organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3-Oxo-2,3-di­hydro-1,2-benzo­thia­zol-2-yl)acetic acid

aInstitute of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China, bCollege of Materials and Chemical Engineering, Hainan University, Haikou 570228, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571100, People's Republic of China
*Correspondence e-mail: linqianggroup@163.com

(Received 28 October 2011; accepted 9 November 2011; online 12 November 2011)

In the title compound, C9H7NO3S, the benzoisothia­zolone ring system is essentially planar, with a maximum deviation of 0.013 (2) Å. In the crystal, mol­ecules are linked via O—H⋯O hydrogen bonds, forming chains along [010]. In addition, weak inter­molecular C—H⋯O hydrogen bonds are present.

Related literature

For background to the sythesis of benzisothia­zolone derivatives, see: Davis (1972[Davis, M. (1972). Adv. Heterocycl. Chem. 14, 43-98.]); Maggiali et al. (1982[Maggiali, C. A., Mingiardi, M. R., Mangia, M. T. L., Mossini, F. & Branca, C. (1982). Farmaco, 37, 319-327.], 1983[Maggiali, C. A., Mingiardi, M. R. & Branca, C. (1983). Farmaco, 38, 935-939.]), Elgazwy & Abdel-Sattar (2003[Elgazwy, H. & Abdel-Sattar, S. (2003). Tetrahedron, 59, 7445-7463.]). For details of their biological activity, see: Taubert et al. (2002[Taubert, K., Kraus, S. & Schulze, B. (2002). Sulfur Rep. 23, 79-81.]); Mor et al. (1996[Mor, M., Zani, F., Mazza, P., Silva, C., Bordi, F., Morini, G. & Plazzi, P. V. (1996). Farmaco, 51, 493-502.]). For related structures, see: Xu et al. (2006[Xu, F.-L., Lin, Q. & Yin, X.-Q. (2006). Acta Cryst. E62, o496-o497.]), Wang et al. (2011a[Wang, X., Yang, J., You, C. & Lin, Q. (2011a). Acta Cryst. E67, o2237.],b[Wang, X., Yang, J., You, C. & Lin, Q. (2011b). Acta Cryst. E67, o2238.],c[Wang, X., Lin, Q. & Yang, J. (2011c). Acta Cryst. E67, o2477.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7NO3S

  • Mr = 209.22

  • Orthorhombic, P 21 21 21

  • a = 4.7774 (11) Å

  • b = 11.367 (3) Å

  • c = 16.159 (4) Å

  • V = 877.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 153 K

  • 0.29 × 0.22 × 0.20 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.907, Tmax = 0.934

  • 7675 measured reflections

  • 2340 independent reflections

  • 2141 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.068

  • S = 1.00

  • 2340 reflections

  • 131 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 945 Friedel pairs

  • Flack parameter: 0.08 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O1i 0.86 (3) 1.72 (3) 2.581 (2) 173 (3)
C2—H2⋯O2ii 0.95 2.60 3.310 (2) 132
C8—H8A⋯O2iii 0.99 2.34 3.246 (2) 152
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2-(3-Oxobenzo[d]isothiazol-2(3H)-yl)acetic acid is an important intermediate in the synthesis of benzisothiazolone derivatives (Davis, 1972; Maggiali, et al., 1982,1983; Elgazwy & Abdel-Sattar, 2003). The corresponding esters and amides have been reported to possess high antibacterial and antifungal activity (Mor et al., 1996; Taubert et al., 2002). In view of the importance of 1,2-benzisothiazol-3(2H)-ones, the title compound, (I), was synthesized and its crystal structure is presented herein.

The molecular structure of the title compound (I) is shown in Fig. 1. Examples of related structures appear in the literature (Xu, et al., 2006; Wang, et al., 2011a,b,c). In (I) the benzoisothiazolone ring system is essentially planar, with a maximum deviation of 0.013 (2) Å. In the crystal, molecules are linked via O—H···O hydrogen bonds to form one-dimensional chains along [010]. In addition weak intermolecular C—H···O hydrogen bonds are present.

Related literature top

For background to the sythesis of benzisothiazolone derivatives, see: Davis (1972); Maggiali et al. (1982, 1983), Elgazwy & Abdel-Sattar (2003). For details of their biological activity, see: Taubert et al. (2002); Mor et al. (1996). For related structures, see: Xu et al. (2006), Wang et al. (2011a,b,c).

Experimental top

Chloroactic acid (0.95 g, 0.01 mol) was added dropwise to a solution of sodium hydroxide (0.80 g, 0.02 mol) and benzo[d]isothiazol-3(2H)-one (1.50 g, 0.01 mol)in water (20 ml) under stirring on an ice-water bath. The reaction mixture was stirred at room temperature for 4.5 h and adjusted pH to 1~2, to afford the title compound (1.05 g, yield 50.0%). Single crystals suitable for X-ray measurements were obtained by recrystallization of the title compound from the mixed solution of dimethyl formamide and water at room temperature.

Refinement top

Atom H3O was located from the difference Fourier map and was refined freely [O–H = 0.86 (3) Å]. The remaining H atoms bonded to C atoms were fixed geometrically and allowed to ride on their attached atoms, with the carrier atom-H distances = 0.95 Å for aryl, 0.99 for methylene, and Uiso(H) = 1.2Ueq(C).

Structure description top

2-(3-Oxobenzo[d]isothiazol-2(3H)-yl)acetic acid is an important intermediate in the synthesis of benzisothiazolone derivatives (Davis, 1972; Maggiali, et al., 1982,1983; Elgazwy & Abdel-Sattar, 2003). The corresponding esters and amides have been reported to possess high antibacterial and antifungal activity (Mor et al., 1996; Taubert et al., 2002). In view of the importance of 1,2-benzisothiazol-3(2H)-ones, the title compound, (I), was synthesized and its crystal structure is presented herein.

The molecular structure of the title compound (I) is shown in Fig. 1. Examples of related structures appear in the literature (Xu, et al., 2006; Wang, et al., 2011a,b,c). In (I) the benzoisothiazolone ring system is essentially planar, with a maximum deviation of 0.013 (2) Å. In the crystal, molecules are linked via O—H···O hydrogen bonds to form one-dimensional chains along [010]. In addition weak intermolecular C—H···O hydrogen bonds are present.

For background to the sythesis of benzisothiazolone derivatives, see: Davis (1972); Maggiali et al. (1982, 1983), Elgazwy & Abdel-Sattar (2003). For details of their biological activity, see: Taubert et al. (2002); Mor et al. (1996). For related structures, see: Xu et al. (2006), Wang et al. (2011a,b,c).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds drawn as dashed lines.
2-(3-Oxo-2,3-dihydro-1,2-benzothiazol-2-yl)acetic acid top
Crystal data top
C9H7NO3SF(000) = 432
Mr = 209.22Dx = 1.584 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3259 reflections
a = 4.7774 (11) Åθ = 3.1–29.1°
b = 11.367 (3) ŵ = 0.35 mm1
c = 16.159 (4) ÅT = 153 K
V = 877.6 (4) Å3Block, colorless
Z = 40.29 × 0.22 × 0.20 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2340 independent reflections
Radiation source: Rotating Anode2141 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 28.5714 pixels mm-1θmax = 29.1°, θmin = 3.1°
φ and ω scansh = 66
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1515
Tmin = 0.907, Tmax = 0.934l = 2216
7675 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0304P)2 + 0.136P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2340 reflectionsΔρmax = 0.27 e Å3
131 parametersΔρmin = 0.22 e Å3
0 restraintsAbsolute structure: Flack (1983), 945 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (7)
Crystal data top
C9H7NO3SV = 877.6 (4) Å3
Mr = 209.22Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.7774 (11) ŵ = 0.35 mm1
b = 11.367 (3) ÅT = 153 K
c = 16.159 (4) Å0.29 × 0.22 × 0.20 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2340 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2141 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.934Rint = 0.035
7675 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068Δρmax = 0.27 e Å3
S = 1.00Δρmin = 0.22 e Å3
2340 reflectionsAbsolute structure: Flack (1983), 945 Friedel pairs
131 parametersAbsolute structure parameter: 0.08 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.79701 (8)0.63585 (3)0.49404 (2)0.01821 (10)
O10.4484 (3)0.48499 (11)0.67636 (7)0.0275 (3)
O20.4545 (3)0.79003 (11)0.67052 (8)0.0253 (3)
O30.7852 (3)0.79542 (12)0.76921 (7)0.0266 (3)
N10.7188 (3)0.60058 (12)0.59414 (8)0.0196 (3)
C10.5586 (3)0.53095 (14)0.45995 (10)0.0170 (3)
C20.4940 (4)0.50367 (15)0.37799 (10)0.0208 (4)
H20.58500.54220.33330.025*
C30.2934 (4)0.41885 (16)0.36417 (11)0.0251 (4)
H30.24430.39920.30890.030*
C40.1598 (4)0.36082 (17)0.42984 (11)0.0251 (4)
H40.02240.30270.41840.030*
C50.2255 (3)0.38708 (13)0.51040 (11)0.0216 (3)
H50.13570.34750.55480.026*
C60.4278 (4)0.47343 (14)0.52566 (10)0.0176 (3)
C70.5239 (4)0.51590 (14)0.60561 (10)0.0191 (4)
C80.8509 (4)0.65927 (15)0.66335 (10)0.0212 (4)
H8A1.03030.69390.64470.025*
H8B0.89360.60050.70670.025*
C90.6707 (4)0.75520 (14)0.70016 (10)0.0193 (3)
H3O0.695 (5)0.855 (3)0.7888 (16)0.070 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01808 (17)0.01776 (17)0.01879 (19)0.00127 (16)0.00143 (16)0.00022 (16)
O10.0388 (8)0.0262 (7)0.0175 (6)0.0044 (6)0.0032 (5)0.0031 (5)
O20.0208 (6)0.0279 (7)0.0271 (7)0.0030 (6)0.0043 (5)0.0024 (6)
O30.0313 (7)0.0287 (7)0.0198 (6)0.0057 (6)0.0071 (6)0.0065 (5)
N10.0228 (7)0.0204 (7)0.0157 (6)0.0026 (6)0.0014 (6)0.0006 (5)
C10.0147 (8)0.0162 (8)0.0202 (8)0.0017 (7)0.0005 (6)0.0009 (6)
C20.0217 (10)0.0227 (9)0.0179 (8)0.0021 (7)0.0002 (7)0.0004 (7)
C30.0262 (9)0.0293 (9)0.0199 (8)0.0010 (8)0.0050 (8)0.0042 (7)
C40.0220 (9)0.0220 (8)0.0311 (10)0.0046 (8)0.0031 (7)0.0033 (7)
C50.0208 (8)0.0186 (8)0.0253 (9)0.0002 (6)0.0011 (7)0.0026 (6)
C60.0184 (8)0.0153 (7)0.0191 (8)0.0034 (7)0.0006 (6)0.0002 (6)
C70.0217 (9)0.0159 (8)0.0195 (9)0.0003 (7)0.0002 (7)0.0017 (6)
C80.0229 (9)0.0216 (8)0.0190 (8)0.0008 (7)0.0037 (7)0.0034 (6)
C90.0206 (9)0.0201 (8)0.0173 (8)0.0038 (7)0.0001 (7)0.0029 (6)
Geometric parameters (Å, º) top
S1—N11.7079 (15)C2—H20.9500
S1—C11.7385 (17)C3—C41.403 (3)
O1—C71.249 (2)C3—H30.9500
O2—C91.206 (2)C4—C51.372 (2)
O3—C91.324 (2)C4—H40.9500
O3—H3O0.87 (3)C5—C61.399 (2)
N1—C71.352 (2)C5—H50.9500
N1—C81.447 (2)C6—C71.454 (2)
C1—C61.395 (2)C8—C91.511 (2)
C1—C21.395 (2)C8—H8A0.9900
C2—C31.378 (2)C8—H8B0.9900
N1—S1—C189.76 (8)C4—C5—H5120.7
C9—O3—H3O112.0 (17)C6—C5—H5120.7
C7—N1—C8121.51 (14)C1—C6—C5120.26 (15)
C7—N1—S1116.59 (11)C1—C6—C7112.31 (15)
C8—N1—S1121.90 (11)C5—C6—C7127.43 (15)
C6—C1—C2121.30 (15)O1—C7—N1121.64 (15)
C6—C1—S1111.95 (12)O1—C7—C6128.96 (17)
C2—C1—S1126.75 (13)N1—C7—C6109.40 (14)
C3—C2—C1117.61 (15)N1—C8—C9112.86 (14)
C3—C2—H2121.2N1—C8—H8A109.0
C1—C2—H2121.2C9—C8—H8A109.0
C2—C3—C4121.52 (16)N1—C8—H8B109.0
C2—C3—H3119.2C9—C8—H8B109.0
C4—C3—H3119.2H8A—C8—H8B107.8
C5—C4—C3120.75 (17)O2—C9—O3125.12 (17)
C5—C4—H4119.6O2—C9—C8124.66 (16)
C3—C4—H4119.6O3—C9—C8110.22 (15)
C4—C5—C6118.55 (15)
C1—S1—N1—C70.51 (14)C4—C5—C6—C7178.74 (17)
C1—S1—N1—C8179.65 (14)C8—N1—C7—O10.3 (3)
N1—S1—C1—C60.23 (13)S1—N1—C7—O1178.81 (14)
N1—S1—C1—C2179.76 (16)C8—N1—C7—C6179.77 (14)
C6—C1—C2—C30.8 (2)S1—N1—C7—C60.63 (18)
S1—C1—C2—C3178.65 (14)C1—C6—C7—O1178.96 (17)
C1—C2—C3—C40.6 (3)C5—C6—C7—O10.1 (3)
C2—C3—C4—C50.0 (3)C1—C6—C7—N10.4 (2)
C3—C4—C5—C60.3 (3)C5—C6—C7—N1179.27 (15)
C2—C1—C6—C50.5 (2)C7—N1—C8—C980.1 (2)
S1—C1—C6—C5179.01 (12)S1—N1—C8—C999.03 (15)
C2—C1—C6—C7179.49 (15)N1—C8—C9—O28.2 (2)
S1—C1—C6—C70.06 (18)N1—C8—C9—O3172.04 (14)
C4—C5—C6—C10.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O1i0.86 (3)1.72 (3)2.581 (2)173 (3)
C2—H2···O2ii0.952.603.310 (2)132
C8—H8A···O2iii0.992.343.246 (2)152
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1/2, y+3/2, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC9H7NO3S
Mr209.22
Crystal system, space groupOrthorhombic, P212121
Temperature (K)153
a, b, c (Å)4.7774 (11), 11.367 (3), 16.159 (4)
V3)877.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.29 × 0.22 × 0.20
Data collection
DiffractometerRigaku AFC10/Saturn724+
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.907, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
7675, 2340, 2141
Rint0.035
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.068, 1.00
No. of reflections2340
No. of parameters131
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.22
Absolute structureFlack (1983), 945 Friedel pairs
Absolute structure parameter0.08 (7)

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O1i0.86 (3)1.72 (3)2.581 (2)173 (3)
C2—H2···O2ii0.952.603.310 (2)132
C8—H8A···O2iii0.992.343.246 (2)152
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1/2, y+3/2, z+1; (iii) x+1, y, z.
 

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (No.20962007) and the Creative Talents Plan of Hainan University 211 Project.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDavis, M. (1972). Adv. Heterocycl. Chem. 14, 43–98.  CrossRef CAS Google Scholar
First citationElgazwy, H. & Abdel-Sattar, S. (2003). Tetrahedron, 59, 7445–7463.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMaggiali, C. A., Mingiardi, M. R. & Branca, C. (1983). Farmaco, 38, 935–939.  CAS Google Scholar
First citationMaggiali, C. A., Mingiardi, M. R., Mangia, M. T. L., Mossini, F. & Branca, C. (1982). Farmaco, 37, 319–327.  CAS Google Scholar
First citationMor, M., Zani, F., Mazza, P., Silva, C., Bordi, F., Morini, G. & Plazzi, P. V. (1996). Farmaco, 51, 493–502.  CAS PubMed Web of Science Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaubert, K., Kraus, S. & Schulze, B. (2002). Sulfur Rep. 23, 79–81.  CrossRef CAS Google Scholar
First citationWang, X., Lin, Q. & Yang, J. (2011c). Acta Cryst. E67, o2477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, X., Yang, J., You, C. & Lin, Q. (2011a). Acta Cryst. E67, o2237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, X., Yang, J., You, C. & Lin, Q. (2011b). Acta Cryst. E67, o2238.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, F.-L., Lin, Q. & Yin, X.-Q. (2006). Acta Cryst. E62, o496–o497.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds