organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Butyl 3-oxo-2,3-di­hydro­benzo[d][1,2]thia­zole-2-carboxyl­ate

aInstitute of Materials and Chemical Engineering, Hainan University, Haikou 570228, People's Republic of China, bInstitute of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China, cHainan Provincial Fine Chemical Engineering Center, Hainan University, Haikou 570228, People's Republic of China, and dCollege of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571100, People's Republic of China
*Correspondence e-mail: linqianggourp@163.com

(Received 4 November 2011; accepted 11 November 2011; online 23 November 2011)

The title compound, C12H13NO3S, was synthesised by the reaction of benzo[d]isothia­zol-3(2H)-one with butyl alcohol in toluene. The benzoisothia­zolone ring system is almost planar with a mean deviation of 0.041 (1) Å. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For background to the sythesis of benzoisothia­zolone deriv­atives, see: Davis (1972[Davis, M. (1972). Adv. Heterocycl. Chem. 14, 43-98.]); Elgazwy & Abdel-Sattar (2003[Elgazwy, H. & Abdel-Sattar, S. (2003). Tetrahedron, 59, 7445-7463.]). For the biological activity of 1,2-benzoisothia­zolone derivatives, see: Taubert et al. (2002[Taubert, K., Kraus, S. & Schulze, B. (2002). Sulfur Rep. 23, 79-81.]). For structural studies of related alkyl 3-oxo-2,3-dihydro-1,2-benzothia­zole-2-carboxyl­ate derivatives, see: Wang et al. (2011a[Wang, X., Yang, J., You, C. & Lin, Q. (2011a). Acta Cryst. E67, o2237.],b[Wang, X., Yang, J., You, C. & Lin, Q. (2011b). Acta Cryst. E67, o2238.]); Xu & Yin (2006[Xu, F.-L., Lin, Q. & Yin, X.-Q. (2006). Acta Cryst. E62, o496-o497.]); Cavalca et al. (1969[Cavalca, L., Gasparri, G. F., Mangia, A. & Pelizzi, G. (1969). Acta Cryst. B25, 2349-2354.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13NO3S

  • Mr = 251.29

  • Monoclinic, P 21 /c

  • a = 11.730 (3) Å

  • b = 11.925 (3) Å

  • c = 8.443 (2) Å

  • β = 95.791 (4)°

  • V = 1175.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 153 K

  • 0.62 × 0.36 × 0.10 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.851, Tmax = 0.973

  • 9917 measured reflections

  • 3092 independent reflections

  • 2647 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.088

  • S = 1.00

  • 3092 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.46 3.1610 (19) 131
C2—H2⋯O3i 0.95 2.39 3.2987 (18) 159
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

1,2-benzoisothiazol-3(2H)-ones are a class of compounds with a wide spectrum of biological activities (Davis, 1972, Elgazwy & Abdel-Sattar, 2003). 1,2-Benzoisothiazolone derivatives have been reported to possess high antibacterial and antifungal activities (Taubert et al., 2002). As a part of our ongoing study of the substituent effect on the solid state structures of alkyl 3-oxo-2,3-dihydro-1,2-benzothiazole-2-carboxylate analogues (Wang et al., 2011a,b), herein we report the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzoisothiazolone ring system is almost planar with a mean deviation of 0.041 (1) Å from the least–squares plane defined by the nine constituent atoms and the C8–O2–C9–C11 torsion angle is -177.04 (12)°. The crystal packing (Fig. 2) is stabilised by weak intermolecular C—H···O hydrogen bonds between CH atoms of phenyl ring and the carbonyl oxygen atoms (Table 1).

Related literature top

For background to the sythesis of benzoisothiazolone derivatives, see: Davis (1972); Elgazwy & Abdel-Sattar (2003). For the biological activity of 1,2-benzoisothiazolone derivatives, see: Taubert et al. (2002). For structural studies of related alkyl 3-oxo-2,3-dihydro-1,2-benzothiazole-2-carboxylate derivatives, see: Wang et al. (2011a,b); Xu & Yin (2006); Cavalca et al. (1969).

Experimental top

A solution (20 mL) containing benzo[d]isothiazol-3(2H)-one (1.51 g, 0.01 mol) was added dropwise to a solution of butyl alcohol (0.74 g, 0.01 mol) and bis(triehloromethyl)carbonate in toluene (20 mL) under stirring on an ice-water bath. The reaction mixture was stirred at room temperature for 4.5 h and refluxed for 5 h to afford the title compound (1.25 g, yield 50%). Single crystals suitable for X-ray measurements were obtained by recrystallisation of the title compound from cyclohexane at room temperature.

Refinement top

The H atoms were placed at calculated positions and refined in riding mode, with the carrier atom–H distances = 0.95 Å for aryl, 0.99Å for methylene, 0.98 Å for the methyl. The Uiso values were constrained to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Ueq for the remaining H atoms.

Structure description top

1,2-benzoisothiazol-3(2H)-ones are a class of compounds with a wide spectrum of biological activities (Davis, 1972, Elgazwy & Abdel-Sattar, 2003). 1,2-Benzoisothiazolone derivatives have been reported to possess high antibacterial and antifungal activities (Taubert et al., 2002). As a part of our ongoing study of the substituent effect on the solid state structures of alkyl 3-oxo-2,3-dihydro-1,2-benzothiazole-2-carboxylate analogues (Wang et al., 2011a,b), herein we report the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzoisothiazolone ring system is almost planar with a mean deviation of 0.041 (1) Å from the least–squares plane defined by the nine constituent atoms and the C8–O2–C9–C11 torsion angle is -177.04 (12)°. The crystal packing (Fig. 2) is stabilised by weak intermolecular C—H···O hydrogen bonds between CH atoms of phenyl ring and the carbonyl oxygen atoms (Table 1).

For background to the sythesis of benzoisothiazolone derivatives, see: Davis (1972); Elgazwy & Abdel-Sattar (2003). For the biological activity of 1,2-benzoisothiazolone derivatives, see: Taubert et al. (2002). For structural studies of related alkyl 3-oxo-2,3-dihydro-1,2-benzothiazole-2-carboxylate derivatives, see: Wang et al. (2011a,b); Xu & Yin (2006); Cavalca et al. (1969).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O interactions (dashed lines) in the crystal structure of the title compound.
Butyl 3-oxo-2,3-dihydrobenzo[d][1,2]thiazole-2-carboxylate top
Crystal data top
C12H13NO3SF(000) = 528
Mr = 251.29Dx = 1.420 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.730 (3) ÅCell parameters from 3724 reflections
b = 11.925 (3) Åθ = 2.8–29.1°
c = 8.443 (2) ŵ = 0.27 mm1
β = 95.791 (4)°T = 153 K
V = 1175.0 (6) Å3Prism, colourless
Z = 40.62 × 0.36 × 0.10 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
3092 independent reflections
Radiation source: fine-focus sealed tube2647 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 28.5714 pixels mm-1θmax = 29.1°, θmin = 3.0°
phi and ω scansh = 1615
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1616
Tmin = 0.851, Tmax = 0.973l = 1011
9917 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.360P]
where P = (Fo2 + 2Fc2)/3
3092 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C12H13NO3SV = 1175.0 (6) Å3
Mr = 251.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.730 (3) ŵ = 0.27 mm1
b = 11.925 (3) ÅT = 153 K
c = 8.443 (2) Å0.62 × 0.36 × 0.10 mm
β = 95.791 (4)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
3092 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2647 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 0.973Rint = 0.028
9917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.00Δρmax = 0.37 e Å3
3092 reflectionsΔρmin = 0.19 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.46675 (3)0.51858 (3)0.70649 (4)0.01717 (10)
O10.40826 (8)0.82060 (8)0.83392 (12)0.0214 (2)
O20.25897 (8)0.56323 (8)0.54771 (12)0.0200 (2)
O30.24088 (9)0.74791 (8)0.59858 (13)0.0257 (2)
N10.39346 (9)0.64470 (9)0.71407 (13)0.0174 (2)
C10.56998 (11)0.56720 (11)0.85277 (15)0.0159 (3)
C20.66483 (12)0.50761 (11)0.92167 (17)0.0195 (3)
H20.67890.43260.89120.023*
C30.73755 (12)0.56198 (12)1.03597 (17)0.0235 (3)
H30.80240.52301.08480.028*
C40.71858 (13)0.67273 (13)1.08206 (18)0.0249 (3)
H40.77020.70751.16110.030*
C50.62513 (12)0.73131 (12)1.01296 (16)0.0212 (3)
H50.61220.80681.04230.025*
C60.54993 (11)0.67727 (11)0.89886 (15)0.0163 (3)
C70.44594 (11)0.72650 (11)0.81747 (15)0.0165 (3)
C80.29136 (11)0.66070 (11)0.61571 (16)0.0180 (3)
C90.16309 (12)0.57154 (11)0.42454 (17)0.0203 (3)
H9A0.18430.61830.33520.024*
H9B0.09620.60620.46810.024*
C100.13447 (12)0.45390 (11)0.36782 (17)0.0206 (3)
H10A0.11600.40740.45900.025*
H10B0.20190.42040.32420.025*
C110.03285 (13)0.45355 (13)0.23998 (18)0.0257 (3)
H11A0.03450.48670.28440.031*
H11B0.05130.50110.14980.031*
C120.00234 (15)0.33608 (15)0.1787 (2)0.0366 (4)
H12A0.06770.30390.13100.044*
H12B0.06390.34010.09830.044*
H12C0.01640.28870.26740.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01792 (16)0.01312 (15)0.01945 (18)0.00089 (11)0.00322 (12)0.00196 (12)
O10.0219 (5)0.0150 (4)0.0263 (5)0.0014 (4)0.0018 (4)0.0037 (4)
O20.0185 (5)0.0153 (5)0.0242 (5)0.0012 (4)0.0070 (4)0.0002 (4)
O30.0224 (5)0.0175 (5)0.0349 (6)0.0041 (4)0.0082 (4)0.0033 (4)
N10.0166 (5)0.0134 (5)0.0212 (6)0.0012 (4)0.0036 (4)0.0016 (4)
C10.0160 (6)0.0163 (6)0.0151 (6)0.0025 (5)0.0002 (5)0.0003 (5)
C20.0192 (7)0.0177 (6)0.0211 (7)0.0019 (5)0.0001 (5)0.0002 (5)
C30.0193 (7)0.0257 (7)0.0240 (7)0.0017 (5)0.0050 (5)0.0014 (6)
C40.0226 (7)0.0256 (7)0.0247 (7)0.0031 (6)0.0065 (6)0.0022 (6)
C50.0221 (7)0.0185 (6)0.0222 (7)0.0019 (5)0.0012 (5)0.0032 (5)
C60.0168 (6)0.0155 (6)0.0163 (6)0.0010 (5)0.0005 (5)0.0002 (5)
C70.0171 (6)0.0154 (6)0.0166 (6)0.0021 (5)0.0005 (5)0.0009 (5)
C80.0167 (6)0.0166 (6)0.0201 (7)0.0017 (5)0.0012 (5)0.0003 (5)
C90.0169 (6)0.0191 (7)0.0232 (7)0.0015 (5)0.0072 (5)0.0007 (5)
C100.0183 (6)0.0184 (6)0.0238 (7)0.0032 (5)0.0046 (5)0.0001 (5)
C110.0225 (7)0.0278 (8)0.0250 (7)0.0027 (6)0.0068 (6)0.0017 (6)
C120.0340 (9)0.0348 (9)0.0383 (9)0.0091 (7)0.0096 (7)0.0082 (7)
Geometric parameters (Å, º) top
S1—N11.7368 (12)C5—C61.3964 (18)
S1—C11.7395 (14)C5—H50.9500
O1—C71.2192 (16)C6—C71.4614 (18)
O2—C81.3346 (16)C9—C101.5092 (19)
O2—C91.4561 (16)C9—H9A0.9900
O3—C81.1983 (16)C9—H9B0.9900
N1—C81.3998 (17)C10—C111.5252 (19)
N1—C71.4086 (16)C10—H10A0.9900
C1—C61.3958 (18)C10—H10B0.9900
C1—C21.3967 (19)C11—C121.523 (2)
C2—C31.383 (2)C11—H11A0.9900
C2—H20.9500C11—H11B0.9900
C3—C41.401 (2)C12—H12A0.9800
C3—H30.9500C12—H12B0.9800
C4—C51.379 (2)C12—H12C0.9800
C4—H40.9500
N1—S1—C189.82 (6)O3—C8—N1124.93 (12)
C8—O2—C9114.44 (10)O2—C8—N1109.02 (11)
C8—N1—C7124.58 (11)O2—C9—C10107.12 (10)
C8—N1—S1119.55 (9)O2—C9—H9A110.3
C7—N1—S1115.82 (9)C10—C9—H9A110.3
C6—C1—C2120.79 (12)O2—C9—H9B110.3
C6—C1—S1112.75 (10)C10—C9—H9B110.3
C2—C1—S1126.47 (11)H9A—C9—H9B108.5
C3—C2—C1117.48 (13)C9—C10—C11111.11 (12)
C3—C2—H2121.3C9—C10—H10A109.4
C1—C2—H2121.3C11—C10—H10A109.4
C2—C3—C4122.12 (13)C9—C10—H10B109.4
C2—C3—H3118.9C11—C10—H10B109.4
C4—C3—H3118.9H10A—C10—H10B108.0
C5—C4—C3120.13 (13)C12—C11—C10112.52 (13)
C5—C4—H4119.9C12—C11—H11A109.1
C3—C4—H4119.9C10—C11—H11A109.1
C4—C5—C6118.55 (13)C12—C11—H11B109.1
C4—C5—H5120.7C10—C11—H11B109.1
C6—C5—H5120.7H11A—C11—H11B107.8
C1—C6—C5120.93 (12)C11—C12—H12A109.5
C1—C6—C7113.75 (12)C11—C12—H12B109.5
C5—C6—C7125.32 (12)H12A—C12—H12B109.5
O1—C7—N1124.56 (12)C11—C12—H12C109.5
O1—C7—C6127.68 (12)H12A—C12—H12C109.5
N1—C7—C6107.76 (11)H12B—C12—H12C109.5
O3—C8—O2126.03 (12)
C1—S1—N1—C8179.43 (11)S1—N1—C7—O1177.71 (11)
C1—S1—N1—C73.08 (10)C8—N1—C7—C6179.85 (12)
N1—S1—C1—C62.42 (10)S1—N1—C7—C62.81 (14)
N1—S1—C1—C2177.76 (13)C1—C6—C7—O1179.65 (13)
C6—C1—C2—C30.2 (2)C5—C6—C7—O10.4 (2)
S1—C1—C2—C3179.58 (11)C1—C6—C7—N10.89 (16)
C1—C2—C3—C40.3 (2)C5—C6—C7—N1179.04 (13)
C2—C3—C4—C50.1 (2)C9—O2—C8—O39.8 (2)
C3—C4—C5—C60.9 (2)C9—O2—C8—N1171.42 (11)
C2—C1—C6—C51.1 (2)C7—N1—C8—O35.8 (2)
S1—C1—C6—C5178.74 (11)S1—N1—C8—O3171.40 (12)
C2—C1—C6—C7178.84 (12)C7—N1—C8—O2172.92 (12)
S1—C1—C6—C71.32 (15)S1—N1—C8—O29.83 (15)
C4—C5—C6—C11.4 (2)C8—O2—C9—C10177.04 (12)
C4—C5—C6—C7178.51 (13)O2—C9—C10—C11178.90 (12)
C8—N1—C7—O10.4 (2)C9—C10—C11—C12179.42 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.463.1610 (19)131
C2—H2···O3i0.952.393.2987 (18)159
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H13NO3S
Mr251.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)11.730 (3), 11.925 (3), 8.443 (2)
β (°) 95.791 (4)
V3)1175.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.62 × 0.36 × 0.10
Data collection
DiffractometerRigaku AFC10/Saturn724+
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.851, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
9917, 3092, 2647
Rint0.028
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.088, 1.00
No. of reflections3092
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.19

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.463.1610 (19)131
C2—H2···O3i0.952.393.2987 (18)159
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20962007) and the Creative Talents Plan of Hainan University 211 Project.

References

First citationCavalca, L., Gasparri, G. F., Mangia, A. & Pelizzi, G. (1969). Acta Cryst. B25, 2349–2354.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDavis, M. (1972). Adv. Heterocycl. Chem. 14, 43–98.  CrossRef CAS Google Scholar
First citationElgazwy, H. & Abdel-Sattar, S. (2003). Tetrahedron, 59, 7445–7463.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaubert, K., Kraus, S. & Schulze, B. (2002). Sulfur Rep. 23, 79–81.  CrossRef CAS Google Scholar
First citationWang, X., Yang, J., You, C. & Lin, Q. (2011a). Acta Cryst. E67, o2237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, X., Yang, J., You, C. & Lin, Q. (2011b). Acta Cryst. E67, o2238.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, F.-L., Lin, Q. & Yin, X.-Q. (2006). Acta Cryst. E62, o496–o497.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds