metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(2,4-di­chloro­benzoato)bis­­(methanol-κO)cobalt(II)]-μ-4,4′-bi­pyridine-κ2N:N′]

aDepartment of Fine Chemistry, Seoul National University of Science and Technology, Seoul 139-743, Republic of Korea, bDepartment of Forest & Environment Resources, Kyungpook National University, Sangju 742-711, Republic of Korea, and cDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@seoultech.ac.kr, ymeekim@ewha.ac.kr

(Received 27 October 2011; accepted 2 November 2011; online 9 November 2011)

In the title compound, [Co(C7H3Cl2O2)2(C10H8N2)(CH3OH)2]n, the CoII ion lies on a twofold rotation axis and is in a slightly distorted octa­hedral CdO4N2 environment, formed by two O atoms from monodentate dichloro­benzoate ligands, two O atoms from methanol ligands, and two N atoms from trans-related 4,4′-bipyridine ligands. The bipyridine ligands also lies on a twofold rotation axis and bridge the CoII ions, forming chains extending along [010]. An intra­chain O—H⋯O hydrogen bond is observed.

Related literature

For inter­actions of metal ions with amino acids, see: Stoumpos et al. (2009[Stoumpos, C. C., Gass, I. A., Milios, C. J., Lalioti, N., Terzis, A., Aromi, G., Teat, S. J., Brechin, E. K. & Perlepes, S. P. (2009). Dalton Trans. pp. 307-317.]). For related complexes, see: Yu et al. (2010[Yu, S. M., Koo, K., Kim, P.-G., Kim, C. & Kim, Y. (2010). Acta Cryst. E66, m61-m62.]); Hyun et al. (2011[Hyun, M. Y., Kim, P.-G., Kim, C. & Kim, Y. (2011). Acta Cryst. E67, m390.]); Kang et al. (2011[Kang, J., Yeo, J. K., Kim, P.-G., Kim, C. & Kim, Y. (2011). Acta Cryst. E67, m1511.]); Kim et al. (2011[Kim, J. H., Kim, C. & Kim, Y. (2011). Acta Cryst. E67, m3-m4.]); Song et al. (2009[Song, Y. J., Kwak, H., Lee, Y. M., Kim, S. H., Lee, S. H., Park, B. K., Jun, Y. J., Yu, S. M., Kim, C., Kim, S.-J. & Kim, Y. (2009). Polyhedron, 28, 1241-1252.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C7H3Cl2O2)2(C10H8N2)(CH4O)2]

  • Mr = 659.19

  • Monoclinic, C 2/c

  • a = 20.8405 (16) Å

  • b = 11.4228 (9) Å

  • c = 15.0728 (12) Å

  • β = 127.479 (1)°

  • V = 2847.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 288 K

  • 0.10 × 0.08 × 0.03 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.907, Tmax = 0.970

  • 7806 measured reflections

  • 2801 independent reflections

  • 2178 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.092

  • S = 1.06

  • 2801 reflections

  • 184 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O2i 0.70 (3) 1.96 (3) 2.625 (2) 160 (3)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The interaction of transition metal ions with biologically active molecules such as amino acids and various acids in the biological systems is of great importance (Stoumpos, et al., 2009). Therefore, we and other groups have intensively examined the interaction of transition metal ions with various acids such as benzoic acid and acetic acid. As a result, there are a variety of structures in the literature of copper(II), cadmium(II), nickel(II), and zinc(II) benzoates with quinoxaline, 6-methylquinoline, 3-methylquinoline, trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene, and di-2-pyridyl ketone (Yu, et al., 2010; Hyun, et al., 2011; Kang, et al., 2011; Kim, et al., 2011). Nevertheless, cobalt as a metal ion source has rarely been used (Song, et al., 2009). In this work, we have employed cobalt(II) benzoate as a building block and 4,4'-bipyridine as a ligand. We report herein the crystal structure of the title compound.

In the title compound, the CoII ion lies on a two-fold rotation axis and is in a distorted octahedral CdO4N2 environment, constructed by two O atoms from dichlorobenzoate ligands, two O atoms from methanol ligands, and two N atoms from the trans-related 4,4'-bipyridine, which also lies on a two-fold rotation axis (Fig. 1). The 4,4'-bipyridine ligands bridge the CoII complex units, forming chains extending along the [010] direction.

Related literature top

For interactions of metal ions with amino acids, see: Stoumpos et al. (2009). For related complexes, see: Yu et al. (2010); Hyun et al. (2011); Kang et al. (2011); Kim et al. (2011); Song et al. (2009).

Experimental top

2,4-Dichlorobenzoic acid (19.1 mg, 0.1 mmol), NH4OH (13.9 ml, 0.1 mmol) and Co(NO3)2.6H2O (14.6 mg, 0.05 mmol) were dissolved in 4 ml methanol and carefully layered with a 4 ml methylene chloride solution of 4,4'-bipyridine (15.6 mg, 0.1 mmol). Suitable crystals of the title compound were obtained in a month.

Refinement top

H atoms were placed in calculated positions with C—H distances of 0.93-0.96 Å. They were included in the refinement in riding-motion approximation with Uiso(H) = 1.2Ueq(C) or1.5Ueq(Cmethyl). The position of the H atom of the methanol ligand was refined with an isotropic displacement parameter.

Structure description top

The interaction of transition metal ions with biologically active molecules such as amino acids and various acids in the biological systems is of great importance (Stoumpos, et al., 2009). Therefore, we and other groups have intensively examined the interaction of transition metal ions with various acids such as benzoic acid and acetic acid. As a result, there are a variety of structures in the literature of copper(II), cadmium(II), nickel(II), and zinc(II) benzoates with quinoxaline, 6-methylquinoline, 3-methylquinoline, trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene, and di-2-pyridyl ketone (Yu, et al., 2010; Hyun, et al., 2011; Kang, et al., 2011; Kim, et al., 2011). Nevertheless, cobalt as a metal ion source has rarely been used (Song, et al., 2009). In this work, we have employed cobalt(II) benzoate as a building block and 4,4'-bipyridine as a ligand. We report herein the crystal structure of the title compound.

In the title compound, the CoII ion lies on a two-fold rotation axis and is in a distorted octahedral CdO4N2 environment, constructed by two O atoms from dichlorobenzoate ligands, two O atoms from methanol ligands, and two N atoms from the trans-related 4,4'-bipyridine, which also lies on a two-fold rotation axis (Fig. 1). The 4,4'-bipyridine ligands bridge the CoII complex units, forming chains extending along the [010] direction.

For interactions of metal ions with amino acids, see: Stoumpos et al. (2009). For related complexes, see: Yu et al. (2010); Hyun et al. (2011); Kang et al. (2011); Kim et al. (2011); Song et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A fragment of the one-dimensional chain structure of the title compound showing displacement ellipsoids at the 30% probability level. Unlabeled atoms are related by the symmetry operator (-x, y, 0.5 - z).
catena-Poly[[bis(2,4-dichlorobenzoato)bis(methanol- κO)cobalt(II)]-µ-4,4'-bipyridine-κ2N:N'] top
Crystal data top
[Co(C7H3Cl2O2)2(C10H8N2)(CH4O)2]F(000) = 1340
Mr = 659.19Dx = 1.538 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2248 reflections
a = 20.8405 (16) Åθ = 2.3–25.2°
b = 11.4228 (9) ŵ = 1.02 mm1
c = 15.0728 (12) ÅT = 288 K
β = 127.479 (1)°Plate, orange
V = 2847.5 (4) Å30.10 × 0.08 × 0.03 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2801 independent reflections
Radiation source: fine-focus sealed tube2178 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 2518
Tmin = 0.907, Tmax = 0.970k = 1114
7806 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.195P]
where P = (Fo2 + 2Fc2)/3
2801 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Co(C7H3Cl2O2)2(C10H8N2)(CH4O)2]V = 2847.5 (4) Å3
Mr = 659.19Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.8405 (16) ŵ = 1.02 mm1
b = 11.4228 (9) ÅT = 288 K
c = 15.0728 (12) Å0.10 × 0.08 × 0.03 mm
β = 127.479 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2801 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2178 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.970Rint = 0.026
7806 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.46 e Å3
2801 reflectionsΔρmin = 0.45 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.25358 (3)0.25000.03212 (14)
Cl10.14268 (5)0.07781 (6)0.63891 (6)0.0674 (2)
Cl20.27648 (5)0.39785 (8)0.96582 (5)0.0778 (3)
N110.00000.06476 (19)0.25000.0357 (6)
N120.00000.44441 (19)0.25000.0348 (5)
O10.06270 (9)0.25755 (11)0.42246 (12)0.0390 (4)
O20.03520 (12)0.28061 (19)0.44020 (14)0.0718 (6)
O30.11240 (11)0.25907 (14)0.27604 (15)0.0460 (4)
H3O0.1016 (17)0.262 (2)0.222 (2)0.051 (9)*
C10.03654 (15)0.27797 (18)0.47722 (18)0.0402 (5)
C20.09941 (13)0.30634 (19)0.60010 (16)0.0371 (5)
C30.14937 (15)0.2225 (2)0.67935 (19)0.0435 (5)
C40.20443 (15)0.2499 (2)0.79167 (19)0.0510 (6)
H40.23710.19230.84390.061*
C50.20962 (14)0.3633 (2)0.82401 (18)0.0484 (6)
C60.16244 (15)0.4504 (2)0.74806 (19)0.0485 (6)
H60.16740.52740.77140.058*
C70.10782 (15)0.42101 (19)0.63699 (18)0.0444 (5)
H70.07570.47930.58520.053*
C110.01623 (14)0.00268 (18)0.33700 (17)0.0405 (5)
H110.02750.04340.39850.049*
C120.01723 (14)0.11759 (17)0.34075 (17)0.0376 (5)
H120.02930.15630.40360.045*
C130.00000.1806 (2)0.25000.0310 (6)
C140.00000.6896 (2)0.25000.0315 (6)
C150.05524 (13)0.62607 (17)0.34646 (17)0.0373 (5)
H150.09290.66460.41350.045*
C160.05389 (14)0.50533 (17)0.34212 (17)0.0371 (5)
H160.09260.46430.40690.045*
C310.17939 (16)0.1836 (3)0.3450 (2)0.0693 (8)
H31A0.19010.17560.41630.104*
H31B0.22600.21590.35530.104*
H31C0.16750.10810.31010.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0505 (3)0.0178 (2)0.0336 (2)0.0000.0284 (2)0.000
Cl10.0934 (6)0.0445 (4)0.0610 (4)0.0235 (3)0.0453 (4)0.0071 (3)
Cl20.0728 (5)0.0986 (6)0.0369 (3)0.0283 (4)0.0205 (3)0.0094 (3)
N110.0521 (16)0.0194 (11)0.0377 (13)0.0000.0284 (12)0.000
N120.0500 (15)0.0205 (11)0.0388 (13)0.0000.0297 (13)0.000
O10.0572 (10)0.0299 (8)0.0362 (8)0.0037 (6)0.0316 (8)0.0000 (6)
O20.0524 (12)0.1249 (18)0.0406 (9)0.0081 (11)0.0295 (9)0.0142 (10)
O30.0547 (11)0.0452 (10)0.0403 (9)0.0037 (7)0.0300 (9)0.0038 (8)
C10.0570 (15)0.0313 (11)0.0366 (11)0.0005 (10)0.0307 (11)0.0008 (9)
C20.0437 (13)0.0391 (12)0.0339 (11)0.0010 (9)0.0264 (10)0.0003 (9)
C30.0518 (14)0.0432 (13)0.0419 (12)0.0055 (10)0.0318 (12)0.0015 (10)
C40.0486 (14)0.0614 (17)0.0392 (12)0.0100 (12)0.0248 (12)0.0124 (11)
C50.0432 (13)0.0651 (17)0.0337 (11)0.0109 (12)0.0218 (11)0.0053 (11)
C60.0557 (15)0.0466 (14)0.0466 (13)0.0100 (11)0.0328 (13)0.0094 (11)
C70.0527 (14)0.0390 (13)0.0375 (11)0.0002 (10)0.0254 (11)0.0000 (10)
C110.0641 (15)0.0230 (10)0.0391 (11)0.0017 (10)0.0339 (11)0.0033 (8)
C120.0562 (14)0.0230 (10)0.0380 (11)0.0015 (9)0.0310 (11)0.0021 (8)
C130.0333 (16)0.0207 (14)0.0385 (15)0.0000.0216 (14)0.000
C140.0419 (17)0.0203 (14)0.0406 (15)0.0000.0294 (14)0.000
C150.0468 (13)0.0254 (10)0.0363 (11)0.0033 (9)0.0235 (11)0.0022 (8)
C160.0470 (13)0.0236 (10)0.0385 (11)0.0027 (9)0.0249 (11)0.0041 (9)
C310.0593 (18)0.074 (2)0.0657 (18)0.0147 (15)0.0335 (16)0.0082 (15)
Geometric parameters (Å, º) top
Co1—O12.0816 (14)C4—H40.9300
Co1—O1i2.0816 (14)C5—C61.377 (3)
Co1—O3i2.1274 (18)C6—C71.375 (3)
Co1—O32.1275 (18)C6—H60.9300
Co1—N112.157 (2)C7—H70.9300
Co1—N122.180 (2)C11—C121.375 (3)
Cl1—C31.738 (2)C11—H110.9300
Cl2—C51.744 (2)C12—C131.386 (2)
N11—C111.341 (2)C12—H120.9300
N11—C11i1.341 (2)C13—C12i1.386 (2)
N12—C16i1.333 (2)C13—C14ii1.484 (4)
N12—C161.333 (2)C14—C151.389 (2)
O1—C11.257 (3)C14—C15i1.389 (2)
O2—C11.238 (3)C14—C13iii1.484 (4)
O3—C311.417 (3)C15—C161.380 (3)
O3—H3O0.70 (3)C15—H150.9300
C1—C21.516 (3)C16—H160.9300
C2—C31.384 (3)C31—H31A0.9600
C2—C71.392 (3)C31—H31B0.9600
C3—C41.384 (3)C31—H31C0.9600
C4—C51.366 (3)
O1—Co1—O1i177.51 (7)C5—C4—H4120.7
O1—Co1—O3i90.79 (6)C3—C4—H4120.7
O1i—Co1—O3i89.13 (6)C4—C5—C6121.8 (2)
O1—Co1—O389.13 (6)C4—C5—Cl2118.86 (19)
O1i—Co1—O390.79 (6)C6—C5—Cl2119.32 (19)
O3i—Co1—O3176.63 (9)C7—C6—C5118.7 (2)
O1—Co1—N1191.25 (4)C7—C6—H6120.7
O1i—Co1—N1191.25 (4)C5—C6—H6120.7
O3i—Co1—N1191.69 (4)C6—C7—C2121.7 (2)
O3—Co1—N1191.69 (4)C6—C7—H7119.2
O1—Co1—N1288.75 (4)C2—C7—H7119.2
O1i—Co1—N1288.75 (4)N11—C11—C12123.88 (19)
O3i—Co1—N1288.31 (4)N11—C11—H11118.1
O3—Co1—N1288.31 (4)C12—C11—H11118.1
N11—Co1—N12180.0C11—C12—C13119.34 (19)
C11—N11—C11i116.1 (2)C11—C12—H12120.3
C11—N11—Co1121.94 (12)C13—C12—H12120.3
C11i—N11—Co1121.94 (12)C12—C13—C12i117.4 (2)
C16i—N12—C16117.0 (2)C12—C13—C14ii121.28 (12)
C16i—N12—Co1121.47 (12)C12i—C13—C14ii121.28 (12)
C16—N12—Co1121.48 (12)C15—C14—C15i117.0 (2)
C1—O1—Co1129.08 (15)C15—C14—C13iii121.48 (12)
C31—O3—Co1126.90 (17)C15i—C14—C13iii121.48 (12)
C31—O3—H3O111 (2)C16—C15—C14119.49 (19)
Co1—O3—H3O104 (2)C16—C15—H15120.3
O2—C1—O1126.6 (2)C14—C15—H15120.3
O2—C1—C2117.03 (19)N12—C16—C15123.4 (2)
O1—C1—C2116.4 (2)N12—C16—H16118.3
C3—C2—C7117.4 (2)C15—C16—H16118.3
C3—C2—C1122.9 (2)O3—C31—H31A109.5
C7—C2—C1119.63 (19)O3—C31—H31B109.5
C2—C3—C4121.9 (2)H31A—C31—H31B109.5
C2—C3—Cl1119.86 (18)O3—C31—H31C109.5
C4—C3—Cl1118.28 (18)H31A—C31—H31C109.5
C5—C4—C3118.5 (2)H31B—C31—H31C109.5
O1—Co1—N11—C1116.24 (13)O1—C1—C2—C374.4 (3)
O1i—Co1—N11—C11163.76 (13)O2—C1—C2—C771.7 (3)
O3i—Co1—N11—C1174.59 (13)O1—C1—C2—C7106.2 (2)
O3—Co1—N11—C11105.41 (13)C7—C2—C3—C41.6 (3)
O1—Co1—N11—C11i163.75 (13)C1—C2—C3—C4177.7 (2)
O1i—Co1—N11—C11i16.24 (13)C7—C2—C3—Cl1179.46 (17)
O3i—Co1—N11—C11i105.41 (13)C1—C2—C3—Cl11.2 (3)
O3—Co1—N11—C11i74.58 (13)C2—C3—C4—C50.7 (4)
O1—Co1—N12—C16i158.24 (11)Cl1—C3—C4—C5179.63 (19)
O1i—Co1—N12—C16i21.76 (11)C3—C4—C5—C60.7 (4)
O3i—Co1—N12—C16i67.41 (12)C3—C4—C5—Cl2177.98 (18)
O3—Co1—N12—C16i112.59 (12)C4—C5—C6—C71.1 (4)
O1—Co1—N12—C1621.76 (11)Cl2—C5—C6—C7177.58 (18)
O1i—Co1—N12—C16158.24 (11)C5—C6—C7—C20.1 (4)
O3i—Co1—N12—C16112.59 (12)C3—C2—C7—C61.2 (3)
O3—Co1—N12—C1667.41 (12)C1—C2—C7—C6178.2 (2)
O3i—Co1—O1—C111.09 (17)C11i—N11—C11—C120.28 (17)
O3—Co1—O1—C1165.54 (17)Co1—N11—C11—C12179.71 (17)
N11—Co1—O1—C1102.79 (16)N11—C11—C12—C130.6 (3)
N12—Co1—O1—C177.21 (16)C11—C12—C13—C12i0.27 (16)
O1—Co1—O3—C3152.8 (2)C11—C12—C13—C14ii179.74 (16)
O1i—Co1—O3—C31129.7 (2)C15i—C14—C15—C161.09 (14)
N11—Co1—O3—C3138.4 (2)C13iii—C14—C15—C16178.90 (14)
N12—Co1—O3—C31141.6 (2)C16i—N12—C16—C151.19 (15)
Co1—O1—C1—O213.4 (3)Co1—N12—C16—C15178.81 (15)
Co1—O1—C1—C2164.25 (13)C14—C15—C16—N122.4 (3)
O2—C1—C2—C3107.7 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y1, z; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2i0.70 (3)1.96 (3)2.625 (2)160 (3)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C7H3Cl2O2)2(C10H8N2)(CH4O)2]
Mr659.19
Crystal system, space groupMonoclinic, C2/c
Temperature (K)288
a, b, c (Å)20.8405 (16), 11.4228 (9), 15.0728 (12)
β (°) 127.479 (1)
V3)2847.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.10 × 0.08 × 0.03
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.907, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
7806, 2801, 2178
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.06
No. of reflections2801
No. of parameters184
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.45

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O2i0.70 (3)1.96 (3)2.625 (2)160 (3)
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

Financial support from the Forest Science & Technology Projects (S121011L080120) and the Cooperative Research Program for Agricultural Science & Technology Development (20070301–036-019–02) is gratefully acknowledged.

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHyun, M. Y., Kim, P.-G., Kim, C. & Kim, Y. (2011). Acta Cryst. E67, m390.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKang, J., Yeo, J. K., Kim, P.-G., Kim, C. & Kim, Y. (2011). Acta Cryst. E67, m1511.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, J. H., Kim, C. & Kim, Y. (2011). Acta Cryst. E67, m3–m4.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y. J., Kwak, H., Lee, Y. M., Kim, S. H., Lee, S. H., Park, B. K., Jun, Y. J., Yu, S. M., Kim, C., Kim, S.-J. & Kim, Y. (2009). Polyhedron, 28, 1241–1252.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoumpos, C. C., Gass, I. A., Milios, C. J., Lalioti, N., Terzis, A., Aromi, G., Teat, S. J., Brechin, E. K. & Perlepes, S. P. (2009). Dalton Trans. pp. 307–317.  Web of Science CSD CrossRef Google Scholar
First citationYu, S. M., Koo, K., Kim, P.-G., Kim, C. & Kim, Y. (2010). Acta Cryst. E66, m61–m62.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds