organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,9,16,23-Tetra­kis(1-methyl­eth­yl)-5,6,11,12,13,14,19,20,25,26,27,28-dodecade­hydro­tetra­benzo[a,e,k,o]cyclo­eicosene1

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 25 October 2011; accepted 15 November 2011; online 30 November 2011)

The title compound, C48H40, is a tetra­isopropyl-substituted polyannulenoenyne. The unsubstituted polyannulenoenyne, C36H16 (CSD: RICVEE; CAS: 186494-87-1), has quasi-D2 (222) symmetry, as determined by least-squares fit (excluding H atoms) to a model optimized in D2 symmetry by mol­ecular mechanics (r.m.s. deviation = 0.239 Å). The least-squares fits of 36 common C atoms of the title compound (at 90 K) to the parent (at 295 K) and to the optimized model show r.m.s. deviations of 0.419 and 0.426 Å, respectively.

Related literature

For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the synthesis and a related structure, see: Boese et al. (1997[Boese, R., Matzger, A. J. & Vollhardt, K. P. C. (1997). J. Am. Chem. Soc. 119, 2052-2053.]). For mol­ecular mechanics software, see: Cambridgesoft (2010[Cambridgesoft (2010). Chem3DPro. Cambridgesoft Corporation, Cambridge, MA, USA.]).

[Scheme 1]

Experimental

Crystal data
  • C48H40

  • Mr = 616.8

  • Monoclinic, P 21 /c

  • a = 18.0007 (4) Å

  • b = 12.5083 (3) Å

  • c = 16.0674 (4) Å

  • β = 91.004 (1)°

  • V = 3617.15 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 90 K

  • 0.45 × 0.30 × 0.30 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.972, Tmax = 0.981

  • 13998 measured reflections

  • 8186 independent reflections

  • 5354 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.127

  • S = 1.02

  • 8186 reflections

  • 442 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: IDEAL (Gould et al., 1988[Gould, R. O., Moulden, N., Taylor, N. & Taylor, P. (1988). IDEAL. Department of Chemistry, University of Edinburgh, Scotland.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, C48H40, is a tetraisopropyl-substituted polyannulenoenyne and its structure was determined at 90 K. The 295 K structure of the unsubstituted parent annulene, C36H16, was previously determined by Boese et al. (1997; CSD: RICVEE, Allen, 2002; CAS: 186494–87-1), and is of quasi-D2 (222) symmetry, as determined by least-squares fit (Gould et al., 1988; δr.m.s. = 0.239 Å) of all 36 common carbon atoms of the parent to a model of C36H16 optimized in D2 symmetry by molecular mechanics (Cambridgesoft, 2010). Reasonable agreements result from the same least-squares fit of the title compound (at 90 K) to the parent (δr.m.s. =0.419 Å) and to the optimized model (δr.m.s. = 0.426 Å).

The six CC triple bond distances are all experimentally equal, falling in the narrow range 1.203 (2) - 1.206 (2) Å, while the C–C bonds linking the triple bonds have length C16—C17 1.370 (2) and C34—C35 1.377 (2) Å. The acetylenic bridges are slightly bowed outward, with C–CC angles in the range 177.59 (18) - 179.17 (18)° for the butadiyne bridges and in the range 174.43 (17) - 176.80 (17)° for the acetylene bridges. Distances between the following bond centroids provide a measure of overall molecular dimensions: C16—C17 to C34—C35 = 3.341 (2) Å, C7 C8 to C25 C26 = 7.650 (2) Å.

Related literature top

For a description of the Cambridge Structural Database, see: Allen (2002). For the synthesis and a related structure, see: Boese et al. (1997). For molecular mechanics software, see: Cambridgesoft (2010).

Experimental top

The preparation of the title compound has been described by Boese et al. (1997). Crystals were grown by slow evaporation from dichloromethane and deuterochloroform.

Refinement top

All H atoms were placed in calculated positions guided by difference maps. The C—H bond distances were constrained to the range from 0.95 to 1.0 Å, depending on C atom type, and Uiso= 1.2Ueq (1.5 for methyl groups), thereafter refined as riding. A torsional parameter was refined for each methyl group.

Structure description top

The title compound, C48H40, is a tetraisopropyl-substituted polyannulenoenyne and its structure was determined at 90 K. The 295 K structure of the unsubstituted parent annulene, C36H16, was previously determined by Boese et al. (1997; CSD: RICVEE, Allen, 2002; CAS: 186494–87-1), and is of quasi-D2 (222) symmetry, as determined by least-squares fit (Gould et al., 1988; δr.m.s. = 0.239 Å) of all 36 common carbon atoms of the parent to a model of C36H16 optimized in D2 symmetry by molecular mechanics (Cambridgesoft, 2010). Reasonable agreements result from the same least-squares fit of the title compound (at 90 K) to the parent (δr.m.s. =0.419 Å) and to the optimized model (δr.m.s. = 0.426 Å).

The six CC triple bond distances are all experimentally equal, falling in the narrow range 1.203 (2) - 1.206 (2) Å, while the C–C bonds linking the triple bonds have length C16—C17 1.370 (2) and C34—C35 1.377 (2) Å. The acetylenic bridges are slightly bowed outward, with C–CC angles in the range 177.59 (18) - 179.17 (18)° for the butadiyne bridges and in the range 174.43 (17) - 176.80 (17)° for the acetylene bridges. Distances between the following bond centroids provide a measure of overall molecular dimensions: C16—C17 to C34—C35 = 3.341 (2) Å, C7 C8 to C25 C26 = 7.650 (2) Å.

For a description of the Cambridge Structural Database, see: Allen (2002). For the synthesis and a related structure, see: Boese et al. (1997). For molecular mechanics software, see: Cambridgesoft (2010).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: IDEAL (Gould et al., 1988) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compound showing 50% probability displacement ellipsoids.
7,16,25,34-tetrakis(propan-2-yl)pentacyclo[30.4.0.04,9.014,19.022,27] hexatriaconta-1(32),4,6,8,14(19),15,17,22,24,26,33,35-dodecaen- 2,10,12,20,28,30-hexayne top
Crystal data top
C48H40F(000) = 1312
Mr = 616.8Dx = 1.133 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7618 reflections
a = 18.0007 (4) Åθ = 2.6–29.1°
b = 12.5083 (3) ŵ = 0.06 mm1
c = 16.0674 (4) ÅT = 90 K
β = 91.004 (1)°Prism, golden yellow
V = 3617.15 (15) Å30.45 × 0.30 × 0.30 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
8186 independent reflections
Radiation source: sealed tube5354 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.035
Detector resolution: 9 pixels mm-1θmax = 28.9°, θmin = 2.8°
CCD rotation images, thick slices scansh = 2323
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor 1997)
k = 1614
Tmin = 0.972, Tmax = 0.981l = 1920
13998 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0543P)2 + 1.183P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
8186 reflectionsΔρmax = 0.25 e Å3
442 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0017 (4)
Primary atom site location: structure-invariant direct methods
Crystal data top
C48H40V = 3617.15 (15) Å3
Mr = 616.8Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.0007 (4) ŵ = 0.06 mm1
b = 12.5083 (3) ÅT = 90 K
c = 16.0674 (4) Å0.45 × 0.30 × 0.30 mm
β = 91.004 (1)°
Data collection top
Nonius KappaCCD
diffractometer
8186 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor 1997)
5354 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.981Rint = 0.035
13998 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
8186 reflectionsΔρmin = 0.28 e Å3
442 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34021 (9)0.67572 (12)0.03559 (9)0.0209 (3)
C20.37458 (9)0.65496 (13)0.11163 (9)0.0230 (4)
H20.39860.58820.11960.028*
C30.37425 (9)0.72994 (13)0.17553 (9)0.0239 (4)
C40.33685 (9)0.82602 (13)0.16283 (9)0.0250 (4)
H40.33480.87740.20640.03*
C50.30274 (9)0.84840 (13)0.08857 (9)0.0240 (4)
H50.27810.91490.08160.029*
C60.30408 (9)0.77426 (12)0.02347 (9)0.0211 (3)
C70.26840 (9)0.79587 (12)0.05395 (9)0.0221 (3)
C80.23760 (9)0.80786 (12)0.11918 (9)0.0221 (3)
C90.20160 (8)0.81294 (12)0.19792 (9)0.0215 (3)
C100.20544 (9)0.90410 (13)0.24814 (10)0.0264 (4)
H100.22890.96690.22820.032*
C110.17525 (9)0.90345 (13)0.32691 (10)0.0269 (4)
H110.17930.96580.36040.032*
C120.13916 (9)0.81390 (13)0.35838 (9)0.0223 (3)
C130.13314 (9)0.72469 (12)0.30736 (9)0.0208 (3)
H130.10730.66360.32670.025*
C140.16417 (8)0.72248 (12)0.22813 (9)0.0198 (3)
C150.15945 (9)0.62679 (12)0.17971 (9)0.0216 (3)
C160.15709 (9)0.54517 (12)0.13983 (9)0.0215 (3)
C170.15610 (9)0.45239 (12)0.09457 (9)0.0223 (3)
C180.15587 (9)0.36996 (13)0.05588 (9)0.0232 (3)
C190.15470 (9)0.27065 (12)0.01184 (9)0.0219 (3)
C200.12070 (9)0.26396 (13)0.06716 (9)0.0237 (4)
H200.09770.32570.09050.028*
C210.11988 (9)0.16932 (13)0.11210 (10)0.0256 (4)
C220.15239 (10)0.07952 (13)0.07467 (10)0.0300 (4)
H220.15190.01360.1040.036*
C230.18519 (9)0.08346 (13)0.00358 (10)0.0281 (4)
H230.20580.02040.02750.034*
C240.18827 (9)0.17957 (12)0.04787 (9)0.0230 (3)
C250.22660 (9)0.18904 (12)0.12662 (10)0.0235 (4)
C260.25924 (9)0.20612 (12)0.19125 (10)0.0240 (4)
C270.29570 (9)0.23181 (12)0.26867 (9)0.0228 (3)
C280.29559 (9)0.16136 (14)0.33603 (10)0.0289 (4)
H280.27280.09320.32980.035*
C290.32799 (9)0.18895 (13)0.41168 (10)0.0286 (4)
H290.32690.13940.45640.034*
C300.36228 (9)0.28784 (13)0.42378 (9)0.0238 (4)
C310.36368 (9)0.35806 (13)0.35677 (9)0.0225 (3)
H310.3870.42570.36360.027*
C320.33159 (9)0.33165 (12)0.27927 (9)0.0213 (3)
C330.33649 (9)0.40474 (12)0.21094 (9)0.0224 (3)
C340.34108 (9)0.46519 (12)0.15295 (9)0.0233 (4)
C350.34333 (9)0.53578 (12)0.08726 (9)0.0232 (4)
C360.34260 (9)0.59846 (12)0.03031 (9)0.0228 (3)
C370.41549 (10)0.71348 (14)0.25636 (10)0.0301 (4)
H370.38040.73240.3030.036*
C380.48096 (10)0.79092 (15)0.26042 (11)0.0377 (5)
H38A0.46310.86420.25280.057*
H38B0.50450.78470.31480.057*
H38C0.51730.77350.21630.057*
C390.44060 (12)0.59924 (15)0.27061 (12)0.0442 (5)
H39A0.47740.57930.22770.066*
H39B0.46280.59340.32570.066*
H39C0.39770.55120.26760.066*
C400.10830 (9)0.81729 (13)0.44585 (9)0.0261 (4)
H400.14950.84190.48380.031*
C410.08181 (10)0.70983 (14)0.47865 (10)0.0315 (4)
H41A0.03940.6850.44490.047*
H41B0.06680.71770.53670.047*
H41C0.12220.65760.47550.047*
C420.04634 (10)0.89944 (14)0.45132 (10)0.0308 (4)
H42A0.06420.96870.43150.046*
H42B0.03090.90620.50930.046*
H42C0.00390.87640.41670.046*
C430.08507 (10)0.16014 (14)0.19909 (10)0.0317 (4)
H430.12310.12660.23540.038*
C440.06418 (11)0.26707 (15)0.23850 (10)0.0359 (4)
H44A0.02440.30030.20670.054*
H44B0.04710.25550.2960.054*
H44C0.10770.31420.23810.054*
C450.01798 (11)0.08507 (15)0.19878 (11)0.0392 (5)
H45A0.03260.01640.17410.059*
H45B0.00010.07360.2560.059*
H45C0.02170.11710.1660.059*
C460.40087 (9)0.31230 (14)0.50654 (9)0.0294 (4)
H460.37520.270.55040.035*
C470.39803 (11)0.42839 (15)0.53199 (11)0.0393 (5)
H47A0.42550.47160.4920.059*
H47B0.42050.43670.58760.059*
H47C0.34620.45220.53290.059*
C480.48084 (12)0.2742 (2)0.50436 (13)0.0581 (7)
H48A0.48180.19690.49480.087*
H48B0.50570.29060.55760.087*
H48C0.50660.31060.45920.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0265 (8)0.0179 (8)0.0181 (7)0.0032 (7)0.0015 (6)0.0005 (6)
C20.0273 (9)0.0204 (8)0.0212 (8)0.0019 (7)0.0010 (6)0.0032 (6)
C30.0281 (9)0.0263 (9)0.0174 (8)0.0052 (7)0.0001 (6)0.0020 (6)
C40.0298 (9)0.0244 (9)0.0208 (8)0.0027 (7)0.0001 (7)0.0048 (7)
C50.0274 (9)0.0193 (8)0.0251 (8)0.0011 (7)0.0005 (7)0.0019 (6)
C60.0240 (8)0.0198 (8)0.0196 (8)0.0029 (7)0.0001 (6)0.0008 (6)
C70.0268 (8)0.0158 (8)0.0238 (8)0.0017 (7)0.0011 (7)0.0006 (6)
C80.0272 (8)0.0154 (8)0.0237 (8)0.0013 (7)0.0002 (7)0.0001 (6)
C90.0250 (8)0.0194 (8)0.0200 (8)0.0021 (7)0.0001 (6)0.0015 (6)
C100.0321 (9)0.0175 (8)0.0296 (9)0.0049 (7)0.0045 (7)0.0040 (7)
C110.0329 (9)0.0209 (9)0.0269 (9)0.0021 (7)0.0035 (7)0.0084 (7)
C120.0232 (8)0.0218 (8)0.0220 (8)0.0043 (7)0.0008 (6)0.0030 (6)
C130.0251 (8)0.0170 (8)0.0204 (8)0.0016 (7)0.0001 (6)0.0001 (6)
C140.0230 (8)0.0162 (8)0.0200 (7)0.0024 (7)0.0019 (6)0.0026 (6)
C150.0280 (9)0.0186 (8)0.0182 (8)0.0013 (7)0.0019 (6)0.0015 (6)
C160.0271 (9)0.0190 (8)0.0186 (8)0.0000 (7)0.0001 (6)0.0024 (6)
C170.0285 (9)0.0185 (8)0.0198 (8)0.0002 (7)0.0009 (6)0.0003 (6)
C180.0266 (9)0.0218 (8)0.0212 (8)0.0004 (7)0.0004 (6)0.0002 (7)
C190.0259 (8)0.0179 (8)0.0220 (8)0.0006 (7)0.0025 (6)0.0043 (6)
C200.0274 (9)0.0210 (8)0.0228 (8)0.0024 (7)0.0004 (7)0.0017 (6)
C210.0278 (9)0.0244 (9)0.0247 (8)0.0020 (7)0.0013 (7)0.0062 (7)
C220.0384 (10)0.0209 (9)0.0306 (9)0.0025 (8)0.0061 (8)0.0100 (7)
C230.0354 (10)0.0175 (8)0.0311 (9)0.0039 (7)0.0051 (7)0.0039 (7)
C240.0263 (8)0.0213 (8)0.0214 (8)0.0015 (7)0.0004 (6)0.0019 (6)
C250.0300 (9)0.0156 (8)0.0251 (8)0.0001 (7)0.0020 (7)0.0015 (6)
C260.0314 (9)0.0163 (8)0.0243 (8)0.0020 (7)0.0015 (7)0.0011 (6)
C270.0271 (9)0.0211 (8)0.0203 (8)0.0009 (7)0.0001 (6)0.0004 (6)
C280.0365 (10)0.0219 (9)0.0283 (9)0.0067 (8)0.0015 (7)0.0037 (7)
C290.0359 (10)0.0275 (9)0.0225 (8)0.0015 (8)0.0010 (7)0.0076 (7)
C300.0259 (8)0.0255 (9)0.0202 (8)0.0054 (7)0.0014 (6)0.0001 (7)
C310.0251 (8)0.0192 (8)0.0232 (8)0.0006 (7)0.0002 (6)0.0013 (6)
C320.0254 (8)0.0191 (8)0.0194 (8)0.0030 (7)0.0013 (6)0.0002 (6)
C330.0269 (9)0.0186 (8)0.0215 (8)0.0006 (7)0.0021 (6)0.0030 (7)
C340.0289 (9)0.0188 (8)0.0221 (8)0.0002 (7)0.0011 (7)0.0025 (7)
C350.0292 (9)0.0192 (8)0.0211 (8)0.0002 (7)0.0002 (7)0.0016 (6)
C360.0267 (9)0.0196 (8)0.0221 (8)0.0008 (7)0.0001 (7)0.0035 (7)
C370.0373 (10)0.0342 (10)0.0188 (8)0.0040 (8)0.0036 (7)0.0022 (7)
C380.0444 (11)0.0346 (11)0.0346 (10)0.0041 (9)0.0157 (8)0.0031 (8)
C390.0608 (13)0.0367 (11)0.0358 (10)0.0074 (10)0.0218 (9)0.0126 (8)
C400.0319 (9)0.0263 (9)0.0203 (8)0.0034 (8)0.0017 (7)0.0054 (7)
C410.0420 (11)0.0312 (10)0.0216 (8)0.0035 (8)0.0060 (7)0.0005 (7)
C420.0346 (10)0.0300 (10)0.0278 (9)0.0053 (8)0.0055 (7)0.0044 (7)
C430.0375 (10)0.0329 (10)0.0245 (9)0.0040 (8)0.0054 (7)0.0093 (7)
C440.0410 (11)0.0415 (11)0.0251 (9)0.0019 (9)0.0056 (8)0.0020 (8)
C450.0453 (11)0.0364 (11)0.0356 (10)0.0001 (9)0.0124 (9)0.0080 (8)
C460.0348 (10)0.0362 (10)0.0172 (8)0.0052 (8)0.0012 (7)0.0009 (7)
C470.0482 (12)0.0394 (11)0.0299 (10)0.0024 (9)0.0119 (8)0.0046 (8)
C480.0526 (14)0.0865 (18)0.0347 (11)0.0291 (13)0.0175 (10)0.0187 (11)
Geometric parameters (Å, º) top
C1—C21.403 (2)C29—C301.394 (2)
C1—C61.409 (2)C29—H290.95
C1—C361.434 (2)C30—C311.390 (2)
C2—C31.391 (2)C30—C461.520 (2)
C2—H20.95C31—C321.403 (2)
C3—C41.394 (2)C31—H310.95
C3—C371.521 (2)C32—C331.432 (2)
C4—C51.380 (2)C33—C341.204 (2)
C4—H40.95C34—C351.377 (2)
C5—C61.398 (2)C35—C361.205 (2)
C5—H50.95C37—C391.517 (3)
C6—C71.436 (2)C37—C381.528 (2)
C7—C81.204 (2)C37—H371
C8—C91.433 (2)C38—H38A0.98
C9—C101.398 (2)C38—H38B0.98
C9—C141.408 (2)C38—H38C0.98
C10—C111.386 (2)C39—H39A0.98
C10—H100.95C39—H39B0.98
C11—C121.394 (2)C39—H39C0.98
C11—H110.95C40—C421.520 (2)
C12—C131.388 (2)C40—C411.523 (2)
C12—C401.521 (2)C40—H401
C13—C141.399 (2)C41—H41A0.98
C13—H130.95C41—H41B0.98
C14—C151.429 (2)C41—H41C0.98
C15—C161.206 (2)C42—H42A0.98
C16—C171.370 (2)C42—H42B0.98
C17—C181.204 (2)C42—H42C0.98
C18—C191.430 (2)C43—C441.524 (2)
C19—C201.402 (2)C43—C451.530 (3)
C19—C241.409 (2)C43—H431
C20—C211.386 (2)C44—H44A0.98
C20—H200.95C44—H44B0.98
C21—C221.398 (2)C44—H44C0.98
C21—C431.526 (2)C45—H45A0.98
C22—C231.381 (2)C45—H45B0.98
C22—H220.95C45—H45C0.98
C23—C241.398 (2)C46—C471.510 (2)
C23—H230.95C46—C481.517 (3)
C24—C251.436 (2)C46—H461
C25—C261.203 (2)C47—H47A0.98
C26—C271.433 (2)C47—H47B0.98
C27—C281.396 (2)C47—H47C0.98
C27—C321.415 (2)C48—H48A0.98
C28—C291.383 (2)C48—H48B0.98
C28—H280.95C48—H48C0.98
C2—C1—C6119.60 (13)C31—C32—C33120.00 (14)
C2—C1—C36120.68 (14)C27—C32—C33120.34 (13)
C6—C1—C36119.71 (13)C34—C33—C32179.17 (18)
C3—C2—C1121.45 (15)C33—C34—C35177.59 (18)
C3—C2—H2119.3C36—C35—C34177.59 (18)
C1—C2—H2119.3C35—C36—C1177.89 (17)
C2—C3—C4117.98 (14)C39—C37—C3114.04 (14)
C2—C3—C37122.91 (15)C39—C37—C38111.02 (15)
C4—C3—C37119.06 (14)C3—C37—C38109.82 (13)
C5—C4—C3121.64 (14)C39—C37—H37107.2
C5—C4—H4119.2C3—C37—H37107.2
C3—C4—H4119.2C38—C37—H37107.2
C4—C5—C6120.69 (15)C37—C38—H38A109.5
C4—C5—H5119.7C37—C38—H38B109.5
C6—C5—H5119.7H38A—C38—H38B109.5
C5—C6—C1118.62 (14)C37—C38—H38C109.5
C5—C6—C7121.42 (14)H38A—C38—H38C109.5
C1—C6—C7119.95 (13)H38B—C38—H38C109.5
C8—C7—C6176.25 (16)C37—C39—H39A109.5
C7—C8—C9175.33 (17)C37—C39—H39B109.5
C10—C9—C14118.40 (14)H39A—C39—H39B109.5
C10—C9—C8121.83 (14)C37—C39—H39C109.5
C14—C9—C8119.70 (14)H39A—C39—H39C109.5
C11—C10—C9120.41 (15)H39B—C39—H39C109.5
C11—C10—H10119.8C42—C40—C12110.63 (13)
C9—C10—H10119.8C42—C40—C41110.00 (14)
C10—C11—C12121.90 (14)C12—C40—C41114.63 (13)
C10—C11—H11119C42—C40—H40107.1
C12—C11—H11119C12—C40—H40107.1
C13—C12—C11117.63 (14)C41—C40—H40107.1
C13—C12—C40122.84 (14)C40—C41—H41A109.5
C11—C12—C40119.53 (14)C40—C41—H41B109.5
C12—C13—C14121.67 (14)H41A—C41—H41B109.5
C12—C13—H13119.2C40—C41—H41C109.5
C14—C13—H13119.2H41A—C41—H41C109.5
C13—C14—C9119.93 (14)H41B—C41—H41C109.5
C13—C14—C15119.39 (14)C40—C42—H42A109.5
C9—C14—C15120.64 (13)C40—C42—H42B109.5
C16—C15—C14178.34 (17)H42A—C42—H42B109.5
C15—C16—C17178.73 (18)C40—C42—H42C109.5
C18—C17—C16178.88 (18)H42A—C42—H42C109.5
C17—C18—C19178.44 (17)H42B—C42—H42C109.5
C20—C19—C24120.06 (14)C44—C43—C21114.14 (14)
C20—C19—C18120.17 (14)C44—C43—C45110.55 (15)
C24—C19—C18119.78 (13)C21—C43—C45110.78 (14)
C21—C20—C19121.53 (15)C44—C43—H43107
C21—C20—H20119.2C21—C43—H43107
C19—C20—H20119.2C45—C43—H43107
C20—C21—C22117.49 (14)C43—C44—H44A109.5
C20—C21—C43122.80 (15)C43—C44—H44B109.5
C22—C21—C43119.72 (14)H44A—C44—H44B109.5
C23—C22—C21122.16 (15)C43—C44—H44C109.5
C23—C22—H22118.9H44A—C44—H44C109.5
C21—C22—H22118.9H44B—C44—H44C109.5
C22—C23—C24120.46 (15)C43—C45—H45A109.5
C22—C23—H23119.8C43—C45—H45B109.5
C24—C23—H23119.8H45A—C45—H45B109.5
C23—C24—C19118.25 (14)C43—C45—H45C109.5
C23—C24—C25122.27 (15)H45A—C45—H45C109.5
C19—C24—C25119.44 (14)H45B—C45—H45C109.5
C26—C25—C24174.43 (17)C47—C46—C48110.17 (17)
C25—C26—C27176.80 (17)C47—C46—C30114.42 (14)
C28—C27—C32118.09 (14)C48—C46—C30109.62 (14)
C28—C27—C26121.65 (15)C47—C46—H46107.5
C32—C27—C26120.24 (14)C48—C46—H46107.5
C29—C28—C27121.18 (15)C30—C46—H46107.5
C29—C28—H28119.4C46—C47—H47A109.5
C27—C28—H28119.4C46—C47—H47B109.5
C28—C29—C30121.52 (15)H47A—C47—H47B109.5
C28—C29—H29119.2C46—C47—H47C109.5
C30—C29—H29119.2H47A—C47—H47C109.5
C31—C30—C29117.81 (14)H47B—C47—H47C109.5
C31—C30—C46122.41 (15)C46—C48—H48A109.5
C29—C30—C46119.65 (14)C46—C48—H48B109.5
C30—C31—C32121.73 (15)H48A—C48—H48B109.5
C30—C31—H31119.1C46—C48—H48C109.5
C32—C31—H31119.1H48A—C48—H48C109.5
C31—C32—C27119.64 (14)H48B—C48—H48C109.5
C6—C1—C2—C30.4 (2)C22—C23—C24—C25175.30 (16)
C36—C1—C2—C3178.54 (15)C20—C19—C24—C231.3 (2)
C1—C2—C3—C41.7 (2)C18—C19—C24—C23179.13 (15)
C1—C2—C3—C37175.55 (15)C20—C19—C24—C25176.40 (15)
C2—C3—C4—C51.8 (2)C18—C19—C24—C253.2 (2)
C37—C3—C4—C5175.55 (15)C32—C27—C28—C291.5 (2)
C3—C4—C5—C60.6 (2)C26—C27—C28—C29176.98 (16)
C4—C5—C6—C10.7 (2)C27—C28—C29—C300.2 (3)
C4—C5—C6—C7179.51 (15)C28—C29—C30—C310.7 (2)
C2—C1—C6—C50.8 (2)C28—C29—C30—C46176.65 (15)
C36—C1—C6—C5179.77 (14)C29—C30—C31—C320.3 (2)
C2—C1—C6—C7179.63 (14)C46—C30—C31—C32176.14 (14)
C36—C1—C6—C71.4 (2)C30—C31—C32—C271.0 (2)
C14—C9—C10—C112.2 (2)C30—C31—C32—C33177.81 (15)
C8—C9—C10—C11174.65 (15)C28—C27—C32—C311.9 (2)
C9—C10—C11—C121.1 (3)C26—C27—C32—C31176.64 (15)
C10—C11—C12—C131.1 (2)C28—C27—C32—C33176.94 (15)
C10—C11—C12—C40178.95 (15)C26—C27—C32—C334.5 (2)
C11—C12—C13—C142.1 (2)C2—C3—C37—C3914.4 (2)
C40—C12—C13—C14177.86 (14)C4—C3—C37—C39168.35 (16)
C12—C13—C14—C91.0 (2)C2—C3—C37—C38110.89 (18)
C12—C13—C14—C15177.02 (14)C4—C3—C37—C3866.3 (2)
C10—C9—C14—C131.2 (2)C13—C12—C40—C42115.35 (17)
C8—C9—C14—C13175.78 (14)C11—C12—C40—C4264.6 (2)
C10—C9—C14—C15179.21 (14)C13—C12—C40—C419.7 (2)
C8—C9—C14—C152.3 (2)C11—C12—C40—C41170.28 (15)
C24—C19—C20—C210.8 (2)C20—C21—C43—C4410.6 (2)
C18—C19—C20—C21178.76 (15)C22—C21—C43—C44169.67 (16)
C19—C20—C21—C221.8 (2)C20—C21—C43—C45114.94 (18)
C19—C20—C21—C43178.43 (15)C22—C21—C43—C4564.8 (2)
C20—C21—C22—C230.8 (3)C31—C30—C46—C4736.4 (2)
C43—C21—C22—C23179.47 (16)C29—C30—C46—C47147.78 (16)
C21—C22—C23—C241.3 (3)C31—C30—C46—C4887.9 (2)
C22—C23—C24—C192.3 (2)C29—C30—C46—C4887.9 (2)

Experimental details

Crystal data
Chemical formulaC48H40
Mr616.8
Crystal system, space groupMonoclinic, P21/c
Temperature (K)90
a, b, c (Å)18.0007 (4), 12.5083 (3), 16.0674 (4)
β (°) 91.004 (1)
V3)3617.15 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.45 × 0.30 × 0.30
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor 1997)
Tmin, Tmax0.972, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
13998, 8186, 5354
Rint0.035
(sin θ/λ)max1)0.680
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.127, 1.02
No. of reflections8186
No. of parameters442
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.28

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), IDEAL (Gould et al., 1988) and WinGX (Farrugia, 1999).

 

Footnotes

1CAS 186494-88-2.

Acknowledgements

The purchase of the diffractometer was made possible by Grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents. We are grateful to Professor Adam Matzger for providing the sample.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBoese, R., Matzger, A. J. & Vollhardt, K. P. C. (1997). J. Am. Chem. Soc. 119, 2052–2053.  CSD CrossRef CAS Web of Science Google Scholar
First citationCambridgesoft (2010). Chem3DPro. Cambridgesoft Corporation, Cambridge, MA, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGould, R. O., Moulden, N., Taylor, N. & Taylor, P. (1988). IDEAL. Department of Chemistry, University of Edinburgh, Scotland.  Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds