metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(6-carb­­oxy­pyrazine-2-carboxyl­ato)lithium]-μ-aqua]

aInstitute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

(Received 27 October 2011; accepted 2 November 2011; online 9 November 2011)

The asymmetric unit of the title compound, [Li(C6H3N2O4)(H2O)]n, contains an LiI ion with a distorted trigonal–bipyramidal coordination environment. It is chelated by a singly protonated ligand mol­ecule via its heterocyclic N atom, by two O aoms, each donated by an adjacent carboxyl­ate group, and is further coordinated by a water O atom which acts as a bridge, forming a mol­ecular ribbon. A proton attached to one of the carboxyl­ate O atoms is situated on an inversion centre and forms a short centrosymmetric hydrogen bond, generating mol­ecular layers parallel to the ac plane. These layers are held together by weak O—H⋯O hydrogen bonds in which the coordinated water mol­ecules act as donors, whereas carboxyl­ate O atoms are acceptors.

Related literature

For the structures of three lithium complexes with pyrazine-2,3-dicarboxyl­ate and water ligands, see: Tombul et al. (2008[Tombul, M., Güven, K. & Büyükgüngör, O. (2008). Acta Cryst. E64, m491-m492.]); Tombul & Guven (2009)[Tombul, M. & Guven, K. (2009). Acta Cryst. E65, m1704-m1705.]; Starosta & Leciejewicz (2011b[Starosta, W. & Leciejewicz, J. (2011b). Acta Cryst. E67, m1133-m1134.]). For the structure of a LiI complex with a pyrazine-2,5-dicarboxyl­ate ligand, see: Starosta & Leciejewicz (2011a[Starosta, W. & Leciejewicz, J. (2011a). Acta Cryst. E67, m50-m51.]) and for the structure of a LiI complex with pyrazine-2,3,5,6-tetra­carboxyl­ate, see: Starosta & Leciejewicz (2010[Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m1561-m1562.]). The structure of pyrazine-2,6-dicarboxyl­ate acid dihydrate has been also reported, see: Ptasiewicz-Bąk & Leciejewicz (2003[Ptasiewicz-Bąk, H. & Leciejewicz, J. (2003). J. Coord. Chem. 56, 173-180.]).

[Scheme 1]

Experimental

Crystal data
  • [Li(C6H3N2O4)(H2O)]

  • Mr = 192.06

  • Monoclinic, P 21 /m

  • a = 3.5346 (7) Å

  • b = 12.519 (3) Å

  • c = 8.3583 (17) Å

  • β = 97.86 (3)°

  • V = 366.37 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.31 × 0.22 × 0.08 mm

Data collection
  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.954, Tmax = 0.973

  • 1262 measured reflections

  • 1106 independent reflections

  • 729 reflections with I > 2σ(I)

  • Rint = 0.027

  • 3 standard reflections every 200 reflections intensity decay: 1.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.171

  • S = 1.09

  • 1106 reflections

  • 75 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

N1—Li1 2.115 (7)
O1—Li1 2.271 (2)
O3—Li1 1.950 (7)
O3—Li1i 2.085 (7)
Li1—O1ii 2.271 (2)
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{3\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯O2iii 0.83 (2) 2.24 (2) 2.9987 (19) 152 (3)
O1—H1⋯O1iii 1.23 (1) 1.23 (1) 2.455 (3) 180 (1)
Symmetry code: (iii) -x+1, -y+1, -z.

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The asymmetric unit of the title compound consists of a LiI ion, a singly deprotonated pyrazine-2,6-dicarboxylate iigand molecule and a coordinated water molecule (Fig. 1). The coordination environment of the Li1 ion is composed of five atoms: ligand carboxylate O1, O1i, hetero-ring N1, aqua O3 and O3iii atoms. The coplanar Li1, N1, O3 and O3iii form the base of a distorted trigonal bipyramid with O1 and O1i atoms at its apices.[Symmetry code: i x, -y + 3/2, z; ii x + 1, y, z, iii x - 1, y, z, iv 1 - x, 1 - y, -z]. The observed Li—O and Li—N bond distances (Table 1) are typical for LiI complexes with diazine carboxylate ligands, see, for example: Tombul & Guven, (2009); Starosta & Leciejewicz, (2010); Starosta & Leciejewicz,(2011b). Coordinated aqua O3 atom bridges Li1 with Liii ion to form molecular ribbons which propagate in the crystal alon [001] direction (Fig. 2). The carboxylato O1 atom remains protonated and mantains the charge balance. This proton, located at an inversion centre, forms a short centrosymmetric O1—H1···O1iv hydrogen bond of 2.455 (3) A° which links adjacent ribbons to form molecular layers. The pyrazine ring is planar with r.m.s of 0.0024 (1) Å.The C7/O1/O2 and C7i/O1i/O2i carboxylic groups make with it dihedral angles of 3.0 (1)°. Bond distances and bond angles within the ligand molecule do not differ from those reported in the structure of pyrazine-2,6-dicarboxylic acid dihydrate (Ptasiewicz-Bąk & Leciejewicz, 2003). The layers are held together by weak hydrogen bonds in which the coordinated water molecules act as donors and carboxylate O atoms and hetero-ring N atoms from adjacent layers are as acceptors (Table 2). Protonated ligand carboxylate groups have been observed in the structures of LiI complexes with pyrazine-2,3-carboxylate (Tombul et al., 2008, Starosta & Leciejewicz, 2011b) and pyrazine-2,5-dicarboxylate (Starosta & Leciejewicz, 2011a) ligands and in the structure of a LiI complex with pyrazine-2,3,5,6-tetracarboxylate ligand (Starosta & Leciejewicz, 2010). In the above structures, protons participate in short hydrogen bonds in which O atoms from adjacent intra-ligand carboxylate groups are donors and acceptors.

Related literature top

For the structures of three lithium complexes with pyrazine-2,3-dicarboxylate and water ligands, see: Tombul et al. (2008); Tombul & Guven, (2009); Starosta & Leciejewicz, (2011b). For the structure of a LiI complex with a pyrazine-2,5-dicarboxylate ligand, see: Starosta & Leciejewicz (2011a) and for the structure of a LiI complex with pyrazine-2,3,5,6-tetracarboxylate, see: Starosta & Leciejewicz (2010). The structure of pyrazine-2,6-dicarboxylate acid dihydrate has been also reported, see: Ptasiewicz-Bąk & Leciejewicz (2003).

Experimental top

Hot aqueous solutions of 1 mmol of pyrazine-2,6-dicarboxylic acid dihydrate and 1 mmol of lithium hydroxide (Aldrich) were mixed and boiled under reflux with constant stirring for 6 h. Left for evaporation at room temperature, after a couple of days small single-crystal plates of the title complex were obtained. Crystals were washed with cold ethanol and dried in air.

Refinement top

Pyrazine ring H atoms atoms were placed in calculated positions with C—H = 0.93 and 0.96Å and treated as riding on the parent atoms with Uiso(H)= 1.2Ueq(C)or Uiso(H)=1.5U eq(Cmethyl). Water H atoms were found in Fourier map and refined isotropically.

Structure description top

The asymmetric unit of the title compound consists of a LiI ion, a singly deprotonated pyrazine-2,6-dicarboxylate iigand molecule and a coordinated water molecule (Fig. 1). The coordination environment of the Li1 ion is composed of five atoms: ligand carboxylate O1, O1i, hetero-ring N1, aqua O3 and O3iii atoms. The coplanar Li1, N1, O3 and O3iii form the base of a distorted trigonal bipyramid with O1 and O1i atoms at its apices.[Symmetry code: i x, -y + 3/2, z; ii x + 1, y, z, iii x - 1, y, z, iv 1 - x, 1 - y, -z]. The observed Li—O and Li—N bond distances (Table 1) are typical for LiI complexes with diazine carboxylate ligands, see, for example: Tombul & Guven, (2009); Starosta & Leciejewicz, (2010); Starosta & Leciejewicz,(2011b). Coordinated aqua O3 atom bridges Li1 with Liii ion to form molecular ribbons which propagate in the crystal alon [001] direction (Fig. 2). The carboxylato O1 atom remains protonated and mantains the charge balance. This proton, located at an inversion centre, forms a short centrosymmetric O1—H1···O1iv hydrogen bond of 2.455 (3) A° which links adjacent ribbons to form molecular layers. The pyrazine ring is planar with r.m.s of 0.0024 (1) Å.The C7/O1/O2 and C7i/O1i/O2i carboxylic groups make with it dihedral angles of 3.0 (1)°. Bond distances and bond angles within the ligand molecule do not differ from those reported in the structure of pyrazine-2,6-dicarboxylic acid dihydrate (Ptasiewicz-Bąk & Leciejewicz, 2003). The layers are held together by weak hydrogen bonds in which the coordinated water molecules act as donors and carboxylate O atoms and hetero-ring N atoms from adjacent layers are as acceptors (Table 2). Protonated ligand carboxylate groups have been observed in the structures of LiI complexes with pyrazine-2,3-carboxylate (Tombul et al., 2008, Starosta & Leciejewicz, 2011b) and pyrazine-2,5-dicarboxylate (Starosta & Leciejewicz, 2011a) ligands and in the structure of a LiI complex with pyrazine-2,3,5,6-tetracarboxylate ligand (Starosta & Leciejewicz, 2010). In the above structures, protons participate in short hydrogen bonds in which O atoms from adjacent intra-ligand carboxylate groups are donors and acceptors.

For the structures of three lithium complexes with pyrazine-2,3-dicarboxylate and water ligands, see: Tombul et al. (2008); Tombul & Guven, (2009); Starosta & Leciejewicz, (2011b). For the structure of a LiI complex with a pyrazine-2,5-dicarboxylate ligand, see: Starosta & Leciejewicz (2011a) and for the structure of a LiI complex with pyrazine-2,3,5,6-tetracarboxylate, see: Starosta & Leciejewicz (2010). The structure of pyrazine-2,6-dicarboxylate acid dihydrate has been also reported, see: Ptasiewicz-Bąk & Leciejewicz (2003).

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code: i x, -y + 3/2, z; ii x + 1, y, z; iii x - 1, y, z; iv 1 - x, 1 - y, -z; v 1 - x, -1/2 + y, -z; vi x, 1/2 - y, z; vii 1 - x, 1/2 + y, -z; viii 2 - x, 1 - y, -z.
[Figure 2] Fig. 2. The alignment of the ribbons viewed along the axis a.
catena-Poly[[(6-carboxypyrazine-2-carboxylato)lithium]-µ-aqua] top
Crystal data top
[Li(C6H3N2O4)(H2O)]F(000) = 196
Mr = 192.06Dx = 1.741 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 25 reflections
a = 3.5346 (7) Åθ = 6–15°
b = 12.519 (3) ŵ = 0.15 mm1
c = 8.3583 (17) ÅT = 293 K
β = 97.86 (3)°Plates, colourless
V = 366.37 (13) Å30.31 × 0.22 × 0.08 mm
Z = 2
Data collection top
Kuma KM-4 four-circle
diffractometer
729 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 30.1°, θmin = 3.0°
Profile data from ω/2θ scansh = 04
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 170
Tmin = 0.954, Tmax = 0.973l = 1111
1262 measured reflections3 standard reflections every 200 reflections
1106 independent reflections intensity decay: 1.3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.1039P)2 + 0.0995P]
where P = (Fo2 + 2Fc2)/3
1106 reflections(Δ/σ)max < 0.001
75 parametersΔρmax = 0.38 e Å3
2 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Li(C6H3N2O4)(H2O)]V = 366.37 (13) Å3
Mr = 192.06Z = 2
Monoclinic, P21/mMo Kα radiation
a = 3.5346 (7) ŵ = 0.15 mm1
b = 12.519 (3) ÅT = 293 K
c = 8.3583 (17) Å0.31 × 0.22 × 0.08 mm
β = 97.86 (3)°
Data collection top
Kuma KM-4 four-circle
diffractometer
729 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.027
Tmin = 0.954, Tmax = 0.9733 standard reflections every 200 reflections
1262 measured reflections intensity decay: 1.3%
1106 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0542 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.38 e Å3
1106 reflectionsΔρmin = 0.31 e Å3
75 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2901 (6)0.75000.2305 (2)0.0216 (4)
O10.4179 (5)0.57853 (10)0.07619 (15)0.0333 (4)
C20.2425 (5)0.65866 (13)0.30619 (19)0.0216 (4)
N20.0883 (7)0.75000.5385 (2)0.0297 (5)
O20.2587 (5)0.47052 (12)0.27081 (17)0.0371 (4)
C30.1409 (5)0.65888 (14)0.4618 (2)0.0269 (4)
H30.10920.59420.51300.032*
C70.3068 (5)0.55822 (14)0.2144 (2)0.0245 (4)
O30.8304 (9)0.75000.1306 (3)0.0572 (8)
Li10.3902 (17)0.75000.0132 (8)0.0456 (13)
H310.866 (12)0.6976 (8)0.186 (4)0.092 (14)*
H10.50000.50000.00000.10 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0281 (10)0.0194 (9)0.0187 (8)0.0000.0084 (7)0.000
O10.0561 (9)0.0228 (7)0.0254 (6)0.0003 (6)0.0216 (6)0.0014 (5)
C20.0253 (8)0.0206 (7)0.0198 (7)0.0006 (6)0.0059 (5)0.0012 (6)
N20.0404 (12)0.0314 (12)0.0196 (9)0.0000.0124 (8)0.000
O20.0584 (10)0.0223 (7)0.0340 (7)0.0004 (6)0.0186 (6)0.0037 (5)
C30.0348 (9)0.0261 (9)0.0217 (7)0.0000 (7)0.0109 (6)0.0031 (6)
C70.0300 (8)0.0223 (7)0.0225 (7)0.0009 (6)0.0080 (6)0.0002 (6)
O30.0642 (18)0.084 (2)0.0247 (10)0.0000.0122 (10)0.000
Li10.039 (3)0.053 (3)0.046 (3)0.0000.007 (2)0.000
Geometric parameters (Å, º) top
N1—C2i1.3287 (18)O2—C71.216 (2)
N1—C21.3287 (18)C3—H30.9300
N1—Li12.115 (7)O3—Li11.950 (7)
O1—C71.295 (2)O3—Li1ii2.085 (7)
O1—Li12.271 (2)O3—H310.825 (17)
O1—H11.2275 (13)Li1—O3iii2.085 (7)
C2—C31.396 (2)Li1—O1i2.271 (2)
C2—C71.506 (2)Li1—Li1iii3.5346 (7)
N2—C3i1.334 (2)Li1—Li1ii3.5346 (7)
N2—C31.334 (2)
C2i—N1—C2118.8 (2)O3—Li1—N1137.3 (3)
C2i—N1—Li1120.51 (10)O3iii—Li1—N1100.4 (3)
C2—N1—Li1120.51 (10)O3—Li1—O1i99.45 (16)
C7—O1—Li1118.33 (19)O3iii—Li1—O1i98.65 (16)
C7—O1—H1115.31 (13)N1—Li1—O1i71.83 (16)
Li1—O1—H1126.08 (17)O3—Li1—O199.45 (16)
N1—C2—C3120.51 (16)O3iii—Li1—O198.65 (16)
N1—C2—C7115.98 (14)N1—Li1—O171.84 (16)
C3—C2—C7123.52 (15)O1i—Li1—O1141.9 (3)
C3i—N2—C3117.5 (2)O3—Li1—Li1iii150.10 (19)
N2—C3—C2121.34 (16)O3iii—Li1—Li1iii27.79 (19)
N2—C3—H3119.3N1—Li1—Li1iii72.60 (17)
C2—C3—H3119.3O1i—Li1—Li1iii89.89 (15)
O2—C7—O1126.77 (16)O1—Li1—Li1iii89.89 (15)
O2—C7—C2121.16 (15)O3—Li1—Li1ii29.90 (19)
O1—C7—C2112.07 (15)O3iii—Li1—Li1ii152.21 (18)
Li1—O3—Li1ii122.3 (3)N1—Li1—Li1ii107.40 (17)
Li1—O3—H31119 (3)O1i—Li1—Li1ii90.11 (15)
Li1ii—O3—H3193 (3)O1—Li1—Li1ii90.11 (15)
O3—Li1—O3iii122.3 (3)Li1iii—Li1—Li1ii179.999 (1)
Symmetry codes: (i) x, y+3/2, z; (ii) x+1, y, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O2iv0.83 (2)2.24 (2)2.9987 (19)152 (3)
O1—H1···O1iv1.23 (1)1.23 (1)2.455 (3)180 (1)
Symmetry code: (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Li(C6H3N2O4)(H2O)]
Mr192.06
Crystal system, space groupMonoclinic, P21/m
Temperature (K)293
a, b, c (Å)3.5346 (7), 12.519 (3), 8.3583 (17)
β (°) 97.86 (3)
V3)366.37 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.31 × 0.22 × 0.08
Data collection
DiffractometerKuma KM-4 four-circle
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.954, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
1262, 1106, 729
Rint0.027
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.171, 1.09
No. of reflections1106
No. of parameters75
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.31

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
N1—Li12.115 (7)O3—Li1i2.085 (7)
O1—Li12.271 (2)Li1—O1ii2.271 (2)
O3—Li11.950 (7)
Symmetry codes: (i) x+1, y, z; (ii) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O2iii0.825 (17)2.244 (15)2.9987 (19)152 (3)
O1—H1···O1iii1.2275 (13)1.2275 (13)2.455 (3)180.00 (10)
Symmetry code: (iii) x+1, y+1, z.
 

References

First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPtasiewicz-Bąk, H. & Leciejewicz, J. (2003). J. Coord. Chem. 56, 173–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m1561–m1562.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2011a). Acta Cryst. E67, m50–m51.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2011b). Acta Cryst. E67, m1133–m1134.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTombul, M. & Guven, K. (2009). Acta Cryst. E65, m1704–m1705.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTombul, M., Güven, K. & Büyükgüngör, O. (2008). Acta Cryst. E64, m491–m492.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds