organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{5-[(2-propyn-1-yl­­oxy)meth­yl]-1,3-phenyl­ene}-32-crown-10

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: jiang6128@yahoo.com.cn

(Received 29 September 2011; accepted 3 November 2011; online 9 November 2011)

The mol­ecule of the title compound {systematic name: 17,35-bis­[(2-propyn-1-yl­oxy)meth­yl]-2,5,8,11,14,20,23,26,29,32-deca­oxatricyclo­[31.3.1.115,19]octa­triaconta-1(37),15,17,19 (38),33,35-hex­a­­ene}, C36H48O12, has crystallographic inversion symmetry and adopts a chair-like conformation. The polyether bridges of the macrocycle adopt gauche conformations and the cavity of the macrocycle is collapsed. In the crystal structure, there are weak inter­molecular C—H⋯O hydrogen bonds driven in part by the elevated acidity of acetylenyl H atoms.

Related literature

For applications of crown ethers, see: Gokel et al. (2004[Gokel, G. W., Leevy, W. M. & Weber, M. F. (2004). Chem. Rev. 104, 2723-2750.]); Raymo et al. (1999[Raymo, F. M. & Stoddart, J. F. (1999). Chem. Rev. 99, 1643-1664.]) and of bis­phenyl­ene crown erthers, see: Loeb (2007[Loeb, S. J. (2007). Chem. Soc. Rev. 36, 226-235.]); Fang et al. (2010[Fang, L., Olson, M. A., Benitez, D., Tkatchouk, E., Goddard, W. A. & Stoddart, J. F. (2010). Chem. Soc. Rev. 39, 17-29.]); Kay et al. (2007[Kay, E. R., Leigh, D. A. & Zerbetto, F. (2007). Angew. Chem. Int. Ed. 46, 72-191.]). For cryptands, see: Zhang et al. (2010[Zhang, M. M., Zhu, K. L. & Huang, F. H. (2010). Chem. Commun. 46, 8131-8141.]). For supra­molecular inter­locked structures, see: Xu et al. (2011[Xu, Z. K., Jiang, L. S., Feng, Y. H., Zhang, S. H., Liang, J. D., Pan, S. W., Yang, Y., Yang, D. K. & Cai, Y. P. (2011). Org. Biomol. Chem. 9, 1237-1243.]) For the synthesis of bis­(5-hy­droxy­methyl-1,3-phenyl­ene)-32-crown-10, see: Gibson & Nagvekar (1997[Gibson, H. W. & Nagvekar, D. S. (1997). Can. J. Chem. 75, 1375-1384.]) and for the synthesis of the title compound, see: Xu et al. (2010[Xu, Z. K., Huang, X. M., Liang, J. D., Zhang, S. H., Zhou, S. G., Chen, M. J., Tang, M. F. & Jiang, L. S. (2010). Eur. J. Org. Chem. pp. 1904-1911.]).

[Scheme 1]

Experimental

Crystal data
  • C36H48O12

  • Mr = 672.74

  • Triclinic, [P \overline 1]

  • a = 9.2256 (13) Å

  • b = 9.8561 (14) Å

  • c = 10.0808 (14) Å

  • α = 97.213 (2)°

  • β = 98.658 (2)°

  • γ = 99.226 (2)°

  • V = 883.9 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.64 × 0.32 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.965, Tmax = 0.991

  • 4551 measured reflections

  • 3108 independent reflections

  • 2350 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.113

  • S = 1.05

  • 3108 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯O6i 0.97 2.49 3.247 (2) 135
C18—H18⋯O4ii 0.93 2.54 3.203 (2) 128
C18—H18⋯O5ii 0.93 2.52 3.431 (3) 166
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Crown ethers are important building blocks in supramolecular chemistry and have been widely used in materials and biological sciences for sensors and switches (Gokel et al., 2004; Raymo et al., 1999). Recently, bisphenylene crown ethers, such as bisparaphenylene-34-crown-10 (BPP34C10) and bismetaphenylene-32-crown-10 (BMP32C10), attracted great interests and were extensively used for construction of interlocked molecules (Loeb, 2007), mechanically bonded macromolecules(Fang et al., 2010) and molecular machines(Kay et al., 2007). Their wide uses are mainly because bisphenylene crown erther hosts can form relatively stable molecular complexes with electron deficient paraquat derivatives by virtue of multiple noncovalent interactions, such as hydrogen bondging and charge-transfer interactions. As part of our project to explore novel crown ether-based cryptands (Zhang et al., 2010,) in supramolecular self-assembly (Xu et al., 2010) and interlocked structures(Xu et al., 2011), we tackled the synthesis of bisacetylene-substituted BMP32C10, an important precursor to cryptands. We envisioned that the title compound could be obtained by the reaction of bis(5-hydroxymethyl-1,3-phenylene)-32-crown-10 with propargyl bromide in the presence of sodium hydride.

As shown in Fig. 1, the title compound has crystallographic inversion symmetry in the solid state. The phenyl rings are at a centroid-centroid distance of 9.422 Å and they are arranged in an edge-to-edge conformation rather than a face-to-face one. The polyether bridges of the macrocycle adopt a gauche conformation and the cavity of the macrocycle is collapsed. The molecule as a whole adopts a chair-like conformation. Weak intermolecular C—H···O hydrogen bonds driven by the elevated acidity of acetylene hydrogen were observed.

Related literature top

For applications of crown ethers, see: Gokel et al. (2004); Raymo et al. (1999) and of bisphenylene crown erthers, see: Loeb (2007); Fang et al. (2010); Kay et al. (2007). For cryptands, see: Zhang et al. (2010). For supramolecular interlocked structures, see: Xu et al. (2011) For the synthesis of bis(5-hydroxymethyl-1,3-phenylene)-32-crown-10, see: Gibson & Nagvekar (1997) and of the title compound, see: Xu et al. (2010).

Experimental top

The title compound was synthesized from bis(5-hydroxymethyl-1,3-phenylene)-32-crown-10 (Gibson, et al., 1997) which was reacted with sodium hydride and propargyl bromide (Xu et al.,2010). Colourless block crystal of the title compound suitable for X-ray diffraction analysis was obtained by slow evaporation of its acetone solution at room temperature.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 - 0.99 Å, and Uiso=1.2–1.5 Ueq(C).

Structure description top

Crown ethers are important building blocks in supramolecular chemistry and have been widely used in materials and biological sciences for sensors and switches (Gokel et al., 2004; Raymo et al., 1999). Recently, bisphenylene crown ethers, such as bisparaphenylene-34-crown-10 (BPP34C10) and bismetaphenylene-32-crown-10 (BMP32C10), attracted great interests and were extensively used for construction of interlocked molecules (Loeb, 2007), mechanically bonded macromolecules(Fang et al., 2010) and molecular machines(Kay et al., 2007). Their wide uses are mainly because bisphenylene crown erther hosts can form relatively stable molecular complexes with electron deficient paraquat derivatives by virtue of multiple noncovalent interactions, such as hydrogen bondging and charge-transfer interactions. As part of our project to explore novel crown ether-based cryptands (Zhang et al., 2010,) in supramolecular self-assembly (Xu et al., 2010) and interlocked structures(Xu et al., 2011), we tackled the synthesis of bisacetylene-substituted BMP32C10, an important precursor to cryptands. We envisioned that the title compound could be obtained by the reaction of bis(5-hydroxymethyl-1,3-phenylene)-32-crown-10 with propargyl bromide in the presence of sodium hydride.

As shown in Fig. 1, the title compound has crystallographic inversion symmetry in the solid state. The phenyl rings are at a centroid-centroid distance of 9.422 Å and they are arranged in an edge-to-edge conformation rather than a face-to-face one. The polyether bridges of the macrocycle adopt a gauche conformation and the cavity of the macrocycle is collapsed. The molecule as a whole adopts a chair-like conformation. Weak intermolecular C—H···O hydrogen bonds driven by the elevated acidity of acetylene hydrogen were observed.

For applications of crown ethers, see: Gokel et al. (2004); Raymo et al. (1999) and of bisphenylene crown erthers, see: Loeb (2007); Fang et al. (2010); Kay et al. (2007). For cryptands, see: Zhang et al. (2010). For supramolecular interlocked structures, see: Xu et al. (2011) For the synthesis of bis(5-hydroxymethyl-1,3-phenylene)-32-crown-10, see: Gibson & Nagvekar (1997) and of the title compound, see: Xu et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level.
17,35-Bis[(2-propyn-1-yloxy)methyl]-2,5,8,11,14,20,23,26,29,32- decaoxatricyclo[31.3.1.115,19]octatriaconta-1(37),15,17,19(38),33,35-hexaene top
Crystal data top
C36H48O12V = 883.9 (2) Å3
Mr = 672.74Z = 1
Triclinic, P1F(000) = 360
Hall symbol: -P 1Dx = 1.264 Mg m3
a = 9.2256 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8561 (14) ŵ = 0.09 mm1
c = 10.0808 (14) ÅT = 298 K
α = 97.213 (2)°Block, colourless
β = 98.658 (2)°0.64 × 0.32 × 0.10 mm
γ = 99.226 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3108 independent reflections
Radiation source: fine-focus sealed tube2350 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 25.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1110
Tmin = 0.965, Tmax = 0.991k = 711
4551 measured reflectionsl = 1210
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.1259P]
where P = (Fo2 + 2Fc2)/3
3108 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C36H48O12γ = 99.226 (2)°
Mr = 672.74V = 883.9 (2) Å3
Triclinic, P1Z = 1
a = 9.2256 (13) ÅMo Kα radiation
b = 9.8561 (14) ŵ = 0.09 mm1
c = 10.0808 (14) ÅT = 298 K
α = 97.213 (2)°0.64 × 0.32 × 0.10 mm
β = 98.658 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3108 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2350 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.991Rint = 0.020
4551 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
3108 reflectionsΔρmin = 0.21 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19258 (19)0.18786 (18)0.55393 (17)0.0405 (4)
H10.09680.18970.57170.049*
C20.21585 (18)0.15530 (18)0.42298 (16)0.0393 (4)
C30.35977 (19)0.15509 (19)0.39575 (17)0.0428 (4)
H30.37440.13350.30680.051*
C50.45832 (19)0.21882 (18)0.63403 (17)0.0427 (4)
H50.53930.24040.70490.051*
C60.31507 (19)0.21810 (18)0.65978 (16)0.0392 (4)
C80.13388 (19)0.0898 (2)0.18269 (18)0.0472 (5)
H8A0.12420.00540.15360.057*
H8B0.23800.09140.18670.057*
C70.04096 (18)0.1423 (2)0.32005 (17)0.0456 (4)
H7A0.04070.24060.34550.055*
H7B0.08010.09230.38780.055*
C90.1580 (2)0.1224 (2)0.04624 (17)0.0513 (5)
H9A0.26530.10620.05100.062*
H9B0.12910.03480.07620.062*
C100.4014 (2)0.2810 (2)0.89901 (17)0.0519 (5)
H10A0.46190.36880.89160.062*
H10B0.46390.21070.89870.062*
C110.3400 (2)0.2938 (2)1.02859 (17)0.0520 (5)
H11A0.27120.20911.03110.062*
H11B0.42060.30651.10540.062*
C120.2334 (2)0.4423 (2)1.17067 (16)0.0492 (5)
H12A0.32500.48291.23330.059*
H12B0.18860.35881.20180.059*
C130.1296 (2)0.5426 (2)1.16786 (17)0.0513 (5)
H13A0.03560.49981.10980.062*
H13B0.11020.56871.25870.062*
C140.1140 (2)0.7742 (2)1.13577 (19)0.0553 (5)
H14A0.13670.81841.22990.066*
H14B0.00760.73881.11280.066*
C40.47982 (19)0.18667 (18)0.49997 (17)0.0408 (4)
C150.63517 (19)0.1857 (2)0.46986 (19)0.0492 (5)
H15A0.67380.11080.50880.059*
H15B0.62980.16660.37230.059*
C160.6984 (3)0.4263 (2)0.4602 (2)0.0663 (6)
H16A0.76030.51120.51110.080*
H16B0.59540.43190.46560.080*
C180.7341 (2)0.4114 (2)0.2047 (2)0.0671 (6)
H180.74760.40660.11470.081*
C170.7173 (2)0.4175 (2)0.3175 (2)0.0567 (5)
O60.73584 (14)0.31229 (15)0.52126 (12)0.0566 (4)
O10.10633 (13)0.11960 (14)0.31046 (11)0.0512 (4)
O30.28037 (13)0.24304 (13)0.78669 (11)0.0463 (3)
O40.26536 (15)0.40777 (14)1.03810 (11)0.0512 (3)
O50.19356 (13)0.66270 (14)1.11802 (12)0.0506 (3)
O20.08593 (13)0.17487 (13)0.08915 (11)0.0490 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0395 (9)0.0443 (10)0.0403 (10)0.0095 (8)0.0102 (7)0.0095 (8)
C20.0433 (9)0.0424 (10)0.0335 (9)0.0107 (8)0.0051 (7)0.0089 (7)
C30.0487 (10)0.0493 (11)0.0342 (9)0.0136 (8)0.0121 (8)0.0088 (8)
C50.0413 (9)0.0467 (11)0.0391 (10)0.0050 (8)0.0047 (7)0.0095 (8)
C60.0464 (10)0.0416 (10)0.0313 (9)0.0067 (8)0.0113 (7)0.0076 (7)
C80.0416 (9)0.0574 (12)0.0425 (10)0.0079 (9)0.0061 (8)0.0098 (9)
C70.0414 (10)0.0587 (12)0.0398 (10)0.0125 (9)0.0097 (8)0.0122 (9)
C90.0546 (11)0.0577 (12)0.0383 (10)0.0145 (9)0.0011 (8)0.0002 (9)
C100.0512 (11)0.0671 (13)0.0349 (10)0.0101 (10)0.0029 (8)0.0043 (9)
C110.0608 (12)0.0579 (12)0.0353 (10)0.0090 (10)0.0023 (8)0.0089 (9)
C120.0623 (11)0.0568 (12)0.0271 (9)0.0020 (9)0.0092 (8)0.0103 (8)
C130.0495 (10)0.0712 (14)0.0298 (9)0.0012 (10)0.0071 (8)0.0074 (9)
C140.0589 (11)0.0735 (14)0.0369 (10)0.0245 (11)0.0067 (8)0.0070 (9)
C40.0443 (10)0.0416 (10)0.0399 (10)0.0101 (8)0.0118 (8)0.0106 (8)
C150.0441 (10)0.0566 (12)0.0510 (11)0.0109 (9)0.0140 (8)0.0148 (9)
C160.0830 (15)0.0566 (13)0.0629 (14)0.0066 (12)0.0300 (12)0.0094 (11)
C180.0694 (14)0.0862 (17)0.0565 (14)0.0202 (12)0.0215 (11)0.0315 (12)
C170.0597 (12)0.0608 (13)0.0564 (13)0.0135 (10)0.0199 (10)0.0201 (10)
O60.0530 (8)0.0709 (10)0.0438 (8)0.0001 (7)0.0092 (6)0.0150 (7)
O10.0435 (7)0.0752 (9)0.0350 (7)0.0193 (6)0.0034 (5)0.0017 (6)
O30.0456 (7)0.0607 (8)0.0307 (6)0.0048 (6)0.0077 (5)0.0051 (6)
O40.0700 (8)0.0582 (8)0.0279 (6)0.0123 (7)0.0118 (6)0.0114 (6)
O50.0489 (7)0.0630 (9)0.0454 (7)0.0154 (6)0.0136 (6)0.0163 (6)
O20.0529 (7)0.0567 (8)0.0336 (7)0.0045 (6)0.0002 (5)0.0078 (6)
Geometric parameters (Å, º) top
C1—C21.376 (2)C10—H10B0.9700
C1—C61.398 (2)C11—O41.409 (2)
C1—H10.9300C11—H11A0.9700
C2—O11.3682 (19)C11—H11B0.9700
C2—C31.396 (2)C12—O41.423 (2)
C3—C41.373 (2)C12—C131.482 (3)
C3—H30.9300C12—H12A0.9700
C5—C61.384 (2)C12—H12B0.9700
C5—C41.400 (2)C13—O51.420 (2)
C5—H50.9300C13—H13A0.9700
C6—O31.3672 (19)C13—H13B0.9700
C8—O21.412 (2)C14—O51.423 (2)
C8—C71.497 (2)C14—C9i1.492 (3)
C8—H8A0.9700C14—H14A0.9700
C8—H8B0.9700C14—H14B0.9700
C7—O11.428 (2)C4—C151.510 (2)
C7—H7A0.9700C15—O61.418 (2)
C7—H7B0.9700C15—H15A0.9700
C9—O21.418 (2)C15—H15B0.9700
C9—C14i1.492 (3)C16—O61.412 (3)
C9—H9A0.9700C16—C171.468 (3)
C9—H9B0.9700C16—H16A0.9700
C10—O31.431 (2)C16—H16B0.9700
C10—C111.499 (2)C18—C171.167 (3)
C10—H10A0.9700C18—H180.9300
C2—C1—C6118.97 (15)C10—C11—H11B109.6
C2—C1—H1120.5H11A—C11—H11B108.1
C6—C1—H1120.5O4—C12—C13109.57 (14)
O1—C2—C1125.21 (15)O4—C12—H12A109.8
O1—C2—C3114.18 (14)C13—C12—H12A109.8
C1—C2—C3120.60 (15)O4—C12—H12B109.8
C4—C3—C2120.15 (15)C13—C12—H12B109.8
C4—C3—H3119.9H12A—C12—H12B108.2
C2—C3—H3119.9O5—C13—C12109.56 (15)
C6—C5—C4119.21 (15)O5—C13—H13A109.8
C6—C5—H5120.4C12—C13—H13A109.8
C4—C5—H5120.4O5—C13—H13B109.8
O3—C6—C5124.27 (15)C12—C13—H13B109.8
O3—C6—C1114.76 (14)H13A—C13—H13B108.2
C5—C6—C1120.95 (15)O5—C14—C9i109.25 (15)
O2—C8—C7109.34 (15)O5—C14—H14A109.8
O2—C8—H8A109.8C9i—C14—H14A109.8
C7—C8—H8A109.8O5—C14—H14B109.8
O2—C8—H8B109.8C9i—C14—H14B109.8
C7—C8—H8B109.8H14A—C14—H14B108.3
H8A—C8—H8B108.3C3—C4—C5120.11 (15)
O1—C7—C8106.52 (14)C3—C4—C15119.87 (15)
O1—C7—H7A110.4C5—C4—C15120.02 (16)
C8—C7—H7A110.4O6—C15—C4113.54 (15)
O1—C7—H7B110.4O6—C15—H15A108.9
C8—C7—H7B110.4C4—C15—H15A108.9
H7A—C7—H7B108.6O6—C15—H15B108.9
O2—C9—C14i108.95 (16)C4—C15—H15B108.9
O2—C9—H9A109.9H15A—C15—H15B107.7
C14i—C9—H9A109.9O6—C16—C17113.58 (17)
O2—C9—H9B109.9O6—C16—H16A108.8
C14i—C9—H9B109.9C17—C16—H16A108.8
H9A—C9—H9B108.3O6—C16—H16B108.8
O3—C10—C11109.13 (15)C17—C16—H16B108.8
O3—C10—H10A109.9H16A—C16—H16B107.7
C11—C10—H10A109.9C17—C18—H18180.0
O3—C10—H10B109.9C18—C17—C16179.1 (2)
C11—C10—H10B109.9C16—O6—C15113.57 (15)
H10A—C10—H10B108.3C2—O1—C7119.54 (13)
O4—C11—C10110.25 (15)C6—O3—C10117.49 (13)
O4—C11—H11A109.6C11—O4—C12112.09 (13)
C10—C11—H11A109.6C13—O5—C14112.83 (14)
O4—C11—H11B109.6C8—O2—C9112.47 (14)
C6—C1—C2—O1177.94 (16)C5—C4—C15—O655.4 (2)
C6—C1—C2—C31.3 (3)O6—C16—C17—C1890 (17)
O1—C2—C3—C4178.87 (15)C17—C16—O6—C1569.0 (2)
C1—C2—C3—C40.4 (3)C4—C15—O6—C1664.9 (2)
C4—C5—C6—O3177.64 (16)C1—C2—O1—C713.2 (3)
C4—C5—C6—C11.0 (3)C3—C2—O1—C7167.59 (15)
C2—C1—C6—O3177.18 (15)C8—C7—O1—C2178.61 (15)
C2—C1—C6—C51.5 (3)C5—C6—O3—C104.2 (2)
O2—C8—C7—O167.06 (18)C1—C6—O3—C10177.17 (16)
O3—C10—C11—O467.2 (2)C11—C10—O3—C6176.06 (15)
O4—C12—C13—O557.51 (19)C10—C11—O4—C12167.39 (15)
C2—C3—C4—C50.2 (3)C13—C12—O4—C11168.70 (16)
C2—C3—C4—C15179.74 (16)C12—C13—O5—C14169.02 (14)
C6—C5—C4—C30.1 (3)C9i—C14—O5—C13163.09 (15)
C6—C5—C4—C15179.47 (16)C7—C8—O2—C9173.50 (14)
C3—C4—C15—O6125.04 (18)C14i—C9—O2—C8173.71 (15)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···O6ii0.972.493.247 (2)135
C18—H18···O4iii0.932.543.203 (2)128
C18—H18···O5iii0.932.523.431 (3)166
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC36H48O12
Mr672.74
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.2256 (13), 9.8561 (14), 10.0808 (14)
α, β, γ (°)97.213 (2), 98.658 (2), 99.226 (2)
V3)883.9 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.64 × 0.32 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.965, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
4551, 3108, 2350
Rint0.020
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.113, 1.05
No. of reflections3108
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.21

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13B···O6i0.972.493.247 (2)135.2
C18—H18···O4ii0.932.543.203 (2)128.4
C18—H18···O5ii0.932.523.431 (3)165.5
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (No. 21072066) and the Natural Science Foundation of Guangdong Province of China (No. 8151063101000015).

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFang, L., Olson, M. A., Benitez, D., Tkatchouk, E., Goddard, W. A. & Stoddart, J. F. (2010). Chem. Soc. Rev. 39, 17–29.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGibson, H. W. & Nagvekar, D. S. (1997). Can. J. Chem. 75, 1375–1384.  CrossRef CAS Web of Science Google Scholar
First citationGokel, G. W., Leevy, W. M. & Weber, M. F. (2004). Chem. Rev. 104, 2723–2750.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKay, E. R., Leigh, D. A. & Zerbetto, F. (2007). Angew. Chem. Int. Ed. 46, 72–191.  Web of Science CrossRef CAS Google Scholar
First citationLoeb, S. J. (2007). Chem. Soc. Rev. 36, 226–235.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRaymo, F. M. & Stoddart, J. F. (1999). Chem. Rev. 99, 1643–1664.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Z. K., Huang, X. M., Liang, J. D., Zhang, S. H., Zhou, S. G., Chen, M. J., Tang, M. F. & Jiang, L. S. (2010). Eur. J. Org. Chem. pp. 1904–1911.  Web of Science CrossRef Google Scholar
First citationXu, Z. K., Jiang, L. S., Feng, Y. H., Zhang, S. H., Liang, J. D., Pan, S. W., Yang, Y., Yang, D. K. & Cai, Y. P. (2011). Org. Biomol. Chem. 9, 1237–1243.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, M. M., Zhu, K. L. & Huang, F. H. (2010). Chem. Commun. 46, 8131–8141.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds