metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dicarbon­yl(pyrazine-1,3-di­thiol­ato-κ2S,S′)bis­­(tri­methyl­phosphane-κP)iron(II)

aSchool of Materials Science and Engineering, Changchun University of Science and Technology, No. 7989 Weixing Road, Changchun 130022, People's Republic of China
*Correspondence e-mail: cust_gaoshang@yahoo.cn

(Received 9 November 2011; accepted 15 November 2011; online 19 November 2011)

The title compound, [Fe(C4H2N2S2)(C3H9P)2(CO)2], was obtained as a mononuclear by-product during the treatment of [Fe2(μ-S2C4N2H2)(CO)6] in excess trimethyl­phosphane. The Fe atom is six-coordinated by two thiol­ate S atoms, two phosphane P atoms and two carbonyl C atoms in a distorted octa­hedral geometry. The average Fe—C(O) distance (1.771 Å) is relatively shorter than that of its parent hexa­carbonyl­diiron compound, and differs by 0.511 Å from the average Fe—P(Me)3 distance. The five-membered FeC2S2 chelate ring plane is close to being perpendicular to the P/Fe/P plane [86.5 (2)°].

Related literature

For general background to iron sulfides, see: Cody et al. (2000[Cody, G. D., Boctor, N. Z., Filley, T. R., Hazen, R. M., Scott, J. H., Sharma, A. & Yoder, H. S. Jr (2000). Science, 289, 1337-1340.]); Georgakaki et al. (2003[Georgakaki, I. P., Thomson, L. M., Lyon, E. J., Hall, M. B. & Darensbourg, M. Y. (2003). Coord. Chem. Rev. 238, 255-266.]); Capon et al. (2005[Capon, J. F., Gloaguen, F., Schollhammer, P. & Talarmin, J. (2005). Coord. Chem. Rev. 249, 1664-1676.]); Song (2005[Song, L. C. (2005). Acc. Chem. Res. 38, 21-28.]); Li et al. (2005[Li, P., Wang, M., He, C. J., Li, G. H., Liu, X. Y., Chen, C. N., Åkermark, B. & Sun, L. C. (2005). Eur. J. Inorg. Chem. pp. 2506-2513.]); Liu & Xiao (2011[Liu, X. F. & Xiao, X. W. (2011). J. Organomet. Chem. 696, 2767-2771.]). For related structures and the synthesis, see: Durgaprasad et al. (2011[Durgaprasad, G., Bolligarla, R. & Das, S. K. (2011). J. Organomet. Chem. 696, 3097-3105.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C4H2N2S2)(C3H9P)2(CO)2]

  • Mr = 406.21

  • Orthorhombic, P b c a

  • a = 12.2078 (10) Å

  • b = 11.951 (1) Å

  • c = 25.326 (2) Å

  • V = 3694.9 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 273 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.711, Tmax = 0.793

  • 18679 measured reflections

  • 3628 independent reflections

  • 3166 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.073

  • S = 1.09

  • 3628 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—C8 1.761 (2)
Fe1—C7 1.780 (2)
Fe1—P1 2.2793 (6)
Fe1—P2 2.2840 (6)
Fe1—S2 2.3058 (6)
Fe1—S1 2.3170 (6)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently iron sulfides have been proposed as being central to the emergence of life due to their structural resemblance to the active site of hydrogenases (Cody et al., 2000, Georgakaki et al., 2003, Capon et al., 2005). Various dinuclear complexes featured [Fe2(µ-SR)2(CO)6-γLγ] (L = CO, PR3 et al., γ = 1 or 2) have been investigated as the structural and functional models for the active site of [FeFe]-hydrogenases (Song, 2005, Li et al., 2005, Liu & Xiao, 2011). [Fe2(µ-S2C4N2H2)(CO)6] (Durgaprasad et al., 2011) was prepared for the purpose to lower the reduction potentials of the iron sulfides. When we investigated the CO displacement of above complex by PMe3, a mononuclear byproduct was obtained accompanied with PMe3-disubstituted diiron compounds. Herein, we report this crystal structure.

In the title compound the central Fe atom is six-coordinated by the two thiolate-sulfur atoms, two phosphane-phosphorus atoms, and two carbonyl-carbon atoms in a distorted octahedral geometry (Fig. 1 and Table 1). The average Fe—C(O) distance (1.77 Å) is relatively shorter than that of its parent hexacarbonyl diiron compound [Fe2(µ-S2C4N2H2)(CO)6] (Durgaprasad et al., 2011), and differs by 0.51 Å from the average Fe—P(Me)3 distance, consistent with the better donating role of the tertiary phosphane ligands vs. the carbonyl groups. The two S—Fe bonds are nearly perpendicular, and S1—Fe1—S2 angle is 89.198 (19) °. The P1—Fe1—P2 angle is quasilinear [177.45 (2) °] and the deviation of the iron atom from the calculated plane of the –SC4N2H2S– bridge is 0.126 Å. The angle between the calculated rigid dithiolate bridge and the P1Fe1P2 plane deviates from 90° by 3.2° for the title compound, resulting in the asymmetric molecular structure.

Related literature top

For general background to iron sulfides, see: Cody et al. (2000); Georgakaki et al. (2003); Capon et al. (2005); Song (2005); Li et al. (2005); Liu & Xiao (2011). For related structures and the synthesis, see: Durgaprasad et al. (2011).

Experimental top

Commercially available materials, Me3NO and trimethylphosphane were reagent grade and used as received. The starting material [Fe2(µ-S2C4N2H2)(CO)6] was prepared according to the literature procedure (Durgaprasad et al., 2011). [Fe2(µ-S2C4N2H2)(CO)6] (0.42 g, 1.0 mmol) and degassed CH3CN (20 ml) was stirred in an argon-filled Schlenk flask until the salvation was completed. Me3NO (0.24 g, 2.2 mmol) was added to the above solution in one portion. The mixture was changed to dark red after 10 min. Then the trimethylphosphane (0.15 g, 2.0 mmol) was added dropwise. The solvent was allowed to evaporate on a rotary evaporator after 20 min. The crude product was purified by column chromatography on Al2O3, using CH2Cl2/hexane as eluent, yielded two bands. The coral band was collected and the crystals of the title compound suitable for X-ray study were obtained by the recrystallization in the CH2Cl2/pentane solution (yield 0.12 g, 30%).

Refinement top

The H atoms attached to C were placed in geometrically calculated positions (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Structure description top

Recently iron sulfides have been proposed as being central to the emergence of life due to their structural resemblance to the active site of hydrogenases (Cody et al., 2000, Georgakaki et al., 2003, Capon et al., 2005). Various dinuclear complexes featured [Fe2(µ-SR)2(CO)6-γLγ] (L = CO, PR3 et al., γ = 1 or 2) have been investigated as the structural and functional models for the active site of [FeFe]-hydrogenases (Song, 2005, Li et al., 2005, Liu & Xiao, 2011). [Fe2(µ-S2C4N2H2)(CO)6] (Durgaprasad et al., 2011) was prepared for the purpose to lower the reduction potentials of the iron sulfides. When we investigated the CO displacement of above complex by PMe3, a mononuclear byproduct was obtained accompanied with PMe3-disubstituted diiron compounds. Herein, we report this crystal structure.

In the title compound the central Fe atom is six-coordinated by the two thiolate-sulfur atoms, two phosphane-phosphorus atoms, and two carbonyl-carbon atoms in a distorted octahedral geometry (Fig. 1 and Table 1). The average Fe—C(O) distance (1.77 Å) is relatively shorter than that of its parent hexacarbonyl diiron compound [Fe2(µ-S2C4N2H2)(CO)6] (Durgaprasad et al., 2011), and differs by 0.51 Å from the average Fe—P(Me)3 distance, consistent with the better donating role of the tertiary phosphane ligands vs. the carbonyl groups. The two S—Fe bonds are nearly perpendicular, and S1—Fe1—S2 angle is 89.198 (19) °. The P1—Fe1—P2 angle is quasilinear [177.45 (2) °] and the deviation of the iron atom from the calculated plane of the –SC4N2H2S– bridge is 0.126 Å. The angle between the calculated rigid dithiolate bridge and the P1Fe1P2 plane deviates from 90° by 3.2° for the title compound, resulting in the asymmetric molecular structure.

For general background to iron sulfides, see: Cody et al. (2000); Georgakaki et al. (2003); Capon et al. (2005); Song (2005); Li et al. (2005); Liu & Xiao (2011). For related structures and the synthesis, see: Durgaprasad et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.
Dicarbonyl(pyrazine-1,3-dithiolato- κ2S,S')bis(trimethylphosphane-κP)iron(II) top
Crystal data top
[Fe(C4H2N2S2)(C3H9P)2(CO)2]F(000) = 1680
Mr = 406.21Dx = 1.460 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9947 reflections
a = 12.2078 (10) Åθ = 2.3–27.5°
b = 11.951 (1) ŵ = 1.22 mm1
c = 25.326 (2) ÅT = 273 K
V = 3694.9 (5) Å3Block, orange
Z = 80.30 × 0.25 × 0.20 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3628 independent reflections
Radiation source: fine-focus sealed tube3166 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1514
Tmin = 0.711, Tmax = 0.793k = 148
18679 measured reflectionsl = 3131
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0363P)2 + 1.1092P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.30 e Å3
3628 reflectionsΔρmin = 0.56 e Å3
190 parameters
Crystal data top
[Fe(C4H2N2S2)(C3H9P)2(CO)2]V = 3694.9 (5) Å3
Mr = 406.21Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.2078 (10) ŵ = 1.22 mm1
b = 11.951 (1) ÅT = 273 K
c = 25.326 (2) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3628 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
3166 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 0.793Rint = 0.025
18679 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.09Δρmax = 0.30 e Å3
3628 reflectionsΔρmin = 0.56 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.374999 (19)0.76447 (2)0.389085 (10)0.03519 (9)
S10.38945 (4)0.57419 (4)0.37296 (2)0.04420 (13)
P20.39648 (4)0.71975 (5)0.47615 (2)0.04635 (14)
S20.56151 (4)0.78108 (4)0.37704 (2)0.05021 (14)
P10.35858 (4)0.80265 (5)0.30127 (2)0.04756 (14)
O10.13778 (12)0.74340 (14)0.39685 (7)0.0643 (4)
C70.23021 (16)0.75098 (15)0.39447 (7)0.0430 (4)
C90.60519 (15)0.64370 (18)0.36700 (7)0.0446 (4)
O20.38260 (15)1.00089 (14)0.41494 (8)0.0817 (5)
C100.53051 (15)0.55283 (16)0.36640 (6)0.0407 (4)
N10.56545 (15)0.44788 (15)0.36180 (6)0.0519 (4)
C80.37676 (16)0.90822 (17)0.40424 (9)0.0502 (5)
C120.74509 (18)0.5207 (2)0.35593 (9)0.0667 (7)
H12A0.81930.50590.35160.080*
C110.6742 (2)0.4338 (2)0.35706 (7)0.0589 (6)
H11A0.70180.36150.35450.071*
C60.52289 (18)0.6505 (2)0.49459 (9)0.0626 (6)
H6A0.52270.63610.53190.094*
H6B0.58390.69780.48590.094*
H6C0.52910.58110.47570.094*
N20.71250 (14)0.62810 (18)0.36084 (7)0.0612 (5)
C20.2200 (2)0.8015 (3)0.27602 (9)0.0830 (9)
H2B0.22080.81830.23900.125*
H2C0.17720.85670.29430.125*
H2D0.18830.72890.28140.125*
C30.4080 (3)0.9401 (3)0.28305 (11)0.0997 (11)
H3A0.39880.95080.24570.150*
H3B0.48420.94630.29190.150*
H3C0.36710.99610.30180.150*
C40.29368 (19)0.6241 (2)0.50169 (9)0.0728 (7)
H4A0.30800.60930.53830.109*
H4B0.29630.55520.48220.109*
H4C0.22240.65710.49810.109*
C10.4288 (2)0.7111 (3)0.25558 (10)0.0827 (8)
H1B0.41550.73580.22010.124*
H1C0.40210.63610.25980.124*
H1D0.50600.71290.26260.124*
C50.3912 (3)0.8351 (3)0.52247 (11)0.0983 (11)
H5A0.40110.80730.55770.147*
H5B0.32130.87160.51990.147*
H5C0.44830.88760.51440.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03369 (15)0.03112 (15)0.04075 (16)0.00071 (9)0.00012 (10)0.00066 (10)
S10.0391 (2)0.0349 (2)0.0586 (3)0.00252 (18)0.00205 (19)0.0062 (2)
P20.0529 (3)0.0452 (3)0.0409 (3)0.0026 (2)0.0055 (2)0.0013 (2)
S20.0355 (2)0.0422 (3)0.0729 (3)0.0058 (2)0.0009 (2)0.0035 (2)
P10.0472 (3)0.0532 (3)0.0423 (3)0.0029 (2)0.0002 (2)0.0065 (2)
O10.0383 (8)0.0691 (11)0.0856 (12)0.0028 (7)0.0084 (7)0.0101 (9)
C70.0424 (11)0.0387 (10)0.0479 (10)0.0035 (8)0.0032 (8)0.0037 (8)
C90.0377 (9)0.0518 (11)0.0442 (10)0.0056 (8)0.0000 (7)0.0026 (9)
O20.0976 (14)0.0380 (9)0.1097 (15)0.0031 (8)0.0022 (11)0.0105 (9)
C100.0428 (10)0.0435 (10)0.0358 (9)0.0075 (8)0.0015 (7)0.0015 (8)
N10.0616 (11)0.0483 (10)0.0458 (9)0.0136 (8)0.0018 (7)0.0040 (7)
C80.0510 (11)0.0384 (11)0.0613 (12)0.0032 (8)0.0005 (9)0.0009 (9)
C120.0460 (12)0.0879 (19)0.0661 (14)0.0269 (13)0.0043 (10)0.0017 (13)
C110.0665 (14)0.0675 (15)0.0428 (10)0.0308 (13)0.0019 (9)0.0026 (10)
C60.0600 (13)0.0693 (15)0.0584 (12)0.0014 (11)0.0192 (10)0.0096 (11)
N20.0382 (9)0.0730 (13)0.0723 (12)0.0083 (9)0.0024 (8)0.0048 (10)
C20.0597 (14)0.135 (3)0.0548 (13)0.0022 (16)0.0134 (11)0.0142 (15)
C30.152 (3)0.081 (2)0.0660 (16)0.043 (2)0.0189 (17)0.0327 (15)
C40.0638 (14)0.099 (2)0.0552 (12)0.0068 (14)0.0009 (11)0.0253 (13)
C10.0862 (18)0.112 (2)0.0493 (13)0.0191 (17)0.0164 (12)0.0033 (14)
C50.160 (3)0.076 (2)0.0591 (15)0.0244 (19)0.0146 (17)0.0217 (14)
Geometric parameters (Å, º) top
Fe1—C81.761 (2)C12—C111.352 (4)
Fe1—C71.780 (2)C12—H12A0.9300
Fe1—P12.2793 (6)C11—H11A0.9300
Fe1—P22.2840 (6)C6—H6A0.9600
Fe1—S22.3058 (6)C6—H6B0.9600
Fe1—S12.3170 (6)C6—H6C0.9600
S1—C101.7488 (18)C2—H2B0.9600
P2—C51.811 (3)C2—H2C0.9600
P2—C61.812 (2)C2—H2D0.9600
P2—C41.817 (2)C3—H3A0.9600
S2—C91.745 (2)C3—H3B0.9600
P1—C11.808 (2)C3—H3C0.9600
P1—C21.809 (2)C4—H4A0.9600
P1—C31.810 (3)C4—H4B0.9600
O1—C71.134 (2)C4—H4C0.9600
C9—N21.332 (2)C1—H1B0.9600
C9—C101.418 (3)C1—H1C0.9600
O2—C81.142 (3)C1—H1D0.9600
C10—N11.330 (3)C5—H5A0.9600
N1—C111.343 (3)C5—H5B0.9600
C12—N21.349 (3)C5—H5C0.9600
C8—Fe1—C794.81 (9)N1—C11—C12122.6 (2)
C8—Fe1—P191.05 (7)N1—C11—H11A118.7
C7—Fe1—P190.32 (6)C12—C11—H11A118.7
C8—Fe1—P290.95 (7)P2—C6—H6A109.5
C7—Fe1—P291.08 (6)P2—C6—H6B109.5
P1—Fe1—P2177.45 (2)H6A—C6—H6B109.5
C8—Fe1—S286.14 (6)P2—C6—H6C109.5
C7—Fe1—S2176.78 (6)H6A—C6—H6C109.5
P1—Fe1—S286.58 (2)H6B—C6—H6C109.5
P2—Fe1—S291.98 (2)C9—N2—C12115.7 (2)
C8—Fe1—S1174.39 (7)P1—C2—H2B109.5
C7—Fe1—S190.01 (6)P1—C2—H2C109.5
P1—Fe1—S191.79 (2)H2B—C2—H2C109.5
P2—Fe1—S186.09 (2)P1—C2—H2D109.5
S2—Fe1—S189.198 (19)H2B—C2—H2D109.5
C10—S1—Fe1103.59 (7)H2C—C2—H2D109.5
C5—P2—C6102.18 (13)P1—C3—H3A109.5
C5—P2—C4102.93 (15)P1—C3—H3B109.5
C6—P2—C4102.08 (12)H3A—C3—H3B109.5
C5—P2—Fe1116.29 (10)P1—C3—H3C109.5
C6—P2—Fe1116.96 (8)H3A—C3—H3C109.5
C4—P2—Fe1114.31 (8)H3B—C3—H3C109.5
C9—S2—Fe1103.89 (7)P2—C4—H4A109.5
C1—P1—C2102.28 (13)P2—C4—H4B109.5
C1—P1—C3103.18 (15)H4A—C4—H4B109.5
C2—P1—C3103.19 (14)P2—C4—H4C109.5
C1—P1—Fe1117.49 (9)H4A—C4—H4C109.5
C2—P1—Fe1115.19 (8)H4B—C4—H4C109.5
C3—P1—Fe1113.66 (9)P1—C1—H1B109.5
O1—C7—Fe1178.51 (19)P1—C1—H1C109.5
N2—C9—C10121.58 (19)H1B—C1—H1C109.5
N2—C9—S2116.69 (17)P1—C1—H1D109.5
C10—C9—S2121.72 (14)H1B—C1—H1D109.5
N1—C10—C9121.13 (17)H1C—C1—H1D109.5
N1—C10—S1117.51 (15)P2—C5—H5A109.5
C9—C10—S1121.35 (14)P2—C5—H5B109.5
C10—N1—C11116.28 (19)H5A—C5—H5B109.5
O2—C8—Fe1176.9 (2)P2—C5—H5C109.5
N2—C12—C11122.7 (2)H5A—C5—H5C109.5
N2—C12—H12A118.7H5B—C5—H5C109.5
C11—C12—H12A118.7
C8—Fe1—S1—C1029.4 (8)S2—Fe1—P1—C2178.35 (12)
C7—Fe1—S1—C10178.74 (8)S1—Fe1—P1—C289.26 (12)
P1—Fe1—S1—C1090.93 (6)C8—Fe1—P1—C323.20 (15)
P2—Fe1—S1—C1087.66 (6)C7—Fe1—P1—C3118.01 (15)
S2—Fe1—S1—C104.37 (6)P2—Fe1—P1—C3118.6 (5)
C8—Fe1—P2—C56.40 (15)S2—Fe1—P1—C362.87 (13)
C7—Fe1—P2—C588.43 (14)S1—Fe1—P1—C3151.96 (13)
P1—Fe1—P2—C5148.2 (5)C8—Fe1—C7—O178 (8)
S2—Fe1—P2—C592.57 (13)P1—Fe1—C7—O113 (8)
S1—Fe1—P2—C5178.37 (13)P2—Fe1—C7—O1169 (8)
C8—Fe1—P2—C6114.62 (11)S2—Fe1—C7—O129 (9)
C7—Fe1—P2—C6150.55 (11)S1—Fe1—C7—O1105 (8)
P1—Fe1—P2—C627.1 (5)Fe1—S2—C9—N2177.54 (14)
S2—Fe1—P2—C628.45 (9)Fe1—S2—C9—C101.34 (16)
S1—Fe1—P2—C660.61 (9)N2—C9—C10—N12.8 (3)
C8—Fe1—P2—C4126.20 (12)S2—C9—C10—N1176.04 (14)
C7—Fe1—P2—C431.37 (12)N2—C9—C10—S1178.48 (14)
P1—Fe1—P2—C492.0 (5)S2—C9—C10—S12.7 (2)
S2—Fe1—P2—C4147.63 (10)Fe1—S1—C10—N1173.69 (13)
S1—Fe1—P2—C458.57 (10)Fe1—S1—C10—C95.10 (16)
C8—Fe1—S2—C9173.53 (10)C9—C10—N1—C110.9 (3)
C7—Fe1—S2—C979.2 (11)S1—C10—N1—C11179.71 (13)
P1—Fe1—S2—C995.18 (7)C7—Fe1—C8—O2153 (4)
P2—Fe1—S2—C982.72 (7)P1—Fe1—C8—O2117 (4)
S1—Fe1—S2—C93.34 (7)P2—Fe1—C8—O262 (4)
C8—Fe1—P1—C1143.77 (13)S2—Fe1—C8—O230 (4)
C7—Fe1—P1—C1121.41 (13)S1—Fe1—C8—O24 (5)
P2—Fe1—P1—C12.0 (5)C10—N1—C11—C121.2 (3)
S2—Fe1—P1—C157.70 (12)N2—C12—C11—N11.8 (3)
S1—Fe1—P1—C131.39 (12)C10—C9—N2—C122.2 (3)
C8—Fe1—P1—C295.58 (14)S2—C9—N2—C12176.63 (16)
C7—Fe1—P1—C20.76 (13)C11—C12—N2—C90.1 (3)
P2—Fe1—P1—C2122.7 (5)

Experimental details

Crystal data
Chemical formula[Fe(C4H2N2S2)(C3H9P)2(CO)2]
Mr406.21
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)273
a, b, c (Å)12.2078 (10), 11.951 (1), 25.326 (2)
V3)3694.9 (5)
Z8
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.711, 0.793
No. of measured, independent and
observed [I > 2σ(I)] reflections
18679, 3628, 3166
Rint0.025
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.09
No. of reflections3628
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.56

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Fe1—C81.761 (2)Fe1—P22.2840 (6)
Fe1—C71.780 (2)Fe1—S22.3058 (6)
Fe1—P12.2793 (6)Fe1—S12.3170 (6)
 

Acknowledgements

The authors thank the Scientific and Technological Development Project of Jilin Province (No. 201101103) and the National Natural Science Foundation of China (No. 61106050) for financial support.

References

First citationBruker (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCapon, J. F., Gloaguen, F., Schollhammer, P. & Talarmin, J. (2005). Coord. Chem. Rev. 249, 1664–1676.  Web of Science CrossRef CAS Google Scholar
First citationCody, G. D., Boctor, N. Z., Filley, T. R., Hazen, R. M., Scott, J. H., Sharma, A. & Yoder, H. S. Jr (2000). Science, 289, 1337–1340.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDurgaprasad, G., Bolligarla, R. & Das, S. K. (2011). J. Organomet. Chem. 696, 3097–3105.  Web of Science CSD CrossRef CAS Google Scholar
First citationGeorgakaki, I. P., Thomson, L. M., Lyon, E. J., Hall, M. B. & Darensbourg, M. Y. (2003). Coord. Chem. Rev. 238, 255–266.  Web of Science CrossRef Google Scholar
First citationLi, P., Wang, M., He, C. J., Li, G. H., Liu, X. Y., Chen, C. N., Åkermark, B. & Sun, L. C. (2005). Eur. J. Inorg. Chem. pp. 2506–2513.  CSD CrossRef Google Scholar
First citationLiu, X. F. & Xiao, X. W. (2011). J. Organomet. Chem. 696, 2767–2771.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, L. C. (2005). Acc. Chem. Res. 38, 21–28.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds