metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Di­chloridobis[diphen­yl(4-vinyl­phenyl)phosphane-κP]platinum(II)

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za

(Received 6 October 2011; accepted 21 October 2011; online 5 November 2011)

The title compound, [PtCl2(C20H17P)2], forms a monomeric cis-square-planar geometry. The Pt—P bond lengths are 2.2489 (9) and 2.2627 (9) Å, whereas the Pt—Cl bond lengths are 2.3566 (9) and 2.3336 (9) Å.

Related literature

For a review of related compounds, see: Spessard & Miessler (1996[Spessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131-135. Upper Saddle River, New Jersey: Prentice Hall.]). For the structure of trans-dichloridobis[diphen­yl(4-vinyl­phen­yl)phos­phane]palladium(II), see: Meijboom (2011[Meijboom, R. (2011). Acta Cryst. E67, m1663.]). For the synthesis of the starting materials, see: Drew & Doyle (1990[Drew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346-349.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl2(C20H17P)2]

  • Mr = 842.6

  • Triclinic, [P \overline 1]

  • a = 10.0670 (5) Å

  • b = 12.7080 (7) Å

  • c = 14.4200 (7) Å

  • α = 100.179 (3)°

  • β = 97.519 (3)°

  • γ = 108.465 (3)°

  • V = 1687.42 (15) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 10.34 mm−1

  • T = 173 K

  • 0.09 × 0.05 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker; 2004[Bruker (2004). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.565, Tmax = 0.596

  • 33523 measured reflections

  • 5650 independent reflections

  • 5076 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.065

  • S = 1.08

  • 5650 reflections

  • 406 parameters

  • H-atom parameters constrained

  • Δρmax = 1.20 e Å−3

  • Δρmin = −0.65 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal complexes containing phosphine, arsine and stibine ligands are widely being investigated in various fields of organometallic chemistry (Spessard & Miessler, 1996). As part of a systematic investigation involving complexes with the general formula trans/cis-[MX2(L)2] (M = Pt or Pd; X = halogen, Me, Ph; L = group 15 donor ligand), the crystals of the title compound, were obtained.

[PtCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PtCl2(COD)]. The title compound, cis-[PtCl2{P(4—H2C=CHC6H4) Ph2}2], crystallizes in the triclinic spacegroup P1, with the Pt atom on a center of symmetry and each pair of equivalent ligands in a cis orientation. The geometry is a slightly distorted square planar and the Pt atom is slightly elevated out of the coordinating atom plane. The two P atoms are closer to each other but away from the two chloride atoms with angles of P1—Pt—P2 = 96.1 (4)° and Cl1—Pt—Cl2 = 87.7 (4)° whereas the P1—Pt—Cl1 is = 175.1 (4)° and that of P1—Pt—Cl2 being 89.6 (4)°

The title compound compares well with other closely related PtII complexes from the literature containing two chloro and two tertiary phosphine ligands in a cis geometry. The title compound, containing Pt—Cl bond lengths of 2.3566 (9) and 2.3336 (9) Å and Pt—P bond distances of 2.2489 (9) and 2.2627 (9) Å, fits well into the typical range for complexes of this kind. Notably the title compound did not crystallise as a solvated complex; these type of PtII complexes have a tendency to crystallise as solvates (Meijboom & Omondi, 2011).

Large thermal vibrations on the periphery of the molecule results in a badly defined CC bond length. Disordered modelling resulted in an unstable refinement.

Related literature top

For a review of related compounds, see: Spessard & Miessler (1996). For the structure of trans-dichloridobis[diphenyl(4-vinylphenyl)phosphane]palladium(II) , see: Meijboom (2011). For the synthesis of the starting materials, see: Drew & Doyle (1990).

Experimental top

Diphenylphosphinostyrene (0.05 g, 0.35 mmol) was dissolved in acetone (5 ml). A solution of [Pt(COD)Cl2] (0.05 g, 0.17 mmol) in acetone (5 ml) was added to the phosphine solution. The mixture was stirred for 5 min, after which the solution was left to crystallise. Yellow crystals of the title compound were obtained.

Refinement top

The aromatic H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

Transition metal complexes containing phosphine, arsine and stibine ligands are widely being investigated in various fields of organometallic chemistry (Spessard & Miessler, 1996). As part of a systematic investigation involving complexes with the general formula trans/cis-[MX2(L)2] (M = Pt or Pd; X = halogen, Me, Ph; L = group 15 donor ligand), the crystals of the title compound, were obtained.

[PtCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PtCl2(COD)]. The title compound, cis-[PtCl2{P(4—H2C=CHC6H4) Ph2}2], crystallizes in the triclinic spacegroup P1, with the Pt atom on a center of symmetry and each pair of equivalent ligands in a cis orientation. The geometry is a slightly distorted square planar and the Pt atom is slightly elevated out of the coordinating atom plane. The two P atoms are closer to each other but away from the two chloride atoms with angles of P1—Pt—P2 = 96.1 (4)° and Cl1—Pt—Cl2 = 87.7 (4)° whereas the P1—Pt—Cl1 is = 175.1 (4)° and that of P1—Pt—Cl2 being 89.6 (4)°

The title compound compares well with other closely related PtII complexes from the literature containing two chloro and two tertiary phosphine ligands in a cis geometry. The title compound, containing Pt—Cl bond lengths of 2.3566 (9) and 2.3336 (9) Å and Pt—P bond distances of 2.2489 (9) and 2.2627 (9) Å, fits well into the typical range for complexes of this kind. Notably the title compound did not crystallise as a solvated complex; these type of PtII complexes have a tendency to crystallise as solvates (Meijboom & Omondi, 2011).

Large thermal vibrations on the periphery of the molecule results in a badly defined CC bond length. Disordered modelling resulted in an unstable refinement.

For a review of related compounds, see: Spessard & Miessler (1996). For the structure of trans-dichloridobis[diphenyl(4-vinylphenyl)phosphane]palladium(II) , see: Meijboom (2011). For the synthesis of the starting materials, see: Drew & Doyle (1990).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids. For the C atoms, the first digit indicates ring number and the second digit indicates the position of the atom in the ring. Some labels have been omitted for clarity, all rings have been numbered in the same, systematic manner. H atoms are depicted by arbitrary size spheres. Hashed atoms are generated by symmetry (-x, -y, 1 - z).
cis-Dichloridobis[diphenyl(4-vinylphenyl)phosphane-κP] platinum(II) top
Crystal data top
[PtCl2(C20H17P)2]Z = 2
Mr = 842.6F(000) = 832
Triclinic, P1Dx = 1.658 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 10.0670 (5) ÅCell parameters from 9915 reflections
b = 12.7080 (7) Åθ = 3.2–65.5°
c = 14.4200 (7) ŵ = 10.34 mm1
α = 100.179 (3)°T = 173 K
β = 97.519 (3)°Rectagular, colourless
γ = 108.465 (3)°0.09 × 0.05 × 0.05 mm
V = 1687.42 (15) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5076 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
φ and ω scansθmax = 66.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker; 2004)
h = 119
Tmin = 0.565, Tmax = 0.596k = 1415
33523 measured reflectionsl = 1616
5650 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0347P)2]
where P = (Fo2 + 2Fc2)/3
5650 reflections(Δ/σ)max = 0.001
406 parametersΔρmax = 1.20 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[PtCl2(C20H17P)2]γ = 108.465 (3)°
Mr = 842.6V = 1687.42 (15) Å3
Triclinic, P1Z = 2
a = 10.0670 (5) ÅCu Kα radiation
b = 12.7080 (7) ŵ = 10.34 mm1
c = 14.4200 (7) ÅT = 173 K
α = 100.179 (3)°0.09 × 0.05 × 0.05 mm
β = 97.519 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
5650 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker; 2004)
5076 reflections with I > 2σ(I)
Tmin = 0.565, Tmax = 0.596Rint = 0.066
33523 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.08Δρmax = 1.20 e Å3
5650 reflectionsΔρmin = 0.65 e Å3
406 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.479071 (15)0.400360 (13)0.732175 (11)0.01954 (7)
Cl20.42103 (10)0.54124 (8)0.82770 (7)0.0267 (2)
P10.70052 (10)0.46884 (8)0.82343 (7)0.0208 (2)
Cl10.25050 (9)0.34413 (8)0.63416 (7)0.0264 (2)
P20.50511 (10)0.24668 (8)0.64094 (7)0.0206 (2)
C200.7955 (4)0.5146 (3)0.6588 (3)0.0260 (9)
H200.69890.49490.6330.031*
C190.8965 (4)0.5507 (3)0.6033 (3)0.0299 (10)
H190.86770.5580.54150.036*
C80.6325 (5)0.0769 (4)1.1108 (4)0.0475 (13)
H8A0.54050.07611.09080.057*
H8B0.64830.03061.1510.057*
C260.2685 (4)0.0511 (3)0.5411 (3)0.0249 (9)
H260.30270.06140.48530.03*
C380.5641 (4)0.2698 (4)0.3332 (3)0.0308 (10)
H380.57720.27520.27140.037*
C50.8494 (4)0.2706 (3)0.9791 (3)0.0290 (9)
H50.9320.25360.99340.035*
C10.7243 (4)0.3699 (3)0.8967 (3)0.0232 (9)
C30.6105 (4)0.2494 (3)0.9965 (3)0.0285 (9)
H30.53160.2191.02310.034*
C20.6046 (4)0.3212 (3)0.9359 (3)0.0270 (9)
H20.52160.33750.92090.032*
C310.7325 (5)0.0723 (4)0.7643 (3)0.0349 (10)
H310.71390.01340.79630.042*
C290.6489 (4)0.1963 (3)0.6840 (3)0.0213 (8)
C90.7452 (4)0.6041 (3)0.9114 (3)0.0232 (9)
C160.9833 (4)0.5385 (3)0.7908 (3)0.0300 (10)
H161.01350.53780.85440.036*
C210.3435 (4)0.1247 (3)0.6294 (3)0.0212 (8)
C40.7321 (4)0.2213 (4)1.0186 (3)0.0292 (9)
C181.0386 (5)0.5756 (4)0.6399 (3)0.0357 (11)
H181.10580.59620.60170.043*
C110.7848 (4)0.7147 (4)1.0721 (3)0.0321 (10)
H110.79090.71911.13760.039*
C350.5259 (4)0.2551 (3)0.5190 (3)0.0232 (8)
C400.4941 (4)0.3385 (3)0.4785 (3)0.0241 (9)
H400.45980.38950.51350.029*
C60.8463 (4)0.3438 (3)0.9193 (3)0.0264 (9)
H60.92630.37560.89430.032*
C250.1439 (4)0.0369 (3)0.5366 (3)0.0255 (9)
H250.09480.0850.47720.031*
C171.0824 (4)0.5701 (4)0.7338 (3)0.0356 (11)
H171.1790.58770.75840.043*
C150.8377 (4)0.5078 (3)0.7529 (3)0.0244 (9)
C240.0888 (4)0.0562 (3)0.6182 (3)0.0258 (9)
C340.7866 (4)0.2447 (3)0.6668 (3)0.0252 (9)
H340.80510.3020.63310.03*
C230.1657 (4)0.0167 (3)0.7063 (3)0.0246 (9)
H230.13290.00480.76230.029*
C330.8950 (4)0.2073 (4)0.6999 (3)0.0299 (10)
H330.98660.24050.68930.036*
C130.7992 (5)0.8069 (4)0.9414 (3)0.0368 (11)
H130.81470.8730.91870.044*
C390.5136 (4)0.3451 (4)0.3863 (3)0.0302 (10)
H390.49260.40090.35970.036*
C300.6241 (4)0.1105 (3)0.7333 (3)0.0261 (9)
H300.53350.0780.74570.031*
C320.8679 (4)0.1212 (4)0.7482 (3)0.0317 (10)
H320.94080.0960.770.038*
C70.7408 (5)0.1439 (4)1.0819 (3)0.0397 (11)
H70.83090.14191.10370.048*
C140.7678 (4)0.7031 (4)0.8781 (3)0.0315 (10)
H140.76180.69960.81270.038*
C370.5949 (4)0.1867 (4)0.3722 (3)0.0316 (10)
H370.6280.13550.33640.038*
C220.2897 (4)0.1063 (3)0.7116 (3)0.0232 (8)
H220.33810.1550.7710.028*
C100.7534 (4)0.6105 (4)1.0099 (3)0.0277 (9)
H100.73770.54481.03330.033*
C280.1179 (5)0.1685 (4)0.6776 (4)0.0447 (12)
H28A0.08160.12360.73970.054*
H28B0.20450.22890.6640.054*
C120.8073 (4)0.8125 (4)1.0382 (3)0.0343 (10)
H120.82810.88231.08090.041*
C360.5768 (4)0.1795 (3)0.4645 (3)0.0273 (9)
H360.59870.12380.49070.033*
C270.0474 (4)0.1469 (4)0.6092 (3)0.0343 (10)
H270.08840.19440.54830.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01963 (9)0.02256 (10)0.01699 (10)0.00948 (7)0.00360 (7)0.00210 (7)
Cl20.0297 (5)0.0311 (5)0.0222 (5)0.0169 (4)0.0065 (4)0.0010 (4)
P10.0201 (4)0.0247 (5)0.0165 (5)0.0091 (4)0.0020 (4)0.0015 (4)
Cl10.0208 (4)0.0294 (5)0.0276 (5)0.0102 (4)0.0007 (4)0.0031 (4)
P20.0225 (5)0.0211 (5)0.0181 (5)0.0093 (4)0.0037 (4)0.0011 (4)
C200.0250 (19)0.023 (2)0.027 (2)0.0070 (17)0.0048 (18)0.0009 (18)
C190.036 (2)0.026 (2)0.025 (2)0.0087 (19)0.0090 (19)0.0021 (19)
C80.050 (3)0.052 (3)0.050 (3)0.021 (2)0.010 (3)0.029 (3)
C260.027 (2)0.028 (2)0.022 (2)0.0146 (18)0.0067 (18)0.0024 (18)
C380.034 (2)0.039 (3)0.016 (2)0.008 (2)0.0080 (18)0.006 (2)
C50.029 (2)0.033 (2)0.025 (2)0.0157 (19)0.0003 (18)0.003 (2)
C10.026 (2)0.024 (2)0.016 (2)0.0093 (17)0.0018 (16)0.0026 (17)
C30.032 (2)0.032 (2)0.021 (2)0.0113 (19)0.0079 (18)0.0022 (19)
C20.025 (2)0.030 (2)0.024 (2)0.0123 (18)0.0006 (17)0.0016 (19)
C310.040 (2)0.027 (2)0.036 (3)0.014 (2)0.001 (2)0.006 (2)
C290.0272 (19)0.018 (2)0.016 (2)0.0106 (16)0.0004 (16)0.0040 (17)
C90.0195 (18)0.029 (2)0.018 (2)0.0095 (16)0.0017 (16)0.0015 (18)
C160.027 (2)0.032 (2)0.028 (2)0.0097 (18)0.0002 (18)0.003 (2)
C210.0203 (18)0.023 (2)0.022 (2)0.0113 (16)0.0028 (17)0.0042 (18)
C40.036 (2)0.029 (2)0.022 (2)0.0126 (19)0.0046 (19)0.0049 (19)
C180.033 (2)0.034 (3)0.040 (3)0.009 (2)0.019 (2)0.005 (2)
C110.027 (2)0.043 (3)0.024 (2)0.0144 (19)0.0074 (18)0.002 (2)
C350.0212 (18)0.026 (2)0.021 (2)0.0077 (16)0.0035 (16)0.0033 (18)
C400.0248 (19)0.022 (2)0.023 (2)0.0076 (17)0.0057 (17)0.0002 (18)
C60.025 (2)0.029 (2)0.022 (2)0.0092 (17)0.0030 (17)0.0005 (19)
C250.030 (2)0.024 (2)0.020 (2)0.0118 (18)0.0016 (17)0.0018 (18)
C170.024 (2)0.038 (3)0.046 (3)0.0110 (19)0.010 (2)0.009 (2)
C150.027 (2)0.023 (2)0.023 (2)0.0104 (17)0.0060 (17)0.0011 (18)
C240.030 (2)0.021 (2)0.028 (2)0.0126 (17)0.0046 (18)0.0049 (19)
C340.029 (2)0.026 (2)0.020 (2)0.0124 (17)0.0042 (17)0.0017 (18)
C230.027 (2)0.026 (2)0.022 (2)0.0110 (17)0.0058 (17)0.0049 (18)
C330.0217 (19)0.037 (3)0.025 (2)0.0105 (18)0.0030 (18)0.008 (2)
C130.044 (3)0.028 (2)0.037 (3)0.015 (2)0.004 (2)0.002 (2)
C390.032 (2)0.030 (2)0.031 (2)0.0119 (19)0.0059 (19)0.009 (2)
C300.025 (2)0.026 (2)0.025 (2)0.0103 (17)0.0037 (18)0.0012 (19)
C320.029 (2)0.032 (2)0.033 (2)0.0168 (19)0.0010 (19)0.002 (2)
C70.039 (2)0.044 (3)0.038 (3)0.017 (2)0.003 (2)0.013 (2)
C140.037 (2)0.032 (2)0.023 (2)0.0128 (19)0.0046 (19)0.002 (2)
C370.033 (2)0.036 (3)0.024 (2)0.0118 (19)0.0082 (19)0.001 (2)
C220.029 (2)0.023 (2)0.017 (2)0.0108 (17)0.0021 (17)0.0009 (17)
C100.0238 (19)0.032 (2)0.025 (2)0.0108 (18)0.0047 (18)0.0007 (19)
C280.043 (3)0.037 (3)0.043 (3)0.001 (2)0.009 (2)0.008 (2)
C120.033 (2)0.033 (3)0.029 (3)0.0117 (19)0.003 (2)0.010 (2)
C360.027 (2)0.029 (2)0.025 (2)0.0104 (18)0.0046 (18)0.0011 (19)
C270.035 (2)0.029 (2)0.029 (2)0.0055 (19)0.001 (2)0.001 (2)
Geometric parameters (Å, º) top
Pt1—P12.2489 (9)C16—H160.93
Pt1—P22.2627 (9)C21—C221.392 (5)
Pt1—Cl22.3336 (9)C4—C71.470 (6)
Pt1—Cl12.3566 (9)C18—C171.389 (6)
P1—C151.817 (4)C18—H180.93
P1—C11.829 (4)C11—C121.378 (6)
P1—C91.832 (4)C11—C101.378 (6)
P2—C351.815 (4)C11—H110.93
P2—C211.822 (4)C35—C401.397 (6)
P2—C291.840 (4)C35—C361.398 (5)
C20—C191.390 (5)C40—C391.383 (5)
C20—C151.394 (6)C40—H400.93
C20—H200.93C6—H60.93
C19—C181.372 (6)C25—C241.392 (5)
C19—H190.93C25—H250.93
C8—C71.320 (6)C17—H170.93
C8—H8A0.93C24—C231.394 (6)
C8—H8B0.93C24—C271.457 (6)
C26—C251.376 (5)C34—C331.385 (6)
C26—C211.396 (5)C34—H340.93
C26—H260.93C23—C221.380 (5)
C38—C371.378 (6)C23—H230.93
C38—C391.382 (6)C33—C321.373 (6)
C38—H380.93C33—H330.93
C5—C61.380 (6)C13—C121.375 (6)
C5—C41.394 (6)C13—C141.382 (6)
C5—H50.93C13—H130.93
C1—C61.385 (5)C39—H390.93
C1—C21.409 (5)C30—H300.93
C3—C21.380 (6)C32—H320.93
C3—C41.394 (6)C7—H70.93
C3—H30.93C14—H140.93
C2—H20.93C37—C361.381 (6)
C31—C321.376 (6)C37—H370.93
C31—C301.382 (6)C22—H220.93
C31—H310.93C10—H100.93
C29—C301.380 (5)C28—C271.307 (6)
C29—C341.402 (5)C28—H28A0.93
C9—C141.388 (6)C28—H28B0.93
C9—C101.399 (5)C12—H120.93
C16—C171.382 (6)C36—H360.93
C16—C151.397 (5)C27—H270.93
P1—Pt1—P296.14 (3)C40—C35—C36118.7 (4)
P1—Pt1—Cl289.61 (3)C40—C35—P2120.7 (3)
P2—Pt1—Cl2171.93 (3)C36—C35—P2120.5 (3)
P1—Pt1—Cl1175.16 (3)C39—C40—C35119.9 (4)
P2—Pt1—Cl186.92 (3)C39—C40—H40120.1
Cl2—Pt1—Cl187.72 (3)C35—C40—H40120.1
C15—P1—C1113.60 (18)C5—C6—C1120.1 (4)
C15—P1—C9100.60 (18)C5—C6—H6119.9
C1—P1—C9103.91 (18)C1—C6—H6119.9
C15—P1—Pt1112.17 (13)C26—C25—C24122.1 (4)
C1—P1—Pt1110.37 (13)C26—C25—H25118.9
C9—P1—Pt1115.71 (12)C24—C25—H25118.9
C35—P2—C21105.89 (17)C16—C17—C18120.4 (4)
C35—P2—C29103.14 (17)C16—C17—H17119.8
C21—P2—C29103.27 (17)C18—C17—H17119.8
C35—P2—Pt1115.90 (13)C20—C15—C16118.9 (4)
C21—P2—Pt1107.66 (12)C20—C15—P1118.0 (3)
C29—P2—Pt1119.57 (12)C16—C15—P1122.9 (3)
C19—C20—C15120.6 (4)C25—C24—C23117.5 (4)
C19—C20—H20119.7C25—C24—C27120.0 (4)
C15—C20—H20119.7C23—C24—C27122.4 (4)
C18—C19—C20119.8 (4)C33—C34—C29120.1 (4)
C18—C19—H19120.1C33—C34—H34119.9
C20—C19—H19120.1C29—C34—H34119.9
C7—C8—H8A120C22—C23—C24121.0 (4)
C7—C8—H8B120C22—C23—H23119.5
H8A—C8—H8B120C24—C23—H23119.5
C25—C26—C21119.9 (4)C32—C33—C34120.3 (4)
C25—C26—H26120.1C32—C33—H33119.8
C21—C26—H26120.1C34—C33—H33119.8
C37—C38—C39119.9 (4)C12—C13—C14119.9 (4)
C37—C38—H38120.1C12—C13—H13120
C39—C38—H38120.1C14—C13—H13120
C6—C5—C4121.8 (4)C38—C39—C40120.8 (4)
C6—C5—H5119.1C38—C39—H39119.6
C4—C5—H5119.1C40—C39—H39119.6
C6—C1—C2119.0 (4)C29—C30—C31120.7 (4)
C6—C1—P1127.0 (3)C29—C30—H30119.7
C2—C1—P1113.9 (3)C31—C30—H30119.7
C2—C3—C4121.4 (4)C33—C32—C31119.9 (4)
C2—C3—H3119.3C33—C32—H32120.1
C4—C3—H3119.3C31—C32—H32120.1
C3—C2—C1120.0 (4)C8—C7—C4126.0 (4)
C3—C2—H2120C8—C7—H7117
C1—C2—H2120C4—C7—H7117
C32—C31—C30120.3 (4)C13—C14—C9120.5 (4)
C32—C31—H31119.8C13—C14—H14119.7
C30—C31—H31119.8C9—C14—H14119.7
C30—C29—C34118.7 (4)C38—C37—C36120.0 (4)
C30—C29—P2121.1 (3)C38—C37—H37120
C34—C29—P2120.2 (3)C36—C37—H37120
C14—C9—C10119.2 (4)C23—C22—C21120.9 (4)
C14—C9—P1118.4 (3)C23—C22—H22119.5
C10—C9—P1122.4 (3)C21—C22—H22119.5
C17—C16—C15120.0 (4)C11—C10—C9119.6 (4)
C17—C16—H16120C11—C10—H10120.2
C15—C16—H16120C9—C10—H10120.2
C22—C21—C26118.6 (3)C27—C28—H28A120
C22—C21—P2118.7 (3)C27—C28—H28B120
C26—C21—P2122.7 (3)H28A—C28—H28B120
C5—C4—C3117.7 (4)C13—C12—C11120.1 (4)
C5—C4—C7119.8 (4)C13—C12—H12120
C3—C4—C7122.6 (4)C11—C12—H12120
C19—C18—C17120.2 (4)C37—C36—C35120.8 (4)
C19—C18—H18119.9C37—C36—H36119.6
C17—C18—H18119.9C35—C36—H36119.6
C12—C11—C10120.8 (4)C28—C27—C24126.9 (4)
C12—C11—H11119.6C28—C27—H27116.6
C10—C11—H11119.6C24—C27—H27116.6
P2—Pt1—P1—C1562.46 (14)Pt1—P2—C35—C36164.4 (3)
Cl2—Pt1—P1—C15123.21 (14)C36—C35—C40—C390.2 (6)
P2—Pt1—P1—C165.31 (13)P2—C35—C40—C39178.6 (3)
Cl2—Pt1—P1—C1109.02 (13)C4—C5—C6—C10.3 (6)
P2—Pt1—P1—C9177.08 (15)C2—C1—C6—C50.3 (6)
Cl2—Pt1—P1—C98.59 (15)P1—C1—C6—C5177.3 (3)
P1—Pt1—P2—C35105.47 (14)C21—C26—C25—C240.3 (6)
Cl1—Pt1—P2—C3570.77 (14)C15—C16—C17—C182.5 (6)
P1—Pt1—P2—C21136.24 (13)C19—C18—C17—C160.6 (7)
Cl1—Pt1—P2—C2147.53 (13)C19—C20—C15—C160.4 (6)
P1—Pt1—P2—C2919.01 (15)C19—C20—C15—P1176.1 (3)
Cl1—Pt1—P2—C29164.76 (15)C17—C16—C15—C203.0 (6)
C15—C20—C19—C182.6 (6)C17—C16—C15—P1178.3 (3)
C15—P1—C1—C615.3 (4)C1—P1—C15—C20139.0 (3)
C9—P1—C1—C693.1 (4)C9—P1—C15—C20110.6 (3)
Pt1—P1—C1—C6142.2 (3)Pt1—P1—C15—C2013.0 (3)
C15—P1—C1—C2167.6 (3)C1—P1—C15—C1645.6 (4)
C9—P1—C1—C284.0 (3)C9—P1—C15—C1664.8 (4)
Pt1—P1—C1—C240.7 (3)Pt1—P1—C15—C16171.6 (3)
C4—C3—C2—C11.5 (6)C26—C25—C24—C230.7 (6)
C6—C1—C2—C30.5 (6)C26—C25—C24—C27176.9 (4)
P1—C1—C2—C3176.8 (3)C30—C29—C34—C330.8 (6)
C35—P2—C29—C30134.8 (3)P2—C29—C34—C33179.5 (3)
C21—P2—C29—C3024.7 (3)C25—C24—C23—C221.7 (6)
Pt1—P2—C29—C3094.8 (3)C27—C24—C23—C22175.9 (4)
C35—P2—C29—C3444.9 (3)C29—C34—C33—C321.2 (6)
C21—P2—C29—C34155.0 (3)C37—C38—C39—C400.2 (6)
Pt1—P2—C29—C3485.5 (3)C35—C40—C39—C380.2 (6)
C15—P1—C9—C1448.5 (3)C34—C29—C30—C310.5 (6)
C1—P1—C9—C14166.3 (3)P2—C29—C30—C31179.2 (3)
Pt1—P1—C9—C1472.6 (3)C32—C31—C30—C291.3 (6)
C15—P1—C9—C10133.3 (3)C34—C33—C32—C310.3 (6)
C1—P1—C9—C1015.5 (4)C30—C31—C32—C330.9 (6)
Pt1—P1—C9—C10105.7 (3)C5—C4—C7—C8167.7 (5)
C25—C26—C21—C220.4 (6)C3—C4—C7—C813.0 (7)
C25—C26—C21—P2177.3 (3)C12—C13—C14—C90.4 (6)
C35—P2—C21—C22171.5 (3)C10—C9—C14—C130.5 (6)
C29—P2—C21—C2280.5 (3)P1—C9—C14—C13178.8 (3)
Pt1—P2—C21—C2246.9 (3)C39—C38—C37—C360.6 (6)
C35—P2—C21—C266.2 (4)C24—C23—C22—C211.6 (6)
C29—P2—C21—C26101.8 (3)C26—C21—C22—C230.6 (5)
Pt1—P2—C21—C26130.8 (3)P2—C21—C22—C23178.4 (3)
C6—C5—C4—C30.6 (6)C12—C11—C10—C90.4 (6)
C6—C5—C4—C7179.9 (4)C14—C9—C10—C110.5 (6)
C2—C3—C4—C51.5 (6)P1—C9—C10—C11178.8 (3)
C2—C3—C4—C7179.2 (4)C14—C13—C12—C110.2 (6)
C20—C19—C18—C173.1 (6)C10—C11—C12—C130.3 (6)
C21—P2—C35—C40104.9 (3)C38—C37—C36—C350.6 (6)
C29—P2—C35—C40147.0 (3)C40—C35—C36—C370.2 (6)
Pt1—P2—C35—C4014.4 (4)P2—C35—C36—C37179.0 (3)
C21—P2—C35—C3676.4 (3)C25—C24—C27—C28173.6 (5)
C29—P2—C35—C3631.8 (4)C23—C24—C27—C283.9 (7)

Experimental details

Crystal data
Chemical formula[PtCl2(C20H17P)2]
Mr842.6
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.0670 (5), 12.7080 (7), 14.4200 (7)
α, β, γ (°)100.179 (3), 97.519 (3), 108.465 (3)
V3)1687.42 (15)
Z2
Radiation typeCu Kα
µ (mm1)10.34
Crystal size (mm)0.09 × 0.05 × 0.05
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker; 2004)
Tmin, Tmax0.565, 0.596
No. of measured, independent and
observed [I > 2σ(I)] reflections
33523, 5650, 5076
Rint0.066
(sin θ/λ)max1)0.593
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.065, 1.08
No. of reflections5650
No. of parameters406
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.20, 0.65

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Pt1—P12.2489 (9)Pt1—Cl22.3336 (9)
Pt1—P22.2627 (9)Pt1—Cl12.3566 (9)
 

Acknowledgements

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg, TESP and SASOL is gratefully acknowledged. Mr S. Enus is acknowledged for the synthesis of this compound.

References

First citationBruker (2004). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346–349.  CrossRef CAS Web of Science Google Scholar
First citationMeijboom, R. (2011). Acta Cryst. E67, m1663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131–135. Upper Saddle River, New Jersey: Prentice Hall.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds