organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-N-{3-[(2-Chloro-1,3-thia­zol-5-yl)meth­yl]-1,3-thia­zolidin-2-yl­­idene}cyanamide

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, bChemical Engineering Department, Weifang University of Science and Technology, Shouguang 262700, People's Republic of China, and cBeijing University of Chemical Technology, Beijing 100029, People's Republic of China
*Correspondence e-mail: haoay@sdu.edu.cn

(Received 18 October 2011; accepted 9 November 2011; online 12 November 2011)

In the title compound, C8H7ClN4S2, the thia­zole ring is essentially planar [r.m.s. deviation = 0.0011 (2) Å] and conformation of the thia­zolidine ring is twisted on the C—C bond. The C=N bond has a Z configuration.

Related literature

The title compound was synthesized as an inter­mediate for the preparation of pesticides. For the biological activity of this class of compounds, see: Zhang et al. (2000[Zhang, A. G., Kayser, H., Maiensch, P. & Casida, J. E. (2000). J. Neurochem. 75, 1294-1303.]); Kagabu et al. (2008[Kagabu, S., Nishimura, K., Naruse, Y. & Ohno, I. (2008). J. Pestic. Sci. 33, 58-66.]). For the synthesis, see: Kozo et al. (1987[Kozo, S., Shinichi, T., Shinzo, K., Shoko, S., Koichi, M. & Yumi, H. (1987). EP Patent 235725.]); Zuo et al. (2008[Zuo, B. J., Shi, L. P., Li, L., Li, X. K. & Zhuang, Z. X. (2008). CN Patent 101250165.]). For a related structure. see Li et al. (2010[Li, H., Zhang, X. & Xu, L. (2010). Acta Cryst. E66, o2171.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7ClN4S2

  • Mr = 258.75

  • Monoclinic, P 21 /n

  • a = 9.6331 (12) Å

  • b = 11.2657 (14) Å

  • c = 10.7675 (13) Å

  • β = 112.433 (2)°

  • V = 1080.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 273 K

  • 0.15 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.901, Tmax = 0.932

  • 6191 measured reflections

  • 2440 independent reflections

  • 2075 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.108

  • S = 0.98

  • 2440 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is already known that certain cyanoimino-subsitituted heterocyclic compounds are useful as intermediates in the preparation of pesticides which have played a major role in eliminating insects such as aphids, leafhoppers and whiteflies (Kagabu et al., 2008; Zhang et al., 2000). The molecular structure of the title compound is shown in Fig. 1. The thiazole ring is essentially planar (r.m.s. deviations 0.0011 (2)Å) and the thiazolidine ring is is in a slight half-chair conformation. The CN bond with a Z configuration has a bond length of 1.150 (4) Å, which is in agreement with that in a related structure (Li et al., 2010).

Related literature top

The title compound was synthesized as an intermediate for the preparation of pesticides. For the biological activity of this class of compounds, see: Zhang et al. (2000); Kagabu et al. (2008). For the synthesis, see: Kozo et al. (1987); Zuo et al. (2008). For a related structure. see Li et al. (2010).

Experimental top

The synthesis of the title compound follows the method of Kozo et al. (1987) and Zuo, et al. (2008). (Z)-2-(1,3-Thiazolidin-2-ylidene)cyanamide 12.7 g (0.1 mol) and potassium carbonate 41.4 g (0.3 mol) were dissolved in N,N-dimethylformamide (DMF) (75 ml), then 2-chloro-5-thiazolylmethyl chloride 17.4 g (0.102 mol) dissolved in DMF (40 ml) was added dropwise. The mixture was stirred for 0.5 h at room temperature and filtered. The filtrate was concentrated and further purified by column chromatography to obtain the title product (13.9 g) with a yield of 53.7% Colorless crystals were obtained by slow evaporation of a tetrahydrofuran solution of the title compound at room temperature.

1H NMR (300 MHz, DMSO-d6): δ (p.p.m.) 7.71 (1H, s), 4.79 (2H, s), 3.92 (2H, t, J = 15.3 Hz, J = 7.65 Hz); 3.49 (2H, t, J = 15.3 Hz, J = 7.65 Hz).

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93-0.97 Å and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

It is already known that certain cyanoimino-subsitituted heterocyclic compounds are useful as intermediates in the preparation of pesticides which have played a major role in eliminating insects such as aphids, leafhoppers and whiteflies (Kagabu et al., 2008; Zhang et al., 2000). The molecular structure of the title compound is shown in Fig. 1. The thiazole ring is essentially planar (r.m.s. deviations 0.0011 (2)Å) and the thiazolidine ring is is in a slight half-chair conformation. The CN bond with a Z configuration has a bond length of 1.150 (4) Å, which is in agreement with that in a related structure (Li et al., 2010).

The title compound was synthesized as an intermediate for the preparation of pesticides. For the biological activity of this class of compounds, see: Zhang et al. (2000); Kagabu et al. (2008). For the synthesis, see: Kozo et al. (1987); Zuo et al. (2008). For a related structure. see Li et al. (2010).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 40% probability level.
(Z)-N-{3-[(2-Chloro-1,3-thiazol-5-yl)methyl]-1,3-thiazolidin-2- ylidene}cyanamide top
Crystal data top
C8H7ClN4S2F(000) = 528
Mr = 258.75Dx = 1.591 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3349 reflections
a = 9.6331 (12) Åθ = 2.7–27.5°
b = 11.2657 (14) ŵ = 0.71 mm1
c = 10.7675 (13) ÅT = 273 K
β = 112.433 (2)°Block, colorless
V = 1080.1 (2) Å30.15 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2440 independent reflections
Radiation source: fine-focus sealed tube2075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
φ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.901, Tmax = 0.932k = 1114
6191 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.5077P]
where P = (Fo2 + 2Fc2)/3
2440 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C8H7ClN4S2V = 1080.1 (2) Å3
Mr = 258.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.6331 (12) ŵ = 0.71 mm1
b = 11.2657 (14) ÅT = 273 K
c = 10.7675 (13) Å0.15 × 0.10 × 0.10 mm
β = 112.433 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2440 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2075 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.932Rint = 0.015
6191 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 0.98Δρmax = 0.38 e Å3
2440 reflectionsΔρmin = 0.27 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22859 (6)0.11411 (5)0.45559 (5)0.04850 (16)
S20.42112 (6)0.16077 (5)0.07049 (5)0.04881 (17)
Cl10.30959 (8)0.27500 (7)0.19805 (6)0.0715 (2)
N10.3166 (2)0.00659 (14)0.29672 (16)0.0445 (4)
C40.3566 (2)0.02118 (18)0.08619 (19)0.0452 (4)
C20.3576 (2)0.08458 (16)0.38105 (18)0.0398 (4)
C30.4033 (3)0.0430 (2)0.2174 (2)0.0532 (5)
H3A0.39060.12770.20040.064*
H3B0.50900.02820.26880.064*
C10.1211 (3)0.0170 (2)0.3809 (3)0.0680 (7)
H1A0.14330.08040.44660.082*
H1B0.01440.00000.34810.082*
N20.4818 (2)0.14397 (16)0.40261 (18)0.0485 (4)
C60.3112 (2)0.1563 (2)0.09762 (19)0.0475 (5)
N30.2328 (2)0.0626 (2)0.14132 (17)0.0598 (5)
C80.5191 (2)0.22657 (19)0.4975 (2)0.0484 (5)
N40.5597 (3)0.29942 (19)0.5786 (2)0.0680 (6)
C70.1657 (3)0.05279 (19)0.2663 (2)0.0527 (5)
H7A0.16490.13850.25790.063*
H7B0.09610.01970.18240.063*
C50.2592 (3)0.0145 (2)0.0353 (2)0.0580 (6)
H5A0.21180.08800.04710.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0521 (3)0.0483 (3)0.0467 (3)0.0000 (2)0.0207 (2)0.0068 (2)
S20.0445 (3)0.0554 (3)0.0384 (3)0.0010 (2)0.0067 (2)0.0027 (2)
Cl10.0720 (4)0.0877 (5)0.0533 (3)0.0002 (3)0.0224 (3)0.0209 (3)
N10.0568 (10)0.0397 (8)0.0339 (7)0.0054 (7)0.0139 (7)0.0003 (6)
C40.0520 (11)0.0470 (10)0.0371 (9)0.0097 (8)0.0176 (8)0.0041 (8)
C20.0474 (10)0.0364 (9)0.0315 (8)0.0081 (7)0.0104 (7)0.0059 (7)
C30.0686 (14)0.0465 (11)0.0433 (10)0.0187 (10)0.0200 (10)0.0000 (9)
C10.0731 (16)0.0668 (15)0.0673 (15)0.0213 (13)0.0304 (13)0.0164 (12)
N20.0487 (9)0.0484 (9)0.0476 (9)0.0013 (7)0.0174 (8)0.0004 (8)
C60.0418 (10)0.0644 (13)0.0353 (9)0.0028 (9)0.0137 (8)0.0014 (9)
N30.0615 (11)0.0772 (13)0.0347 (8)0.0110 (10)0.0114 (8)0.0067 (9)
C80.0432 (10)0.0453 (11)0.0526 (11)0.0015 (8)0.0139 (9)0.0059 (9)
N40.0686 (13)0.0557 (12)0.0721 (13)0.0149 (10)0.0185 (11)0.0115 (10)
C70.0626 (13)0.0431 (10)0.0436 (10)0.0065 (9)0.0105 (9)0.0029 (9)
C50.0721 (14)0.0561 (13)0.0446 (11)0.0100 (11)0.0210 (10)0.0122 (10)
Geometric parameters (Å, º) top
S1—C21.749 (2)C3—H3B0.9700
S1—C11.807 (2)C1—C71.508 (3)
S2—C61.714 (2)C1—H1A0.9700
S2—C41.723 (2)C1—H1B0.9700
Cl1—C61.716 (2)N2—C81.326 (3)
N1—C21.327 (2)C6—N31.279 (3)
N1—C71.459 (3)N3—C51.378 (3)
N1—C31.463 (3)C8—N41.153 (3)
C4—C51.348 (3)C7—H7A0.9700
C4—C31.495 (3)C7—H7B0.9700
C2—N21.313 (3)C5—H5A0.9300
C3—H3A0.9700
C2—S1—C191.54 (11)S1—C1—H1A110.4
C6—S2—C488.65 (10)C7—C1—H1B110.4
C2—N1—C7116.13 (17)S1—C1—H1B110.4
C2—N1—C3121.99 (18)H1A—C1—H1B108.6
C7—N1—C3120.70 (17)C2—N2—C8117.03 (18)
C5—C4—C3128.3 (2)N3—C6—S2116.92 (17)
C5—C4—S2108.70 (17)N3—C6—Cl1123.34 (16)
C3—C4—S2123.00 (16)S2—C6—Cl1119.75 (13)
N2—C2—N1121.90 (18)C6—N3—C5108.62 (18)
N2—C2—S1125.56 (15)N4—C8—N2175.7 (2)
N1—C2—S1112.54 (15)N1—C7—C1106.93 (17)
N1—C3—C4112.53 (17)N1—C7—H7A110.3
N1—C3—H3A109.1C1—C7—H7A110.3
C4—C3—H3A109.1N1—C7—H7B110.3
N1—C3—H3B109.1C1—C7—H7B110.3
C4—C3—H3B109.1H7A—C7—H7B108.6
H3A—C3—H3B107.8C4—C5—N3117.1 (2)
C7—C1—S1106.81 (17)C4—C5—H5A121.4
C7—C1—H1A110.4N3—C5—H5A121.4
C6—S2—C4—C50.26 (17)N1—C2—N2—C8174.14 (18)
C6—S2—C4—C3178.81 (18)S1—C2—N2—C86.2 (3)
C7—N1—C2—N2170.80 (17)C4—S2—C6—N30.15 (19)
C3—N1—C2—N23.1 (3)C4—S2—C6—Cl1179.78 (14)
C7—N1—C2—S18.9 (2)S2—C6—N3—C50.0 (3)
C3—N1—C2—S1176.56 (14)Cl1—C6—N3—C5179.61 (17)
C1—S1—C2—N2174.02 (19)C2—N1—C7—C122.8 (2)
C1—S1—C2—N16.31 (16)C3—N1—C7—C1169.36 (19)
C2—N1—C3—C488.0 (2)S1—C1—C7—N125.2 (2)
C7—N1—C3—C479.1 (2)C3—C4—C5—N3178.8 (2)
C5—C4—C3—N195.7 (3)S2—C4—C5—N30.3 (3)
S2—C4—C3—N182.6 (2)C6—N3—C5—C40.2 (3)
C2—S1—C1—C718.40 (19)

Experimental details

Crystal data
Chemical formulaC8H7ClN4S2
Mr258.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)9.6331 (12), 11.2657 (14), 10.7675 (13)
β (°) 112.433 (2)
V3)1080.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.901, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
6191, 2440, 2075
Rint0.015
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.108, 0.98
No. of reflections2440
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.27

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (1998). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKagabu, S., Nishimura, K., Naruse, Y. & Ohno, I. (2008). J. Pestic. Sci. 33, 58–66.  Web of Science CrossRef CAS Google Scholar
First citationKozo, S., Shinichi, T., Shinzo, K., Shoko, S., Koichi, M. & Yumi, H. (1987). EP Patent 235725.  Google Scholar
First citationLi, H., Zhang, X. & Xu, L. (2010). Acta Cryst. E66, o2171.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, A. G., Kayser, H., Maiensch, P. & Casida, J. E. (2000). J. Neurochem. 75, 1294–1303.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZuo, B. J., Shi, L. P., Li, L., Li, X. K. & Zhuang, Z. X. (2008). CN Patent 101250165.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds