metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tetra­kis­(μ-benzene-1,2-di­carboxyl­ato)di-μ-formato-penta­strontium(II)]

aDepartment of Chemistry, R&D Center for Membrane Technology, Center for Nanotechnology, Chung-Yuan Christian University, Chung-Li 320, Taiwan, and bDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: chiaher@cycu.edu.tw

(Received 21 October 2011; accepted 27 October 2011; online 2 November 2011)

The asymmetric unit of the title complex, [Sr5(C8H4O4)4(HCO2)2]n, contains three independent SrII ions, one of which is located on an inversion center. In the crystal, the SrII ions (coordination numbers 8, 9 and 12) are connected by two crystallographically distinct benzene-1,2-dicarboxyl­ate ligands and one formate ligand, forming a two-dimensional polymer parallel to (001).

Related literature

For general background to metal coordination polymers, see: Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]). For related structures, see: Stein & Ruschewitz (2005[Stein, I. & Ruschewitz, U. (2005). Acta Cryst. E61, m141-m143.]); Zhang et al. (2009[Zhang, L., Li, Z. J., Lin, Q. P., Qin, Y. Y., Zhang, J., Yin, P. X., Cheng, J. K. & Yao, Y. G. (2009). Inorg. Chem. 48, 6517-6525.]); Wang et al. (2010[Wang, X., Liu, L., Makarenko, T. & Jacobson, A. J. (2010). Cryst. Growth Des. 10, 3752-3756.]).

[Scheme 1]

Experimental

Crystal data
  • [Sr5(C8H4O4)4(HCO2)2]

  • Mr = 1184.58

  • Triclinic, [P \overline 1]

  • a = 7.0292 (3) Å

  • b = 10.2892 (4) Å

  • c = 12.5439 (5) Å

  • α = 91.361 (2)°

  • β = 90.407 (2)°

  • γ = 104.998 (2)°

  • V = 876.00 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 7.65 mm−1

  • T = 295 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.310, Tmax = 0.393

  • 15465 measured reflections

  • 4295 independent reflections

  • 3585 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.060

  • S = 1.04

  • 4295 reflections

  • 268 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The increasingly rapid development of metal coordination polymers over the past two decades has attracted considerable attention due to their structural diversity and important applications (Kitagawa et al., 2004). benzene-1,2-dicarboxylate acid (H2BDC) has been successively applied to construct to strontium (Stein & Ruschewitz, 2005), lead (Zhang et al., 2009), and tin complexes (Wang et al., 2010). Here we report the crystal structure of the title complex.

The title compound contains three crystallographically independent SrII ions, with coordination numbers 12 (Sr1, located on an inversion center), 8 (Sr2) and 9 (Sr3). The Sr—O distances range from 2.467 (2) to 2.9332 (19) Å. The coordination geometry of the Sr(II) ions is shown in Fig. 1. In the crystal, the SrII ions are connected by two crystallographically distinct benzene-1,2-dicarboxylate ligands and one formate ligand, to form a two-dimensional polymer parallel to (001) [Fig. 2].

Related literature top

For general background to metal coordination polymers, see: Kitagawa et al.(2004). For related structures, see: Stein & Ruschewitz (2005); Zhang et al. (2009); Wang et al. (2010).

Experimental top

Solvothermal reactions were carried out at 423 K for 2 d in a Teflon-lined acid digestion bomb with an internal volume of 23 ml followed by slow cooling at 6 K/h to room temperature. A single-phase product consisting of transparent colorless crystals of was obtained from a mixture of Sr(NO3)2 (0.0847 g,0.4 mmol), H2ortho-BDC (0.0332 g, 0.2 mmol), DMF (5.0 ml) and H2O (1.0 ml).

Refinement top

H atoms were placed in ideal geometries, with C—H = 0.93 Å and Uiso(H)= 1.2Ueq(C).

Structure description top

The increasingly rapid development of metal coordination polymers over the past two decades has attracted considerable attention due to their structural diversity and important applications (Kitagawa et al., 2004). benzene-1,2-dicarboxylate acid (H2BDC) has been successively applied to construct to strontium (Stein & Ruschewitz, 2005), lead (Zhang et al., 2009), and tin complexes (Wang et al., 2010). Here we report the crystal structure of the title complex.

The title compound contains three crystallographically independent SrII ions, with coordination numbers 12 (Sr1, located on an inversion center), 8 (Sr2) and 9 (Sr3). The Sr—O distances range from 2.467 (2) to 2.9332 (19) Å. The coordination geometry of the Sr(II) ions is shown in Fig. 1. In the crystal, the SrII ions are connected by two crystallographically distinct benzene-1,2-dicarboxylate ligands and one formate ligand, to form a two-dimensional polymer parallel to (001) [Fig. 2].

For general background to metal coordination polymers, see: Kitagawa et al.(2004). For related structures, see: Stein & Ruschewitz (2005); Zhang et al. (2009); Wang et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the title structure, showing 50% probability displacement ellipsoids. [symmetry codes: (i) 1 - x, -y, -z; (ii) 1 + x, y, z; (iii) 2 - x, -y, -z; (iv) 1 - x, -1 - y, -z; (v) 2 - x, -1 - y, -z; (vi) x, 1 + y, z].
[Figure 2] Fig. 2. The layer structure of the title compound viewed along the c axis.
Poly[tetrakis(µ-benzene-1,2-dicarboxylato)di-µ-formato-pentastrontium(II)] top
Crystal data top
[Sr5(C8H4O4)4(HCO2)2]Z = 1
Mr = 1184.58F(000) = 572
Triclinic, P1Dx = 2.245 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0292 (3) ÅCell parameters from 8942 reflections
b = 10.2892 (4) Åθ = 2.6–28.3°
c = 12.5439 (5) ŵ = 7.65 mm1
α = 91.361 (2)°T = 295 K
β = 90.407 (2)°Lamellar, colorless
γ = 104.998 (2)°0.20 × 0.18 × 0.15 mm
V = 876.00 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4295 independent reflections
Radiation source: fine-focus sealed tube3585 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 1.6°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
k = 1313
Tmin = 0.310, Tmax = 0.393l = 1616
15465 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0254P)2 + 0.4547P]
where P = (Fo2 + 2Fc2)/3
4295 reflections(Δ/σ)max = 0.001
268 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Sr5(C8H4O4)4(HCO2)2]γ = 104.998 (2)°
Mr = 1184.58V = 876.00 (6) Å3
Triclinic, P1Z = 1
a = 7.0292 (3) ÅMo Kα radiation
b = 10.2892 (4) ŵ = 7.65 mm1
c = 12.5439 (5) ÅT = 295 K
α = 91.361 (2)°0.20 × 0.18 × 0.15 mm
β = 90.407 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4295 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
3585 reflections with I > 2σ(I)
Tmin = 0.310, Tmax = 0.393Rint = 0.033
15465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.04Δρmax = 0.97 e Å3
4295 reflectionsΔρmin = 0.39 e Å3
268 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr11.00000.00000.00000.01600 (9)
Sr20.86724 (3)0.37889 (2)0.11377 (2)0.01683 (7)
Sr30.57129 (3)0.21010 (2)0.05482 (2)0.01681 (7)
O10.6246 (3)0.05156 (18)0.08904 (15)0.0184 (4)
O20.8372 (3)0.14323 (19)0.17205 (16)0.0219 (4)
O30.2714 (3)0.03708 (19)0.14874 (16)0.0227 (4)
O40.1994 (3)0.17952 (19)0.11074 (16)0.0209 (4)
O50.7838 (3)0.26762 (19)0.05581 (15)0.0215 (4)
O61.0850 (3)0.18764 (19)0.12185 (17)0.0254 (5)
O70.5072 (3)0.61995 (19)0.10329 (16)0.0233 (4)
O80.8151 (3)0.54513 (18)0.05059 (15)0.0190 (4)
O90.6767 (3)0.6166 (2)0.19012 (17)0.0274 (5)
O100.8059 (4)0.4615 (3)0.30783 (19)0.0432 (6)
C10.6836 (4)0.1025 (3)0.1717 (2)0.0168 (6)
C20.5647 (4)0.1157 (3)0.2734 (2)0.0178 (6)
C30.6460 (4)0.1431 (3)0.3689 (2)0.0268 (7)
H3A0.77580.14890.37010.032*
C40.5356 (5)0.1618 (3)0.4624 (3)0.0316 (7)
H4A0.59170.17880.52650.038*
C50.3424 (5)0.1553 (3)0.4603 (3)0.0327 (8)
H5A0.26780.16840.52310.039*
C60.2587 (4)0.1293 (3)0.3652 (3)0.0292 (7)
H6A0.12790.12560.36430.035*
C70.3690 (4)0.1087 (3)0.2717 (2)0.0184 (6)
C80.2747 (4)0.0818 (3)0.1693 (2)0.0172 (6)
C90.9131 (4)0.2604 (3)0.1291 (2)0.0166 (6)
C100.8555 (4)0.3394 (3)0.2271 (2)0.0183 (6)
C110.9164 (4)0.2784 (3)0.3253 (3)0.0280 (7)
H11A0.99630.19090.32870.034*
C120.8602 (5)0.3458 (3)0.4187 (3)0.0336 (8)
H12A0.90280.30420.48430.040*
C130.7407 (5)0.4750 (3)0.4136 (3)0.0343 (8)
H13A0.70230.52080.47600.041*
C140.6777 (4)0.5367 (3)0.3161 (3)0.0275 (7)
H14A0.59560.62360.31360.033*
C150.7349 (4)0.4711 (3)0.2222 (2)0.0180 (6)
C160.6787 (4)0.5489 (3)0.1181 (2)0.0159 (6)
C170.7073 (5)0.5772 (4)0.2845 (3)0.0377 (8)
H17A0.65370.63740.34000.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.01285 (16)0.01455 (18)0.0203 (2)0.00311 (13)0.00091 (13)0.00027 (15)
Sr20.01502 (12)0.01474 (13)0.02072 (15)0.00390 (10)0.00023 (10)0.00003 (10)
Sr30.01324 (12)0.01526 (13)0.02143 (15)0.00273 (9)0.00058 (10)0.00130 (10)
O10.0151 (9)0.0180 (10)0.0201 (11)0.0006 (8)0.0004 (8)0.0016 (8)
O20.0151 (9)0.0235 (11)0.0280 (12)0.0065 (8)0.0020 (8)0.0008 (9)
O30.0229 (10)0.0179 (10)0.0287 (12)0.0080 (8)0.0001 (9)0.0042 (9)
O40.0140 (9)0.0210 (10)0.0263 (12)0.0015 (8)0.0003 (8)0.0058 (9)
O50.0269 (10)0.0175 (10)0.0216 (11)0.0086 (8)0.0045 (8)0.0001 (8)
O60.0189 (10)0.0213 (11)0.0352 (13)0.0027 (8)0.0041 (9)0.0083 (9)
O70.0153 (9)0.0236 (11)0.0287 (12)0.0013 (8)0.0013 (8)0.0036 (9)
O80.0186 (9)0.0184 (10)0.0213 (11)0.0065 (8)0.0053 (8)0.0022 (8)
O90.0330 (12)0.0234 (11)0.0267 (13)0.0084 (9)0.0005 (9)0.0044 (10)
O100.0558 (16)0.0426 (15)0.0303 (14)0.0106 (13)0.0049 (12)0.0044 (12)
C10.0116 (12)0.0135 (13)0.0230 (16)0.0008 (10)0.0000 (11)0.0018 (12)
C20.0172 (13)0.0157 (13)0.0198 (15)0.0031 (11)0.0012 (11)0.0003 (11)
C30.0213 (14)0.0315 (17)0.0276 (18)0.0070 (13)0.0027 (13)0.0010 (14)
C40.0345 (18)0.041 (2)0.0199 (17)0.0101 (15)0.0023 (13)0.0011 (15)
C50.0356 (18)0.043 (2)0.0197 (17)0.0106 (15)0.0081 (14)0.0037 (15)
C60.0212 (14)0.0410 (19)0.0272 (18)0.0119 (13)0.0062 (12)0.0037 (15)
C70.0169 (13)0.0144 (13)0.0238 (16)0.0038 (11)0.0010 (11)0.0003 (12)
C80.0085 (11)0.0192 (14)0.0243 (16)0.0046 (10)0.0050 (10)0.0009 (12)
C90.0193 (13)0.0128 (13)0.0194 (15)0.0072 (11)0.0027 (11)0.0014 (11)
C100.0169 (13)0.0180 (14)0.0193 (15)0.0035 (11)0.0010 (11)0.0004 (12)
C110.0282 (16)0.0227 (16)0.0287 (18)0.0007 (13)0.0039 (13)0.0041 (14)
C120.0386 (19)0.038 (2)0.0212 (18)0.0048 (15)0.0021 (14)0.0069 (15)
C130.0440 (19)0.0368 (19)0.0199 (18)0.0057 (16)0.0035 (15)0.0068 (15)
C140.0295 (16)0.0211 (15)0.0293 (18)0.0019 (13)0.0020 (13)0.0021 (14)
C150.0144 (12)0.0196 (14)0.0199 (15)0.0043 (11)0.0018 (11)0.0003 (12)
C160.0172 (13)0.0129 (13)0.0194 (15)0.0071 (10)0.0019 (11)0.0023 (11)
C170.0385 (19)0.037 (2)0.039 (2)0.0135 (16)0.0002 (16)0.0016 (17)
Geometric parameters (Å, º) top
Sr1—O3i2.641 (2)O6—C91.251 (3)
Sr1—O3ii2.641 (2)O6—Sr3iii2.6281 (19)
Sr1—O2iii2.661 (2)O7—C161.248 (3)
Sr1—O22.661 (2)O7—Sr2iv2.6335 (18)
Sr1—O6iii2.6729 (19)O7—Sr3viii2.729 (2)
Sr1—O62.6729 (19)O8—C161.277 (3)
Sr1—O12.7742 (17)O8—Sr2v2.6710 (18)
Sr1—O1iii2.7742 (17)O8—Sr3viii2.9331 (19)
Sr1—O5iii2.8848 (19)O9—C171.262 (4)
Sr1—O52.8848 (19)O9—Sr3viii2.467 (2)
Sr1—O4i2.9242 (19)O10—C171.256 (4)
Sr1—O4ii2.9242 (19)C1—C21.504 (4)
Sr2—O52.536 (2)C2—C31.384 (4)
Sr2—O102.556 (2)C2—C71.396 (4)
Sr2—O22.6087 (19)C3—C41.384 (4)
Sr2—O92.620 (2)C3—H3A0.9300
Sr2—O7iv2.6335 (18)C4—C51.378 (4)
Sr2—O8v2.6710 (18)C4—H4A0.9300
Sr2—O82.6766 (18)C5—C61.384 (5)
Sr2—O4ii2.6789 (18)C5—H5A0.9300
Sr3—O9vi2.467 (2)C6—C71.383 (4)
Sr3—O1i2.6128 (19)C6—H6A0.9300
Sr3—O6iii2.6281 (19)C7—C81.502 (4)
Sr3—O32.6314 (19)C8—Sr1vii3.125 (3)
Sr3—O4i2.6938 (19)C8—Sr3i3.420 (3)
Sr3—O5i2.7104 (18)C9—C101.490 (4)
Sr3—O7vi2.729 (2)C10—C111.383 (4)
Sr3—O12.8361 (19)C10—C151.400 (4)
Sr3—O8vi2.9332 (19)C11—C121.382 (4)
O1—C11.271 (3)C11—H11A0.9300
O1—Sr3i2.6129 (19)C12—C131.376 (5)
O2—C11.255 (3)C12—H12A0.9300
O3—C81.250 (3)C13—C141.380 (4)
O3—Sr1vii2.641 (2)C13—H13A0.9300
O4—C81.264 (3)C14—C151.382 (4)
O4—Sr2vii2.6789 (18)C14—H14A0.9300
O4—Sr3i2.6938 (19)C15—C161.510 (4)
O4—Sr1vii2.9242 (19)C16—Sr3viii3.190 (3)
O5—C91.275 (3)C17—H17A0.9300
O5—Sr3i2.7104 (18)
O3i—Sr1—O3ii180.00 (9)O3—Sr3—O165.33 (5)
O3i—Sr1—O2iii72.69 (6)O4i—Sr3—O176.04 (6)
O3ii—Sr1—O2iii107.31 (6)O5i—Sr3—O1124.22 (5)
O3i—Sr1—O2107.31 (6)O7vi—Sr3—O1141.68 (6)
O3ii—Sr1—O272.69 (6)O9vi—Sr3—O8vi71.45 (6)
O2iii—Sr1—O2180.0O1i—Sr3—O8vi109.25 (5)
O3i—Sr1—O6iii103.66 (6)O6iii—Sr3—O8vi82.40 (6)
O3ii—Sr1—O6iii76.34 (6)O3—Sr3—O8vi161.74 (5)
O2iii—Sr1—O6iii102.22 (6)O4i—Sr3—O8vi62.49 (5)
O2—Sr1—O6iii77.78 (6)O5i—Sr3—O8vi100.39 (5)
O3i—Sr1—O676.34 (6)O7vi—Sr3—O8vi45.82 (5)
O3ii—Sr1—O6103.66 (6)O1—Sr3—O8vi132.73 (5)
O2iii—Sr1—O677.78 (6)O9vi—Sr3—C16vi86.49 (7)
O2—Sr1—O6102.22 (6)O1i—Sr3—C16vi89.85 (6)
O6iii—Sr1—O6180.0O6iii—Sr3—C16vi104.15 (6)
O3i—Sr1—O168.69 (6)O3—Sr3—C16vi142.52 (6)
O3ii—Sr1—O1111.31 (6)O4i—Sr3—C16vi63.56 (6)
O2iii—Sr1—O1131.93 (5)O5i—Sr3—C16vi83.02 (6)
O2—Sr1—O148.07 (5)O7vi—Sr3—C16vi22.65 (6)
O6iii—Sr1—O161.89 (6)O1—Sr3—C16vi139.48 (6)
O6—Sr1—O1118.11 (6)O8vi—Sr3—C16vi23.60 (6)
O3i—Sr1—O1iii111.31 (6)O9vi—Sr3—C8i143.07 (7)
O3ii—Sr1—O1iii68.69 (6)O1i—Sr3—C8i48.65 (6)
O2iii—Sr1—O1iii48.07 (5)O6iii—Sr3—C8i81.07 (6)
O2—Sr1—O1iii131.93 (5)O3—Sr3—C8i111.74 (6)
O6iii—Sr1—O1iii118.11 (6)O4i—Sr3—C8i19.62 (6)
O6—Sr1—O1iii61.89 (6)O5i—Sr3—C8i119.24 (6)
O1—Sr1—O1iii180.0O7vi—Sr3—C8i77.15 (6)
O3i—Sr1—O5iii120.83 (6)O1—Sr3—C8i66.95 (6)
O3ii—Sr1—O5iii59.17 (6)O8vi—Sr3—C8i78.75 (6)
O2iii—Sr1—O5iii68.95 (6)C16vi—Sr3—C8i73.62 (6)
O2—Sr1—O5iii111.05 (6)O9vi—Sr3—Sr1vii125.58 (5)
O6iii—Sr1—O5iii46.67 (5)O1i—Sr3—Sr1vii41.76 (4)
O6—Sr1—O5iii133.33 (5)O6iii—Sr3—Sr1vii144.06 (4)
O1—Sr1—O5iii108.47 (5)O3—Sr3—Sr1vii38.86 (4)
O1iii—Sr1—O5iii71.53 (5)O4i—Sr3—Sr1vii109.12 (4)
O3i—Sr1—O559.17 (6)O5i—Sr3—Sr1vii44.41 (4)
O3ii—Sr1—O5120.83 (6)O7vi—Sr3—Sr1vii84.43 (4)
O2iii—Sr1—O5111.05 (6)O1—Sr3—Sr1vii82.91 (4)
O2—Sr1—O568.95 (6)O8vi—Sr3—Sr1vii130.22 (4)
O6iii—Sr1—O5133.33 (5)C16vi—Sr3—Sr1vii106.72 (5)
O6—Sr1—O546.67 (5)C8i—Sr3—Sr1vii90.35 (4)
O1—Sr1—O571.53 (5)C1—O1—Sr3i119.45 (16)
O1iii—Sr1—O5108.47 (5)C1—O1—Sr189.98 (14)
O5iii—Sr1—O5180.0Sr3i—O1—Sr199.39 (6)
O3i—Sr1—O4i46.64 (5)C1—O1—Sr3129.32 (16)
O3ii—Sr1—O4i133.36 (5)Sr3i—O1—Sr3108.81 (6)
O2iii—Sr1—O4i59.32 (5)Sr1—O1—Sr396.94 (5)
O2—Sr1—O4i120.68 (5)C1—O2—Sr2126.39 (17)
O6iii—Sr1—O4i65.35 (6)C1—O2—Sr195.62 (17)
O6—Sr1—O4i114.65 (6)Sr2—O2—Sr198.51 (6)
O1—Sr1—O4i73.41 (5)C8—O3—Sr3121.66 (16)
O1iii—Sr1—O4i106.59 (5)C8—O3—Sr1vii100.71 (17)
O5iii—Sr1—O4i75.06 (5)Sr3—O3—Sr1vii102.43 (7)
O5—Sr1—O4i104.94 (5)C8—O4—Sr2vii135.86 (16)
O3i—Sr1—O4ii133.36 (5)C8—O4—Sr3i114.66 (15)
O3ii—Sr1—O4ii46.64 (5)Sr2vii—O4—Sr3i109.39 (6)
O2iii—Sr1—O4ii120.68 (5)C8—O4—Sr1vii87.01 (16)
O2—Sr1—O4ii59.32 (5)Sr2vii—O4—Sr1vii90.77 (5)
O6iii—Sr1—O4ii114.65 (6)Sr3i—O4—Sr1vii96.68 (6)
O6—Sr1—O4ii65.35 (6)C9—O5—Sr2112.02 (16)
O1—Sr1—O4ii106.59 (5)C9—O5—Sr3i132.22 (17)
O1iii—Sr1—O4ii73.41 (5)Sr2—O5—Sr3i115.44 (7)
O5iii—Sr1—O4ii104.94 (5)C9—O5—Sr186.87 (15)
O5—Sr1—O4ii75.06 (5)Sr2—O5—Sr194.66 (6)
O4i—Sr1—O4ii180.00 (5)Sr3i—O5—Sr194.48 (5)
O5—Sr2—O10153.40 (7)C9—O6—Sr3iii138.19 (17)
O5—Sr2—O275.35 (6)C9—O6—Sr197.19 (16)
O10—Sr2—O288.68 (7)Sr3iii—O6—Sr1104.80 (7)
O5—Sr2—O9125.53 (6)C16—O7—Sr2iv143.91 (17)
O10—Sr2—O950.80 (7)C16—O7—Sr3viii99.92 (17)
O2—Sr2—O9128.29 (6)Sr2iv—O7—Sr3viii111.61 (7)
O5—Sr2—O7iv66.86 (6)C16—O8—Sr2v118.00 (16)
O10—Sr2—O7iv88.28 (7)C16—O8—Sr2121.54 (15)
O2—Sr2—O7iv72.55 (6)Sr2v—O8—Sr2115.75 (6)
O9—Sr2—O7iv75.32 (6)C16—O8—Sr3viii89.57 (15)
O5—Sr2—O8v101.16 (6)Sr2v—O8—Sr3viii102.86 (6)
O10—Sr2—O8v105.39 (7)Sr2—O8—Sr3viii99.56 (6)
O2—Sr2—O8v129.55 (6)C17—O9—Sr3viii153.6 (2)
O9—Sr2—O8v95.28 (6)C17—O9—Sr291.1 (2)
O7iv—Sr2—O8v153.14 (6)Sr3viii—O9—Sr2114.79 (8)
O5—Sr2—O868.06 (6)C17—O10—Sr294.3 (2)
O10—Sr2—O8123.11 (7)O2—C1—O1122.6 (3)
O2—Sr2—O8143.15 (6)O2—C1—C2118.3 (3)
O9—Sr2—O873.66 (6)O1—C1—C2119.0 (2)
O7iv—Sr2—O888.90 (6)O2—C1—Sr160.21 (14)
O8v—Sr2—O864.25 (6)O1—C1—Sr165.40 (14)
O5—Sr2—O4ii85.44 (6)C2—C1—Sr1162.29 (18)
O10—Sr2—O4ii106.46 (7)C3—C2—C7119.5 (3)
O2—Sr2—O4ii63.25 (6)C3—C2—C1119.7 (2)
O9—Sr2—O4ii147.58 (6)C7—C2—C1120.6 (3)
O7iv—Sr2—O4ii132.53 (6)C2—C3—C4120.5 (3)
O8v—Sr2—O4ii66.31 (6)C2—C3—H3A119.7
O8—Sr2—O4ii116.43 (6)C4—C3—H3A119.7
O5—Sr2—C17144.39 (8)C5—C4—C3119.8 (3)
O10—Sr2—C1725.29 (8)C5—C4—H4A120.1
O2—Sr2—C17108.87 (8)C3—C4—H4A120.1
O9—Sr2—C1725.52 (8)C4—C5—C6120.3 (3)
O7iv—Sr2—C1780.49 (8)C4—C5—H5A119.9
O8v—Sr2—C17101.96 (8)C6—C5—H5A119.9
O8—Sr2—C1798.66 (8)C7—C6—C5120.2 (3)
O4ii—Sr2—C17128.81 (8)C7—C6—H6A119.9
O5—Sr2—C921.42 (6)C5—C6—H6A119.9
O10—Sr2—C9174.73 (7)C6—C7—C2119.7 (3)
O2—Sr2—C987.44 (6)C6—C7—C8119.3 (2)
O9—Sr2—C9130.15 (7)C2—C7—C8121.0 (3)
O7iv—Sr2—C987.16 (6)O3—C8—O4123.9 (3)
O8v—Sr2—C979.84 (6)O3—C8—C7117.3 (2)
O8—Sr2—C959.46 (6)O4—C8—C7118.8 (2)
O4ii—Sr2—C974.88 (6)O3—C8—Sr1vii56.14 (14)
C17—Sr2—C9155.22 (9)O4—C8—Sr1vii69.17 (15)
O5—Sr2—Sr146.07 (4)C7—C8—Sr1vii164.05 (18)
O10—Sr2—Sr1127.95 (6)O3—C8—Sr3i108.26 (18)
O2—Sr2—Sr141.23 (4)O4—C8—Sr3i45.72 (12)
O9—Sr2—Sr1163.24 (5)C7—C8—Sr3i115.95 (16)
O7iv—Sr2—Sr188.05 (4)Sr1vii—C8—Sr3i79.71 (6)
O8v—Sr2—Sr1100.66 (4)O6—C9—O5122.1 (3)
O8—Sr2—Sr1108.71 (4)O6—C9—C10119.3 (2)
O4ii—Sr2—Sr147.09 (4)O5—C9—C10118.6 (2)
C17—Sr2—Sr1150.09 (7)O6—C9—Sr159.12 (13)
C9—Sr2—Sr149.25 (5)O5—C9—Sr168.79 (14)
O5—Sr2—Sr3viii99.78 (4)C10—C9—Sr1153.70 (18)
O10—Sr2—Sr3viii82.14 (6)O6—C9—Sr297.14 (17)
O2—Sr2—Sr3viii147.27 (4)O5—C9—Sr246.56 (13)
O9—Sr2—Sr3viii31.50 (5)C10—C9—Sr2126.17 (17)
O7iv—Sr2—Sr3viii75.82 (4)Sr1—C9—Sr278.21 (6)
O8v—Sr2—Sr3viii83.16 (4)C11—C10—C15119.4 (3)
O8—Sr2—Sr3viii42.44 (4)C11—C10—C9118.8 (3)
O4ii—Sr2—Sr3viii149.44 (4)C15—C10—C9121.7 (2)
C17—Sr2—Sr3viii56.95 (7)C12—C11—C10121.0 (3)
C9—Sr2—Sr3viii99.28 (5)C12—C11—H11A119.5
Sr1—Sr2—Sr3viii145.840 (8)C10—C11—H11A119.5
O9vi—Sr3—O1i164.51 (6)C13—C12—C11119.4 (3)
O9vi—Sr3—O6iii73.93 (6)C13—C12—H12A120.3
O1i—Sr3—O6iii121.54 (6)C11—C12—H12A120.3
O9vi—Sr3—O3103.04 (7)C12—C13—C14120.3 (3)
O1i—Sr3—O371.31 (6)C12—C13—H13A119.9
O6iii—Sr3—O3113.33 (6)C14—C13—H13A119.9
O9vi—Sr3—O4i123.48 (6)C13—C14—C15120.9 (3)
O1i—Sr3—O4i67.42 (6)C13—C14—H14A119.6
O6iii—Sr3—O4i69.37 (6)C15—C14—H14A119.6
O3—Sr3—O4i130.36 (6)C14—C15—C10119.0 (3)
O9vi—Sr3—O5i87.78 (6)C14—C15—C16118.4 (2)
O1i—Sr3—O5i76.83 (6)C10—C15—C16122.4 (2)
O6iii—Sr3—O5i159.68 (6)O7—C16—O8122.4 (3)
O3—Sr3—O5i61.60 (6)O7—C16—C15120.0 (2)
O4i—Sr3—O5i129.85 (6)O8—C16—C15117.5 (2)
O9vi—Sr3—O7vi96.29 (6)O7—C16—Sr3viii57.43 (14)
O1i—Sr3—O7vi75.32 (6)O8—C16—Sr3viii66.83 (14)
O6iii—Sr3—O7vi126.54 (6)C15—C16—Sr3viii161.68 (17)
O3—Sr3—O7vi120.04 (6)O10—C17—O9123.8 (3)
O4i—Sr3—O7vi74.30 (6)O10—C17—Sr260.42 (19)
O5i—Sr3—O7vi63.16 (6)O9—C17—Sr263.39 (18)
O9vi—Sr3—O1120.34 (6)O10—C17—H17A118.1
O1i—Sr3—O171.19 (6)O9—C17—H17A118.1
O6iii—Sr3—O161.57 (5)Sr2—C17—H17A177.4
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+2, y, z; (iv) x+1, y1, z; (v) x+2, y1, z; (vi) x, y+1, z; (vii) x1, y, z; (viii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Sr5(C8H4O4)4(HCO2)2]
Mr1184.58
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.0292 (3), 10.2892 (4), 12.5439 (5)
α, β, γ (°)91.361 (2), 90.407 (2), 104.998 (2)
V3)876.00 (6)
Z1
Radiation typeMo Kα
µ (mm1)7.65
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2010)
Tmin, Tmax0.310, 0.393
No. of measured, independent and
observed [I > 2σ(I)] reflections
15465, 4295, 3585
Rint0.033
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.060, 1.04
No. of reflections4295
No. of parameters268
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.39

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This research was supported by National Science Council, Taiwan (NSC99–2113-M-033–005-MY2) and by the Center-of-Excellence (COE) Program on Membrane Technology of the Ministry of Education (MOE).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStein, I. & Ruschewitz, U. (2005). Acta Cryst. E61, m141–m143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, X., Liu, L., Makarenko, T. & Jacobson, A. J. (2010). Cryst. Growth Des. 10, 3752–3756.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, L., Li, Z. J., Lin, Q. P., Qin, Y. Y., Zhang, J., Yin, P. X., Cheng, J. K. & Yao, Y. G. (2009). Inorg. Chem. 48, 6517–6525.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds