metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-azido-κ4N:N-bis­­{aqua­[bis­­(1H-benzimidazol-2-ylmeth­yl)amine]­copper(II)} dinitrate

aKey Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: yuanyuan_luo1@126.com

(Received 23 October 2011; accepted 31 October 2011; online 9 November 2011)

In the centrosymmetric dinuclear title complex, [Cu2(N3)2(C16H15N5)2(H2O)2](NO3)2, the CuII ion is in a distorted octa­hedral coordination environment with long axial Cu—Nazide [2.821 (6) Å] and Cu—Owater [2.747 (5) Å] bonds as a result of the Jahn–Teller effect. Two symmetry-related azide ligands bridge in μ2-modes giving a Cu⋯Cu distance of 3.533 (2) Å. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link the components into a three-dimensional network. In addition, there are weak inter­molecular C—H⋯N hydrogen bonds and ππ stacking inter­actions with centroid–centroid distances ranging from 3.562 (2) to 3.974 (2) Å.

Related literature

For the biological applications of polybenzimidazole metal coordination compounds, see: Liao et al. (2001[Liao, Z.-R., Zheng, X.-F., Luo, B.-S., Shen, L.-R., Li, D.-F., Liu, H.-L. & Zhao, W. (2001). Polyhedron, 20, 2813-2821.]); Girasolo et al. (2000[Girasolo, M.-A., Pizzino, T., Mansueto, C., Valle, G. & Stocco, G.-C. (2000). Appl. Organomet. Chem. 14, 197-211.]); Young et al. (1995[Young, M.-J., Wahnon, D., Hynes, R.-C. & Chin, J. (1995). J. Am. Chem. Soc. 117, 9441-9447.]). For details of the Jahn–Teller effect, see: Brown et al. (1967[Brown, D. S., Lee, J. D., Melson, B. G. A., Hatahway, B. J., Procter, I. M. & Tomlinson, A. A. G. (1967). Chem. Commun. pp. 369-371.]). For the preparation of bis­[N-(benzimidazole-2-ylmeth­yl)] amine, see: Adams et al. (1990[Adams, H., Bailey, N.-A., Carane, J.-D. & Fenton, D.-E. (1990). J. Chem. Soc. Dalton Trans. pp. 1727-1735.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(N3)2(C16H15N5)2(H2O)2](NO3)2

  • Mr = 925.85

  • Monoclinic, P 21 /n

  • a = 11.1435 (10) Å

  • b = 14.1942 (12) Å

  • c = 12.6567 (11) Å

  • β = 112.046 (1)°

  • V = 1855.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 289 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.792, Tmax = 0.887

  • 13705 measured reflections

  • 3269 independent reflections

  • 2307 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.171

  • S = 1.09

  • 3269 reflections

  • 286 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1 0.86 (2) 2.45 (4) 3.173 (7) 142 (5)
N1—H1C⋯O2 0.86 (2) 2.57 (3) 3.388 (8) 159 (6)
N3—H3A⋯O4i 0.83 (2) 2.02 (3) 2.825 (7) 162 (6)
N5—H5A⋯O1ii 0.86 (2) 2.02 (2) 2.868 (6) 171 (5)
O4—H4A⋯O2 0.84 (2) 2.06 (5) 2.810 (7) 149 (8)
O4—H4B⋯O3iii 0.83 (2) 2.21 (3) 3.022 (7) 166 (8)
C1—H1B⋯N8i 0.97 2.45 3.404 (9) 169
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Polybenzimidazole (Polybzim) metal coordination compounds have been often used to mimic some biological activities, such as superoxide dismutase (Liao et al., 2001), DNA probe (Girasolo et al., 2000), alkaline phosphatase (Young et al., 1995). In this paper, we report the crystal structure of a polybzim copper complex (I), ([Cu(IDB)(µ-N3).H2O]2.(NO3)2), formed by bis[N-(benzimidazol-2-ylmethyl)]amine, sodium azide and copper nitrate in 95% methanol solution.

In (I), the long Cu—N6a (2.820 (5) Å, symmetry code (a): - x, 1 - y, - z) and Cu—O4 (2.747 (4) Å) bond distances are due to the Jahn-Teller effect (Brown et al., 1967). In the centrosymmetric dinuclear complex, the unique CuII ion is in a distorted octahedral coordination environment. Two azide ligands bridgein µ2– modes giving a Cu···Cu distance of 3.533 (2)Å. In the crystal, cations and nitrate anions are linked into a three-dimensional network (Fig.2) by a combination of N—H···O, O—H···O and weak C—H···O hydrogen bonds (Table 2). In addtion, ππ stacking interactions with centroid to centroid distances ranging from 3.562 (2)Å to 3.974 (2) Å are also observed.

Related literature top

For the biological applications of polybenzimidazole metal coordination compounds, see: Liao et al. (2001); Girasolo et al. (2000); Young et al. (1995). For details of the Jahn–Teller effect, see: Brown et al. (1967). For the preparation of bis[N-(benzimidazole-2-ylmethyl)] amine, see: Adams et al. (1990).

Experimental top

All the reagents and solvents were used as obtained without further purification. Bis(benzimidazol-2-yl-methyl) amine (IDB) was prepared according to the method described by Adams et al. (1990). IDB (0.277 g, 1.0 mmol), NaN3 (0.065 g, 1.0 mmol) and Cu(NO3)2.3H2O (0.242 g, 1.0 mmol) was dissolved in 15 ml me thanol and stirred for half an hour. The resulting solution was filtered and the resulting solution was stand at room temperature for two weeks. Then blue block-shaped crystals of (I) suitable for for X-ray diffraction were obtained at the bottom of the vessel.

Refinement top

H atoms bonded to C atoms were placed in ideal positions refined in a riding-model appoximation with C–H distances of 0.93Å (aromatic), 0.97Å (methylene) and with Uiso(H) = 1.2Ueq(C). H atoms bonded to N and O atoms were found in difference maps and refined with constraints of N—H = 0.86 (2)Å and O—H = 0.82 (2) Å, and Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O).

Structure description top

Polybenzimidazole (Polybzim) metal coordination compounds have been often used to mimic some biological activities, such as superoxide dismutase (Liao et al., 2001), DNA probe (Girasolo et al., 2000), alkaline phosphatase (Young et al., 1995). In this paper, we report the crystal structure of a polybzim copper complex (I), ([Cu(IDB)(µ-N3).H2O]2.(NO3)2), formed by bis[N-(benzimidazol-2-ylmethyl)]amine, sodium azide and copper nitrate in 95% methanol solution.

In (I), the long Cu—N6a (2.820 (5) Å, symmetry code (a): - x, 1 - y, - z) and Cu—O4 (2.747 (4) Å) bond distances are due to the Jahn-Teller effect (Brown et al., 1967). In the centrosymmetric dinuclear complex, the unique CuII ion is in a distorted octahedral coordination environment. Two azide ligands bridgein µ2– modes giving a Cu···Cu distance of 3.533 (2)Å. In the crystal, cations and nitrate anions are linked into a three-dimensional network (Fig.2) by a combination of N—H···O, O—H···O and weak C—H···O hydrogen bonds (Table 2). In addtion, ππ stacking interactions with centroid to centroid distances ranging from 3.562 (2)Å to 3.974 (2) Å are also observed.

For the biological applications of polybenzimidazole metal coordination compounds, see: Liao et al. (2001); Girasolo et al. (2000); Young et al. (1995). For details of the Jahn–Teller effect, see: Brown et al. (1967). For the preparation of bis[N-(benzimidazole-2-ylmethyl)] amine, see: Adams et al. (1990).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level (symmetry code (a): - x, 1 - y, - z).
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the three-dimensional network by hydrogen bonds (dashed lines). Hydrogen atoms not involved in the motif have been omitted for clarity.
Di-µ-azido-κ4N:N-bis{aqua[bis(1H- benzimidazol-2-ylmethyl)amine]copper(II)} dinitrate top
Crystal data top
[Cu2(N3)2(C16H15N5)2(H2O)2](NO3)2F(000) = 948
Mr = 925.85Dx = 1.657 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1625 reflections
a = 11.1435 (10) Åθ = 2.3–19.7°
b = 14.1942 (12) ŵ = 1.23 mm1
c = 12.6567 (11) ÅT = 289 K
β = 112.046 (1)°Block, blue
V = 1855.6 (3) Å30.20 × 0.20 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
3269 independent reflections
Radiation source: fine focus sealed Siemens Mo tube2307 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
0.3° wide ω exposures scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.792, Tmax = 0.887k = 1614
13705 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0796P)2 + 1.2353P]
where P = (Fo2 + 2Fc2)/3
3269 reflections(Δ/σ)max = 0.001
286 parametersΔρmax = 0.78 e Å3
6 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Cu2(N3)2(C16H15N5)2(H2O)2](NO3)2V = 1855.6 (3) Å3
Mr = 925.85Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.1435 (10) ŵ = 1.23 mm1
b = 14.1942 (12) ÅT = 289 K
c = 12.6567 (11) Å0.20 × 0.20 × 0.10 mm
β = 112.046 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3269 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2307 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 0.887Rint = 0.071
13705 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0716 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.78 e Å3
3269 reflectionsΔρmin = 0.49 e Å3
286 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.11004 (7)0.50588 (5)0.14302 (5)0.0427 (3)
C10.0889 (6)0.3158 (4)0.2197 (5)0.0482 (15)
H1A0.00340.29170.17480.058*
H1B0.12750.27570.28590.058*
C20.1714 (5)0.3173 (4)0.1500 (4)0.0393 (13)
C30.2744 (5)0.3736 (4)0.0492 (4)0.0376 (13)
C40.3333 (5)0.4286 (4)0.0078 (4)0.0438 (14)
H40.32730.49390.00820.053*
C50.4012 (6)0.3829 (5)0.0638 (5)0.0514 (16)
H50.43970.41810.10440.062*
C60.4134 (6)0.2848 (5)0.0609 (5)0.0556 (17)
H60.46180.25620.09790.067*
C70.3557 (6)0.2304 (4)0.0050 (5)0.0497 (15)
H70.36230.16510.00450.060*
C80.2877 (5)0.2751 (4)0.0506 (4)0.0396 (13)
C90.0342 (6)0.4390 (4)0.2785 (5)0.0486 (15)
H9A0.02330.42180.35570.058*
H9B0.11070.40760.22600.058*
C100.0471 (5)0.5443 (4)0.2630 (4)0.0422 (13)
C110.0245 (5)0.6839 (4)0.2032 (4)0.0352 (12)
C120.0091 (5)0.7629 (4)0.1561 (4)0.0425 (14)
H120.06000.75850.11250.051*
C130.0366 (5)0.8486 (4)0.1771 (5)0.0462 (14)
H130.01720.90280.14550.055*
C140.1105 (6)0.8561 (5)0.2438 (5)0.0525 (16)
H140.13790.91530.25680.063*
C150.1442 (5)0.7788 (4)0.2909 (5)0.0479 (15)
H150.19410.78400.33530.058*
C160.0999 (5)0.6915 (4)0.2692 (4)0.0415 (14)
N10.0799 (5)0.4121 (4)0.2551 (4)0.0534 (13)
H1C0.144 (4)0.429 (5)0.315 (3)0.064*
N20.2008 (4)0.3982 (3)0.1129 (4)0.0413 (11)
N30.2202 (5)0.2429 (3)0.1156 (4)0.0429 (11)
H3A0.214 (6)0.1862 (17)0.129 (5)0.051*
N40.0095 (4)0.5898 (3)0.2030 (3)0.0363 (10)
N50.1132 (4)0.6021 (3)0.3045 (4)0.0425 (11)
H5A0.150 (5)0.586 (4)0.350 (4)0.051*
N60.1104 (5)0.5834 (4)0.0151 (4)0.0523 (13)
N70.1896 (6)0.6430 (4)0.0265 (4)0.0521 (13)
N80.2602 (7)0.7025 (5)0.0279 (6)0.091 (2)
N90.3202 (6)0.4259 (4)0.5493 (5)0.0575 (14)
O10.2058 (5)0.4516 (4)0.5211 (4)0.0719 (13)
O20.3693 (5)0.4251 (4)0.4759 (4)0.0842 (16)
O30.3826 (5)0.4022 (4)0.6480 (4)0.0759 (14)
O40.3352 (5)0.5660 (4)0.3111 (4)0.0681 (13)
H4A0.335 (6)0.541 (6)0.371 (4)0.102*
H4B0.410 (3)0.568 (6)0.313 (6)0.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0529 (5)0.0355 (5)0.0500 (4)0.0068 (3)0.0310 (4)0.0091 (3)
C10.054 (4)0.038 (4)0.055 (4)0.001 (3)0.023 (3)0.011 (3)
C20.044 (3)0.032 (3)0.044 (3)0.002 (3)0.019 (3)0.007 (2)
C30.037 (3)0.038 (3)0.038 (3)0.001 (3)0.015 (3)0.000 (2)
C40.040 (3)0.043 (4)0.051 (3)0.003 (3)0.019 (3)0.001 (3)
C50.050 (4)0.056 (4)0.055 (4)0.007 (3)0.028 (3)0.007 (3)
C60.049 (4)0.065 (5)0.053 (4)0.005 (3)0.019 (3)0.012 (3)
C70.044 (4)0.040 (4)0.060 (4)0.004 (3)0.015 (3)0.008 (3)
C80.037 (3)0.036 (3)0.039 (3)0.001 (3)0.007 (3)0.001 (2)
C90.044 (4)0.054 (4)0.053 (3)0.000 (3)0.023 (3)0.013 (3)
C100.041 (3)0.048 (4)0.039 (3)0.001 (3)0.016 (3)0.005 (3)
C110.032 (3)0.036 (3)0.033 (3)0.002 (2)0.008 (2)0.004 (2)
C120.044 (3)0.042 (4)0.046 (3)0.003 (3)0.022 (3)0.002 (3)
C130.040 (3)0.041 (4)0.058 (4)0.003 (3)0.019 (3)0.000 (3)
C140.052 (4)0.043 (4)0.062 (4)0.003 (3)0.021 (3)0.009 (3)
C150.041 (4)0.062 (4)0.042 (3)0.006 (3)0.016 (3)0.010 (3)
C160.034 (3)0.050 (4)0.037 (3)0.001 (3)0.009 (3)0.001 (3)
N10.059 (4)0.047 (3)0.067 (3)0.008 (3)0.039 (3)0.001 (3)
N20.044 (3)0.033 (3)0.049 (3)0.005 (2)0.020 (2)0.008 (2)
N30.048 (3)0.030 (3)0.050 (3)0.002 (2)0.017 (2)0.005 (2)
N40.036 (3)0.038 (3)0.038 (2)0.001 (2)0.018 (2)0.0039 (19)
N50.043 (3)0.048 (3)0.046 (3)0.003 (2)0.027 (2)0.003 (2)
N60.068 (4)0.044 (3)0.054 (3)0.003 (3)0.033 (3)0.012 (2)
N70.064 (4)0.053 (4)0.053 (3)0.016 (3)0.037 (3)0.013 (3)
N80.110 (6)0.083 (5)0.108 (5)0.030 (4)0.071 (5)0.003 (4)
N90.072 (4)0.054 (4)0.060 (4)0.012 (3)0.040 (3)0.005 (3)
O10.062 (3)0.086 (4)0.078 (3)0.011 (3)0.038 (3)0.005 (3)
O20.107 (4)0.084 (4)0.100 (4)0.007 (3)0.083 (3)0.009 (3)
O30.084 (4)0.084 (4)0.063 (3)0.000 (3)0.031 (3)0.006 (3)
O40.072 (3)0.048 (3)0.084 (3)0.014 (3)0.029 (3)0.003 (2)
Geometric parameters (Å, º) top
Cu1—N21.947 (4)C9—H9A0.9700
Cu1—N61.959 (5)C9—H9B0.9700
Cu1—N41.972 (4)C10—N41.323 (6)
Cu1—N12.062 (5)C10—N51.336 (7)
Cu1—O42.747 (5)C11—C121.386 (7)
Cu1—N6i2.821 (6)C11—N41.388 (6)
C1—N11.454 (8)C11—C161.394 (7)
C1—C21.494 (7)C12—C131.381 (8)
C1—H1A0.9700C12—H120.9300
C1—H1B0.9700C13—C141.388 (8)
C2—N21.327 (7)C13—H130.9300
C2—N31.333 (7)C14—C151.367 (8)
C3—C41.384 (7)C14—H140.9300
C3—N21.394 (6)C15—C161.398 (8)
C3—C81.405 (8)C15—H150.9300
C4—C51.377 (7)C16—N51.372 (7)
C4—H40.9300N1—H1C0.86 (2)
C5—C61.399 (9)N3—H3A0.83 (2)
C5—H50.9300N5—H5A0.86 (2)
C6—C71.360 (8)N6—N71.191 (7)
C6—H60.9300N7—N81.150 (8)
C7—C81.367 (8)N9—O31.228 (6)
C7—H70.9300N9—O21.243 (6)
C8—N31.385 (7)N9—O11.243 (7)
C9—N11.460 (7)O4—H4A0.84 (2)
C9—C101.507 (8)O4—H4B0.83 (2)
N2—Cu1—N696.73 (19)N4—C10—N5112.2 (5)
N2—Cu1—N4163.95 (17)N4—C10—C9121.1 (5)
N6—Cu1—N499.01 (19)N5—C10—C9126.7 (5)
N2—Cu1—N181.88 (19)C12—C11—N4131.3 (5)
N6—Cu1—N1169.2 (2)C12—C11—C16121.0 (5)
N4—Cu1—N182.07 (19)N4—C11—C16107.6 (5)
N2—Cu1—O490.27 (17)C13—C12—C11116.8 (5)
N6—Cu1—O4100.4 (2)C13—C12—H12121.6
N4—Cu1—O490.01 (16)C11—C12—H12121.6
N1—Cu1—O490.29 (18)C12—C13—C14122.0 (6)
N2—Cu1—N6i83.48 (17)C12—C13—H13119.0
N6—Cu1—N6i86.4 (2)C14—C13—H13119.0
N4—Cu1—N6i94.31 (16)C15—C14—C13121.8 (6)
N1—Cu1—N6i82.82 (18)C15—C14—H14119.1
O4—Cu1—N6i171.27 (14)C13—C14—H14119.1
N1—C1—C2107.3 (5)C14—C15—C16116.8 (5)
N1—C1—H1A110.3C14—C15—H15121.6
C2—C1—H1A110.3C16—C15—H15121.6
N1—C1—H1B110.3N5—C16—C11106.6 (5)
C2—C1—H1B110.3N5—C16—C15131.8 (5)
H1A—C1—H1B108.5C11—C16—C15121.6 (5)
N2—C2—N3112.6 (5)C1—N1—C9118.3 (5)
N2—C2—C1120.6 (5)C1—N1—Cu1110.3 (3)
N3—C2—C1126.8 (5)C9—N1—Cu1110.5 (4)
C4—C3—N2131.1 (5)C1—N1—H1C114 (5)
C4—C3—C8119.9 (5)C9—N1—H1C104 (4)
N2—C3—C8109.0 (5)Cu1—N1—H1C98 (4)
C5—C4—C3117.5 (6)C2—N2—C3105.3 (4)
C5—C4—H4121.2C2—N2—Cu1113.3 (3)
C3—C4—H4121.2C3—N2—Cu1140.5 (4)
C4—C5—C6121.5 (6)C2—N3—C8108.2 (4)
C4—C5—H5119.3C2—N3—H3A128 (4)
C6—C5—H5119.3C8—N3—H3A123 (4)
C7—C6—C5121.2 (6)C10—N4—C11106.3 (4)
C7—C6—H6119.4C10—N4—Cu1112.8 (4)
C5—C6—H6119.4C11—N4—Cu1140.9 (3)
C6—C7—C8117.7 (6)C10—N5—C16107.3 (4)
C6—C7—H7121.1C10—N5—H5A125 (4)
C8—C7—H7121.1C16—N5—H5A127 (4)
C7—C8—N3133.0 (6)N7—N6—Cu1122.0 (4)
C7—C8—C3122.1 (5)N8—N7—N6174.1 (7)
N3—C8—C3104.9 (5)O3—N9—O2121.2 (6)
N1—C9—C10106.3 (4)O3—N9—O1120.0 (5)
N1—C9—H9A110.5O2—N9—O1118.7 (6)
C10—C9—H9A110.5Cu1—O4—H4A105 (5)
N1—C9—H9B110.5Cu1—O4—H4B131 (5)
C10—C9—H9B110.5H4A—O4—H4B109 (3)
H9A—C9—H9B108.7
N1—C1—C2—N212.8 (7)C8—C3—N2—C20.2 (6)
N1—C1—C2—N3169.1 (5)C4—C3—N2—Cu113.8 (10)
N2—C3—C4—C5179.7 (5)C8—C3—N2—Cu1167.8 (4)
C8—C3—C4—C51.4 (8)N6—Cu1—N2—C2152.5 (4)
C3—C4—C5—C61.7 (9)N4—Cu1—N2—C216.0 (9)
C4—C5—C6—C71.7 (9)N1—Cu1—N2—C216.7 (4)
C5—C6—C7—C81.4 (9)O4—Cu1—N2—C2107.0 (4)
C6—C7—C8—N3179.0 (6)N6i—Cu1—N2—C266.9 (4)
C6—C7—C8—C31.2 (8)N6—Cu1—N2—C314.4 (6)
C4—C3—C8—C71.3 (8)N4—Cu1—N2—C3177.1 (6)
N2—C3—C8—C7179.9 (5)N1—Cu1—N2—C3176.4 (6)
C4—C3—C8—N3178.9 (5)O4—Cu1—N2—C386.1 (6)
N2—C3—C8—N30.3 (6)N6i—Cu1—N2—C3100.0 (6)
N1—C9—C10—N420.0 (7)N2—C2—N3—C80.1 (6)
N1—C9—C10—N5160.1 (5)C1—C2—N3—C8178.4 (5)
N4—C11—C12—C13176.7 (5)C7—C8—N3—C2180.0 (6)
C16—C11—C12—C130.5 (8)C3—C8—N3—C20.2 (6)
C11—C12—C13—C141.2 (8)N5—C10—N4—C111.4 (6)
C12—C13—C14—C151.2 (9)C9—C10—N4—C11178.4 (5)
C13—C14—C15—C160.3 (9)N5—C10—N4—Cu1179.0 (4)
C12—C11—C16—N5178.7 (5)C9—C10—N4—Cu11.1 (6)
N4—C11—C16—N51.8 (6)C12—C11—N4—C10178.5 (6)
C12—C11—C16—C150.2 (8)C16—C11—N4—C102.0 (6)
N4—C11—C16—C15176.7 (5)C12—C11—N4—Cu12.2 (10)
C14—C15—C16—N5178.4 (6)C16—C11—N4—Cu1178.7 (4)
C14—C15—C16—C110.3 (8)N2—Cu1—N4—C1011.6 (9)
C2—C1—N1—C9153.2 (5)N6—Cu1—N4—C10156.8 (4)
C2—C1—N1—Cu124.7 (6)N1—Cu1—N4—C1012.3 (4)
C10—C9—N1—C1156.2 (5)O4—Cu1—N4—C10102.6 (4)
C10—C9—N1—Cu127.8 (5)N6i—Cu1—N4—C1069.8 (4)
N2—Cu1—N1—C123.7 (4)N2—Cu1—N4—C11169.1 (6)
N6—Cu1—N1—C159.6 (12)N6—Cu1—N4—C1122.5 (6)
N4—Cu1—N1—C1156.1 (4)N1—Cu1—N4—C11168.4 (6)
O4—Cu1—N1—C1113.9 (4)O4—Cu1—N4—C1178.1 (6)
N6i—Cu1—N1—C160.7 (4)N6i—Cu1—N4—C11109.5 (6)
N2—Cu1—N1—C9156.3 (4)N4—C10—N5—C160.3 (6)
N6—Cu1—N1—C973.0 (12)C9—C10—N5—C16179.6 (5)
N4—Cu1—N1—C923.4 (4)C11—C16—N5—C100.9 (6)
O4—Cu1—N1—C9113.4 (4)C15—C16—N5—C10177.4 (6)
N6i—Cu1—N1—C971.9 (4)N2—Cu1—N6—N797.0 (5)
N3—C2—N2—C30.1 (6)N4—Cu1—N6—N786.2 (5)
C1—C2—N2—C3178.3 (5)N1—Cu1—N6—N7178.9 (9)
N3—C2—N2—Cu1171.5 (4)O4—Cu1—N6—N75.5 (5)
C1—C2—N2—Cu16.9 (7)N6i—Cu1—N6—N7180.0 (6)
C4—C3—N2—C2178.6 (6)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.86 (2)2.45 (4)3.173 (7)142 (5)
N1—H1C···O20.86 (2)2.57 (3)3.388 (8)159 (6)
N3—H3A···O4ii0.83 (2)2.02 (3)2.825 (7)162 (6)
N5—H5A···O1iii0.86 (2)2.02 (2)2.868 (6)171 (5)
O4—H4A···O20.84 (2)2.06 (5)2.810 (7)149 (8)
O4—H4B···O3iv0.83 (2)2.21 (3)3.022 (7)166 (8)
C1—H1B···N8ii0.972.453.404 (9)169
Symmetry codes: (ii) x+1/2, y1/2, z+1/2; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(N3)2(C16H15N5)2(H2O)2](NO3)2
Mr925.85
Crystal system, space groupMonoclinic, P21/n
Temperature (K)289
a, b, c (Å)11.1435 (10), 14.1942 (12), 12.6567 (11)
β (°) 112.046 (1)
V3)1855.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.792, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
13705, 3269, 2307
Rint0.071
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.171, 1.09
No. of reflections3269
No. of parameters286
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.78, 0.49

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.86 (2)2.45 (4)3.173 (7)142 (5)
N1—H1C···O20.86 (2)2.57 (3)3.388 (8)159 (6)
N3—H3A···O4i0.83 (2)2.02 (3)2.825 (7)162 (6)
N5—H5A···O1ii0.86 (2)2.02 (2)2.868 (6)171 (5)
O4—H4A···O20.84 (2)2.06 (5)2.810 (7)149 (8)
O4—H4B···O3iii0.83 (2)2.21 (3)3.022 (7)166 (8)
C1—H1B···N8i0.972.453.404 (9)169.1
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

We thank Central China Normal University for supporting this work.

References

First citationAdams, H., Bailey, N.-A., Carane, J.-D. & Fenton, D.-E. (1990). J. Chem. Soc. Dalton Trans. pp. 1727–1735.  CSD CrossRef Web of Science Google Scholar
First citationBrown, D. S., Lee, J. D., Melson, B. G. A., Hatahway, B. J., Procter, I. M. & Tomlinson, A. A. G. (1967). Chem. Commun. pp. 369–371.  Google Scholar
First citationBruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGirasolo, M.-A., Pizzino, T., Mansueto, C., Valle, G. & Stocco, G.-C. (2000). Appl. Organomet. Chem. 14, 197–211.  Web of Science CrossRef CAS Google Scholar
First citationLiao, Z.-R., Zheng, X.-F., Luo, B.-S., Shen, L.-R., Li, D.-F., Liu, H.-L. & Zhao, W. (2001). Polyhedron, 20, 2813–2821.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoung, M.-J., Wahnon, D., Hynes, R.-C. & Chin, J. (1995). J. Am. Chem. Soc. 117, 9441–9447.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds