found the quinazolinones derivatives (Apfel et al. (2001)). They are broadly used in pharmaceuticals and agrochemicals (Tobe et al. (2003)). For example, diseases of agriculture are treated by fungicide fluquinconazole (Xu et al. (2007)). Also, the most encountered heterocycle in medicinal chemistry, five-membered nitrogen heterocycles, they have an important part in biological systems. Among these, 1,2,3-triazole heterocycles have several biological activities, including anti-HIV (Alvarez et al. (1994)), anti-fungal, and antimicrobial activities (Fung-Tome et al. (1998); Genin et al. (2000)). 1,2,3-triazoles are useful products in chemistry, stable metabolism, stable to moisture, oxygen, light, and also metabolism in the body.

The molecule of the title compound is built up from two fused six-membered rings linked to a five-membered ring which is connected to butyl acetate group as shown in Fig.1. The quinazolinone ring is almost planar, with a maximum deviation of 0.0502 (14) Å for O1. The dihedral angle between the quinazolinone mean plane and the triazol ring amount to 67.22 (7)°. The butylacetate group has a non-linear conformation, with an alternation of synclinal and antiperiplanar torsion angles N5—C12—C13—C14 = 58.52 (23)°, C12—C13—C14—C15 = 170.72 (19)° and C13 - C14 - C15 - O2 = -65.91 (28)°.

An intermolecular C–H···N and C–H···O non classic hydrogen bonds, building an infinite one-dimensional network along [1 0 0] direction ensure the cohesion of the crystal structure as schown in Fig.2 and Table 1.

For details of the synthesis, see: Krim et al. (2009); Mani Chandrika et al. (2010). For background to the biological activity of quinazolinone derivatives, see: Alvarez et al. (1994); Xu et al. (2007); Apfel et al. (2001); Tobe et al. (2003); Fung-Tome et al. (1998); Genin et al. (2000).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Plot of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. : Partiel plot of the title compound, showing two molecules linked through C—H···N and C–H···O non classical hydrogen bonds (dashed lines).
4-{4-[(4-Oxoquinazolin-3-yl)methyl]-1H-1,2,3-triazol-1-yl}butyl acetate top
Crystal data top
C17H19N5O3F(000) = 1440
Mr = 341.37Dx = 1.344 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ac 2abCell parameters from 3676 reflections
a = 10.2546 (4) Åθ = 2.3–27.0°
b = 8.7643 (3) ŵ = 0.10 mm1
c = 37.5434 (13) ÅT = 296 K
V = 3374.2 (2) Å3Parallelepiped, colourless
Z = 80.46 × 0.35 × 0.18 mm
Data collection top
Bruker X8 APEXII
diffractometer
2830 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 27.0°, θmin = 2.3°
φ and ω scansh = 1213
19997 measured reflectionsk = 1011
3676 independent reflectionsl = 4747
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: difference Fourier map
wR(F2) = 0.133H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0594P)2 + 1.1103P]
where P = (Fo2 + 2Fc2)/3
3676 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H19N5O3V = 3374.2 (2) Å3
Mr = 341.37Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.2546 (4) ŵ = 0.10 mm1
b = 8.7643 (3) ÅT = 296 K
c = 37.5434 (13) Å0.46 × 0.35 × 0.18 mm
Data collection top
Bruker X8 APEXII
diffractometer
2830 reflections with I > 2σ(I)
19997 measured reflectionsRint = 0.031
3676 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
3676 reflectionsΔρmin = 0.17 e Å3
226 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.44375 (15)0.12932 (18)0.58669 (4)0.0395 (4)
C20.42450 (16)0.18373 (19)0.62292 (4)0.0415 (4)
C30.5106 (2)0.1412 (2)0.65006 (5)0.0570 (5)
H30.58020.07650.64510.068*
C40.4924 (3)0.1948 (3)0.68401 (6)0.0746 (7)
H40.54920.16550.70210.090*
C50.3899 (3)0.2922 (3)0.69155 (6)0.0766 (7)
H50.37860.32810.71460.092*
C60.3051 (2)0.3361 (3)0.66543 (5)0.0640 (5)
H60.23690.40220.67080.077*
C70.32078 (17)0.2818 (2)0.63062 (4)0.0452 (4)
C80.25014 (17)0.27360 (19)0.57352 (4)0.0447 (4)
H80.19050.30240.55610.054*
C90.34796 (17)0.11979 (18)0.52617 (4)0.0420 (4)
H9A0.26150.08200.52050.050*
H9B0.40810.03470.52440.050*
C100.38543 (15)0.23769 (18)0.49936 (4)0.0370 (3)
C110.30920 (15)0.32006 (17)0.47674 (4)0.0379 (4)
H110.21890.31700.47470.045*
C120.36418 (18)0.5147 (2)0.42924 (4)0.0481 (4)
H12A0.39870.61410.43560.058*
H12B0.27050.52460.42660.058*
C130.4222 (2)0.4655 (2)0.39423 (5)0.0545 (5)
H13A0.40080.54140.37640.065*
H13B0.51640.46360.39660.065*
C140.3778 (3)0.3121 (2)0.38106 (5)0.0669 (6)
H14A0.41190.23360.39670.080*
H14B0.28330.30750.38210.080*
C150.4210 (3)0.2797 (3)0.34367 (6)0.0885 (9)
H15A0.51480.29140.34180.106*
H15B0.39860.17580.33720.106*
C160.3964 (3)0.3897 (3)0.28651 (6)0.0746 (7)
C170.3213 (3)0.4995 (3)0.26464 (6)0.0899 (8)
H17A0.37700.54190.24660.135*
H17B0.28890.57990.27960.135*
H17C0.24940.44780.25360.135*
N10.23250 (15)0.32838 (18)0.60483 (4)0.0506 (4)
N20.34803 (13)0.17690 (15)0.56310 (3)0.0371 (3)
N30.51154 (13)0.27696 (17)0.49359 (4)0.0455 (3)
N40.51522 (13)0.38114 (18)0.46833 (4)0.0477 (4)
N50.39226 (12)0.40645 (15)0.45805 (3)0.0390 (3)
O10.53465 (12)0.04938 (16)0.57675 (4)0.0590 (4)
O20.35600 (17)0.38607 (17)0.32010 (3)0.0707 (4)
O30.4835 (3)0.3124 (3)0.27576 (5)0.1304 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0329 (8)0.0366 (8)0.0489 (9)0.0002 (7)0.0029 (7)0.0085 (7)
C20.0403 (9)0.0405 (8)0.0438 (8)0.0057 (7)0.0016 (7)0.0099 (7)
C30.0551 (12)0.0599 (11)0.0561 (11)0.0029 (9)0.0081 (9)0.0153 (9)
C40.0828 (16)0.0923 (17)0.0488 (11)0.0010 (14)0.0203 (11)0.0142 (11)
C50.0904 (18)0.0976 (18)0.0420 (10)0.0011 (15)0.0043 (11)0.0044 (11)
C60.0669 (13)0.0765 (14)0.0487 (10)0.0041 (11)0.0026 (9)0.0096 (10)
C70.0430 (10)0.0475 (9)0.0451 (9)0.0034 (8)0.0010 (7)0.0002 (7)
C80.0382 (8)0.0458 (9)0.0500 (9)0.0065 (7)0.0061 (8)0.0026 (7)
C90.0435 (9)0.0384 (8)0.0441 (8)0.0019 (7)0.0025 (7)0.0045 (7)
C100.0340 (8)0.0409 (8)0.0361 (7)0.0004 (7)0.0020 (6)0.0072 (6)
C110.0300 (8)0.0425 (8)0.0411 (8)0.0030 (7)0.0007 (6)0.0070 (7)
C120.0523 (10)0.0430 (9)0.0491 (9)0.0009 (8)0.0028 (8)0.0038 (7)
C130.0651 (12)0.0525 (11)0.0460 (10)0.0046 (9)0.0008 (9)0.0100 (8)
C140.1040 (18)0.0491 (11)0.0476 (10)0.0043 (11)0.0131 (11)0.0057 (8)
C150.150 (3)0.0665 (14)0.0493 (11)0.0397 (16)0.0138 (14)0.0002 (10)
C160.0973 (19)0.0825 (15)0.0439 (11)0.0087 (14)0.0073 (11)0.0063 (10)
C170.113 (2)0.1042 (19)0.0524 (12)0.0041 (17)0.0111 (13)0.0192 (12)
N10.0435 (8)0.0576 (9)0.0508 (8)0.0111 (7)0.0049 (7)0.0090 (7)
N20.0348 (7)0.0363 (6)0.0401 (7)0.0000 (5)0.0010 (5)0.0017 (5)
N30.0336 (7)0.0573 (9)0.0457 (8)0.0015 (6)0.0012 (6)0.0031 (7)
N40.0343 (8)0.0620 (9)0.0470 (8)0.0009 (7)0.0032 (6)0.0050 (7)
N50.0343 (7)0.0451 (7)0.0377 (7)0.0003 (6)0.0003 (5)0.0024 (6)
O10.0455 (7)0.0673 (8)0.0642 (8)0.0195 (7)0.0041 (6)0.0048 (7)
O20.0997 (12)0.0707 (9)0.0417 (7)0.0180 (9)0.0043 (7)0.0062 (6)
O30.166 (2)0.170 (2)0.0556 (10)0.0787 (19)0.0028 (12)0.0119 (12)
Geometric parameters (Å, º) top
C1—O11.224 (2)C11—N51.338 (2)
C1—N21.386 (2)C11—H110.9300
C1—C21.455 (2)C12—N51.467 (2)
C2—C71.398 (2)C12—C131.506 (2)
C2—C31.399 (2)C12—H12A0.9700
C3—C41.371 (3)C12—H12B0.9700
C3—H30.9300C13—C141.503 (3)
C4—C51.383 (3)C13—H13A0.9700
C4—H40.9300C13—H13B0.9700
C5—C61.366 (3)C14—C151.499 (3)
C5—H50.9300C14—H14A0.9700
C6—C71.400 (2)C14—H14B0.9700
C6—H60.9300C15—O21.448 (2)
C7—N11.387 (2)C15—H15A0.9700
C8—N11.283 (2)C15—H15B0.9700
C8—N21.371 (2)C16—O31.191 (3)
C8—H80.9300C16—O21.328 (3)
C9—N21.474 (2)C16—C171.481 (3)
C9—C101.493 (2)C17—H17A0.9600
C9—H9A0.9700C17—H17B0.9600
C9—H9B0.9700C17—H17C0.9600
C10—N31.356 (2)N3—N41.317 (2)
C10—C111.361 (2)N4—N51.3372 (19)
O1—C1—N2121.10 (16)C13—C12—H12B109.1
O1—C1—C2125.16 (15)H12A—C12—H12B107.9
N2—C1—C2113.74 (14)C14—C13—C12115.05 (17)
C7—C2—C3119.57 (17)C14—C13—H13A108.5
C7—C2—C1119.89 (15)C12—C13—H13A108.5
C3—C2—C1120.53 (16)C14—C13—H13B108.5
C4—C3—C2120.0 (2)C12—C13—H13B108.5
C4—C3—H3120.0H13A—C13—H13B107.5
C2—C3—H3120.0C15—C14—C13112.8 (2)
C3—C4—C5120.36 (19)C15—C14—H14A109.0
C3—C4—H4119.8C13—C14—H14A109.0
C5—C4—H4119.8C15—C14—H14B109.0
C6—C5—C4120.7 (2)C13—C14—H14B109.0
C6—C5—H5119.6H14A—C14—H14B107.8
C4—C5—H5119.6O2—C15—C14108.32 (18)
C5—C6—C7120.1 (2)O2—C15—H15A110.0
C5—C6—H6120.0C14—C15—H15A110.0
C7—C6—H6120.0O2—C15—H15B110.0
N1—C7—C2122.22 (15)C14—C15—H15B110.0
N1—C7—C6118.47 (17)H15A—C15—H15B108.4
C2—C7—C6119.30 (17)O3—C16—O2122.8 (2)
N1—C8—N2126.59 (15)O3—C16—C17124.8 (2)
N1—C8—H8116.7O2—C16—C17112.3 (2)
N2—C8—H8116.7C16—C17—H17A109.5
N2—C9—C10113.52 (13)C16—C17—H17B109.5
N2—C9—H9A108.9H17A—C17—H17B109.5
C10—C9—H9A108.9C16—C17—H17C109.5
N2—C9—H9B108.9H17A—C17—H17C109.5
C10—C9—H9B108.9H17B—C17—H17C109.5
H9A—C9—H9B107.7C8—N1—C7115.95 (15)
N3—C10—C11108.27 (14)C8—N2—C1121.49 (13)
N3—C10—C9121.94 (14)C8—N2—C9118.55 (13)
C11—C10—C9129.78 (15)C1—N2—C9119.94 (13)
N5—C11—C10105.17 (13)N4—N3—C10108.56 (13)
N5—C11—H11127.4N3—N4—N5107.21 (13)
C10—C11—H11127.4N4—N5—C11110.78 (13)
N5—C12—C13112.37 (14)N4—N5—C12120.34 (13)
N5—C12—H12A109.1C11—N5—C12128.86 (14)
C13—C12—H12A109.1C16—O2—C15116.87 (19)
N5—C12—H12B109.1
O1—C1—C2—C7176.30 (16)C2—C7—N1—C81.3 (3)
N2—C1—C2—C73.4 (2)C6—C7—N1—C8179.03 (18)
O1—C1—C2—C32.4 (3)N1—C8—N2—C11.4 (3)
N2—C1—C2—C3177.87 (15)N1—C8—N2—C9176.86 (17)
C7—C2—C3—C40.5 (3)O1—C1—N2—C8176.14 (16)
C1—C2—C3—C4179.16 (19)C2—C1—N2—C83.6 (2)
C2—C3—C4—C50.6 (3)O1—C1—N2—C95.6 (2)
C3—C4—C5—C60.2 (4)C2—C1—N2—C9174.61 (13)
C4—C5—C6—C70.4 (4)C10—C9—N2—C872.82 (19)
C3—C2—C7—N1179.81 (17)C10—C9—N2—C1108.91 (16)
C1—C2—C7—N11.1 (3)C11—C10—N3—N40.31 (18)
C3—C2—C7—C60.2 (3)C9—C10—N3—N4179.09 (14)
C1—C2—C7—C6178.54 (17)C10—N3—N4—N50.49 (18)
C5—C6—C7—N1179.7 (2)N3—N4—N5—C110.50 (18)
C5—C6—C7—C20.6 (3)N3—N4—N5—C12178.25 (14)
N2—C9—C10—N379.07 (19)C10—C11—N5—N40.30 (17)
N2—C9—C10—C11102.43 (19)C10—C11—N5—C12178.31 (15)
N3—C10—C11—N50.00 (17)C13—C12—N5—N463.2 (2)
C9—C10—C11—N5178.66 (15)C13—C12—N5—C11115.34 (19)
N5—C12—C13—C1458.5 (2)O3—C16—O2—C151.4 (4)
C12—C13—C14—C15170.72 (19)C17—C16—O2—C15178.6 (2)
C13—C14—C15—O265.9 (3)C14—C15—O2—C16170.4 (2)
N2—C8—N1—C71.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N4i0.932.583.180 (2)123
C9—H9A···N4i0.972.583.418 (2)145
C11—H11···N3i0.932.573.359 (2)143
C12—H12B···O1i0.972.513.433 (2)160
Symmetry code: (i) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC17H19N5O3
Mr341.37
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)10.2546 (4), 8.7643 (3), 37.5434 (13)
V3)3374.2 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.46 × 0.35 × 0.18
Data collection
DiffractometerBruker X8 APEXII
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19997, 3676, 2830
Rint0.031
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.133, 1.05
No. of reflections3676
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.17

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N4i0.932.583.180 (2)122.6
C9—H9A···N4i0.972.583.418 (2)144.7
C11—H11···N3i0.932.573.359 (2)142.7
C12—H12B···O1i0.972.513.433 (2)159.7
Symmetry code: (i) x1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank Professor M. Saadi for the fruitful discussions and helpful assistance during the data collection. They also thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAlvarez, R., Velazquez, S., San-Felix, A., Aquaro, S., De Clercq, E., Perno, C. F., Karlsson, A., Balzarini, J. & Camarasa, M. J. (1994). J. Med. Chem. 37, 4185–4194.  CrossRef CAS PubMed Web of Science Google Scholar
First citationApfel, C., Banner, D. W., Bur, D., Dietz, M., Hubschwerlen, C., Locher, H., Marlin, F., Masciadri, R., Pirson, W. & Stalder, H. (2001). J. Med. Chem. 44, 1847–1852.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFung-Tome, J. C., Huczko, E., Minassian, B. & Bonner, D. P. (1998). Antimicrob. Agents Chemother. 42, 313–318.  Web of Science PubMed Google Scholar
First citationGenin, M. J., Allwine, D. A., Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. A., Graber, D. R., Grega, K. C., Hester, J. B., Hutchinson, D. K., Morris, J., Reischer, R. J., Ford, C. W., Zurenko, G. E., Hamel, J. C., Schaadt, R. D., Stapert, D. & Yagi, B. H. (2000). J. Med. Chem. 43, 953–970.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrim, J., Sillahi, B., Taourirte, M., Rakib, E. M. & Engels, J. W. (2009). ARKIVOC, xiii, 142–152.  CrossRef Google Scholar
First citationMani Chandrika, P. T., Yakaiah Gayatri, G., Pranay Kumar, K., Narsaiah, B., Murthy, U. S. N. & Raghu Ram Rao, A. (2010). Eur. J. Med. Chem. 45, 78–84.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTobe, M., Isobe, Y., Tomizawa, H., Nagasaki, T., Obra, F. & Hayashi, H. (2003). Bioorg. Med. Chem. 11, 609–616.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXu, G.-F., Song, B.-A., Bhadury, P. S., Yang, S., Zhang, P.-Q., Jin, L.-H., Xue, W., Hu, D.-Y. & Lu, P. (2007). Bioorg. Med. Chem. 15, 3768–3774.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds