metal-organic compounds
Poly[tetraaqua(μ8-butane-1,2,3,4-tetracarboxylato)distrontium]
aDepartment of Chemistry, R&D Center for Membrane Technology, Center for Nanotechnology, Chung-Yuan Christian University, Chung-Li 320, Taiwan, and bDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: chiaher@cycu.edu.tw
In the title compound, [Sr2(C8H6O8)(H2O)4)]n, the SrII ion is coordinated by six O atoms of four symmetry-related ligands and two water molecules in a distorted bicapped trigonal–prismatic environment. The butane-1,2,3,4-tetracarboxylate ligands lie on inversion centers and bridge SrII ions, forming a three-dimensional network. Within the three-dimensional structure, there are O—H⋯O hydrogen bonds involving the water molecules and carboxylate O atoms.
Related literature
For general background to coordination polymers, see: Jiang & Xu (2011); Kam et al. (2007); Kitagawa et al. (2004); Liu et al. (2009). For related structures, see: Ma & Yan (2009); Wu (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2010); cell SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S1600536811046265/lh5368sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811046265/lh5368Isup2.hkl
Solvothermal reactions were carriedout at 363 K for 2 d in a Teflon-lined acid digestion bomb with an internal volume of 23 ml followed by slow cooling at 6 K/h to room temperature. A single-phase product consisting of colorless crystals of was obtained from a mixture of butane-1,2,3,4-tetracarboxylatic acid (C8H10O8, 0.0468 g, 0.2 mmol), Sr(NO3)2 (0.0847 g, 0.4 mmol), and ethanol(5.0 ml) and H2O (1.0 ml).
H atoms were constrained to ideal geometries, with C—H = 0.96-0.98 Å, O—H = 0.85-0.88Å and Uiso(H) = 1.2Ueq(C);Uiso(H) = 1.5Ueq(O).
Multicarboxylate ligands, are widely used to construct coordination polymers with interesting properties (Kam, et al., 2007; Liu, et al., 2009, Kitagawa et al., 2004; Jiang & Xu, 2011). The butane-1,2,3,4-tetracarboxylato ligand has already been reported in crystal structures (Ma & Yan, 2009; Wu, 2009). In our continuing investigations on metal coordination polymers we report here the structure of a new Sr coordination polymer based on butane-1,2,3,4-tetracarboxylatic acid.
The
of the title compound consists of one strontium, one half carboxylate ligand and two coordinated water molecules (Fig. 1). The stronium is eight coordinated by six O atoms of four symmetry related ligands and two water molecules. The Sr—O distances range from 2.5491 (18) to 2.688 (2) Å. The ligands bridge the neighboring SrII centers forming a three-dimensional framework structure (Fig. 2). The hydrogen bonds involving the water molecules and the carboxylate O atoms further stabilize the three dimensional structure.For general background to coordination polymers, see: Jiang & Xu (2011); Kam et al. (2007); Kitagawa et al. (2004); Liu et al. (2009). For related structures, see: Ma & Yan (2009); Wu (2009).
Data collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Sr2(C8H6O8)(H2O)4)] | F(000) = 468 |
Mr = 477.44 | Dx = 2.280 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 4783 reflections |
a = 8.7085 (4) Å | θ = 3.0–28.5° |
b = 7.9671 (4) Å | µ = 7.73 mm−1 |
c = 10.0697 (4) Å | T = 296 K |
β = 95.409 (2)° | Tabular, colourless |
V = 695.54 (5) Å3 | 0.25 × 0.15 × 0.13 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 1746 independent reflections |
Radiation source: fine-focus sealed tube | 1443 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.072 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 28.7°, θmin = 3.0° |
φ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Bruker, 2010) | k = −8→10 |
Tmin = 0.248, Tmax = 0.433 | l = −13→13 |
7782 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.061 | H-atom parameters constrained |
S = 0.97 | w = 1/[σ2(Fo2) + (0.0282P)2] where P = (Fo2 + 2Fc2)/3 |
1746 reflections | (Δ/σ)max = 0.001 |
100 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
[Sr2(C8H6O8)(H2O)4)] | V = 695.54 (5) Å3 |
Mr = 477.44 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.7085 (4) Å | µ = 7.73 mm−1 |
b = 7.9671 (4) Å | T = 296 K |
c = 10.0697 (4) Å | 0.25 × 0.15 × 0.13 mm |
β = 95.409 (2)° |
Bruker APEXII CCD diffractometer | 1746 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2010) | 1443 reflections with I > 2σ(I) |
Tmin = 0.248, Tmax = 0.433 | Rint = 0.072 |
7782 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.061 | H-atom parameters constrained |
S = 0.97 | Δρmax = 0.58 e Å−3 |
1746 reflections | Δρmin = −0.46 e Å−3 |
100 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sr1 | 0.22086 (2) | 0.04306 (3) | 0.60530 (2) | 0.01806 (9) | |
O3 | 0.2772 (2) | −0.0137 (3) | 0.36082 (19) | 0.0333 (5) | |
O1W | 0.0092 (2) | 0.0561 (3) | 0.7699 (2) | 0.0285 (5) | |
H1WA | −0.0857 | 0.0434 | 0.7437 | 0.043* | |
H1WB | 0.0108 | 0.1483 | 0.8122 | 0.043* | |
O2W | 0.4040 (2) | 0.2833 (3) | 0.5536 (2) | 0.0405 (6) | |
H2WA | 0.4624 | 0.2227 | 0.5104 | 0.061* | |
H2WB | 0.4420 | 0.3623 | 0.6089 | 0.061* | |
O1 | 0.5067 (2) | −0.3138 (2) | 0.03110 (18) | 0.0249 (4) | |
O2 | 0.69087 (19) | −0.2208 (3) | 0.17764 (18) | 0.0249 (4) | |
O4 | 0.5123 (2) | 0.0870 (3) | 0.34605 (19) | 0.0281 (5) | |
C1 | 0.3872 (3) | 0.0252 (4) | 0.2949 (2) | 0.0194 (5) | |
C2 | 0.3645 (3) | 0.0043 (4) | 0.1447 (2) | 0.0202 (6) | |
H2A | 0.3107 | 0.1013 | 0.1075 | 0.024* | |
H2B | 0.3001 | −0.0920 | 0.1243 | 0.024* | |
C3 | 0.5739 (3) | −0.1966 (4) | 0.0963 (2) | 0.0183 (5) | |
C4 | 0.5134 (3) | −0.0185 (4) | 0.0755 (2) | 0.0174 (5) | |
H4A | 0.5914 | 0.0597 | 0.1156 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sr1 | 0.01577 (12) | 0.01900 (17) | 0.01883 (12) | −0.00105 (10) | −0.00146 (8) | −0.00014 (10) |
O3 | 0.0215 (9) | 0.0593 (17) | 0.0201 (9) | −0.0077 (9) | 0.0072 (8) | −0.0053 (9) |
O1W | 0.0222 (9) | 0.0352 (14) | 0.0281 (10) | 0.0005 (8) | 0.0025 (8) | −0.0077 (9) |
O2W | 0.0443 (12) | 0.0363 (15) | 0.0418 (12) | −0.0080 (11) | 0.0088 (10) | −0.0065 (11) |
O1 | 0.0272 (9) | 0.0188 (12) | 0.0268 (9) | −0.0009 (8) | −0.0074 (8) | −0.0012 (8) |
O2 | 0.0249 (9) | 0.0185 (11) | 0.0295 (10) | 0.0031 (8) | −0.0080 (8) | −0.0007 (8) |
O4 | 0.0196 (9) | 0.0405 (15) | 0.0237 (9) | −0.0016 (8) | −0.0004 (7) | −0.0038 (9) |
C1 | 0.0171 (11) | 0.0219 (16) | 0.0193 (12) | 0.0025 (11) | 0.0027 (9) | 0.0002 (11) |
C2 | 0.0157 (11) | 0.0272 (17) | 0.0177 (11) | −0.0007 (10) | 0.0016 (9) | 0.0003 (11) |
C3 | 0.0181 (11) | 0.0195 (16) | 0.0176 (11) | −0.0007 (10) | 0.0029 (9) | 0.0026 (10) |
C4 | 0.0182 (11) | 0.0195 (16) | 0.0144 (11) | −0.0016 (10) | 0.0016 (9) | −0.0024 (10) |
Sr1—O4i | 2.5491 (18) | O1—Sr1iv | 2.5689 (17) |
Sr1—O1ii | 2.5690 (17) | O1—Sr1v | 2.6666 (18) |
Sr1—O2W | 2.576 (2) | O2—C3 | 1.260 (3) |
Sr1—O1W | 2.5946 (19) | O2—Sr1i | 2.6565 (18) |
Sr1—O3 | 2.5948 (19) | O2—Sr1v | 2.688 (2) |
Sr1—O2i | 2.6565 (18) | O4—C1 | 1.260 (3) |
Sr1—O1iii | 2.6666 (18) | O4—Sr1i | 2.5492 (18) |
Sr1—O2iii | 2.688 (2) | C1—C2 | 1.516 (3) |
Sr1—C3iii | 3.040 (3) | C2—C4 | 1.540 (3) |
Sr1—H2WA | 2.7869 | C2—H2A | 0.9615 |
O3—C1 | 1.254 (3) | C2—H2B | 0.9614 |
O1W—H1WA | 0.8501 | C3—C4 | 1.521 (4) |
O1W—H1WB | 0.8483 | C3—Sr1v | 3.040 (3) |
O2W—H2WA | 0.8499 | C4—C4vi | 1.544 (5) |
O2W—H2WB | 0.8836 | C4—H4A | 0.9800 |
O1—C3 | 1.254 (3) | ||
O4i—Sr1—O1ii | 157.86 (6) | O4i—Sr1—H2WA | 64.6 |
O4i—Sr1—O2W | 76.72 (7) | O1ii—Sr1—H2WA | 99.1 |
O1ii—Sr1—O2W | 91.33 (6) | O2W—Sr1—H2WA | 17.7 |
O4i—Sr1—O1W | 125.67 (6) | O1W—Sr1—H2WA | 143.4 |
O1ii—Sr1—O1W | 76.42 (6) | O3—Sr1—H2WA | 63.1 |
O2W—Sr1—O1W | 126.16 (7) | O2i—Sr1—H2WA | 80.7 |
O4i—Sr1—O3 | 82.01 (6) | O1iii—Sr1—H2WA | 141.8 |
O1ii—Sr1—O3 | 77.02 (6) | O2iii—Sr1—H2WA | 132.8 |
O2W—Sr1—O3 | 76.20 (7) | C3iii—Sr1—H2WA | 141.7 |
O1W—Sr1—O3 | 145.32 (6) | Sr1vii—Sr1—H2WA | 125.9 |
O4i—Sr1—O2i | 82.57 (6) | C1—O3—Sr1 | 132.92 (17) |
O1ii—Sr1—O2i | 110.61 (6) | Sr1—O1W—H1WA | 121.7 |
O2W—Sr1—O2i | 68.51 (6) | Sr1—O1W—H1WB | 112.2 |
O1W—Sr1—O2i | 67.72 (6) | H1WA—O1W—H1WB | 103.2 |
O3—Sr1—O2i | 143.85 (6) | Sr1—O2W—H2WA | 95.3 |
O4i—Sr1—O1iii | 112.11 (6) | Sr1—O2W—H2WB | 127.1 |
O1ii—Sr1—O1iii | 70.75 (7) | H2WA—O2W—H2WB | 121.4 |
O2W—Sr1—O1iii | 151.93 (6) | C3—O1—Sr1iv | 155.35 (16) |
O1W—Sr1—O1iii | 71.71 (6) | C3—O1—Sr1v | 94.78 (14) |
O3—Sr1—O1iii | 78.74 (6) | Sr1iv—O1—Sr1v | 109.25 (7) |
O2i—Sr1—O1iii | 137.41 (6) | C3—O2—Sr1i | 127.36 (17) |
O4i—Sr1—O2iii | 70.72 (6) | C3—O2—Sr1v | 93.61 (16) |
O1ii—Sr1—O2iii | 118.62 (5) | Sr1i—O2—Sr1v | 134.76 (7) |
O2W—Sr1—O2iii | 147.38 (6) | C1—O4—Sr1i | 131.09 (19) |
O1W—Sr1—O2iii | 76.83 (6) | O3—C1—O4 | 123.7 (2) |
O3—Sr1—O2iii | 97.05 (7) | O3—C1—C2 | 117.8 (2) |
O2i—Sr1—O2iii | 108.31 (3) | O4—C1—C2 | 118.5 (2) |
O1iii—Sr1—O2iii | 48.59 (5) | C1—C2—C4 | 115.4 (2) |
O4i—Sr1—C3iii | 90.58 (7) | C1—C2—H2A | 108.3 |
O1ii—Sr1—C3iii | 94.92 (6) | C4—C2—H2A | 108.6 |
O2W—Sr1—C3iii | 159.30 (7) | C1—C2—H2B | 108.6 |
O1W—Sr1—C3iii | 74.52 (6) | C4—C2—H2B | 108.0 |
O3—Sr1—C3iii | 86.00 (7) | H2A—C2—H2B | 107.8 |
O2i—Sr1—C3iii | 126.65 (6) | O1—C3—O2 | 122.4 (2) |
O1iii—Sr1—C3iii | 24.28 (6) | O1—C3—C4 | 118.9 (2) |
O2iii—Sr1—C3iii | 24.44 (6) | O2—C3—C4 | 118.7 (2) |
O4i—Sr1—Sr1vii | 142.42 (5) | O1—C3—Sr1v | 60.94 (13) |
O1ii—Sr1—Sr1vii | 36.13 (4) | O2—C3—Sr1v | 61.95 (14) |
O2W—Sr1—Sr1vii | 124.41 (5) | C4—C3—Sr1v | 172.02 (16) |
O1W—Sr1—Sr1vii | 70.29 (4) | C3—C4—C2 | 110.1 (2) |
O3—Sr1—Sr1vii | 75.10 (4) | C3—C4—C4vi | 109.4 (3) |
O2i—Sr1—Sr1vii | 132.19 (4) | C2—C4—C4vi | 111.5 (2) |
O1iii—Sr1—Sr1vii | 34.62 (4) | C3—C4—H4A | 108.6 |
O2iii—Sr1—Sr1vii | 82.83 (3) | C2—C4—H4A | 108.6 |
C3iii—Sr1—Sr1vii | 58.82 (5) | C4vi—C4—H4A | 108.6 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x−1/2, −y−1/2, z+1/2; (iv) −x+1/2, y−1/2, −z+1/2; (v) x+1/2, −y−1/2, z−1/2; (vi) −x+1, −y, −z; (vii) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O3vii | 0.85 | 1.90 | 2.729 (3) | 164.5 |
O1W—H1WB···O4viii | 0.85 | 2.14 | 2.944 (3) | 159.1 |
O2W—H2WA···O4 | 0.85 | 2.06 | 2.841 (3) | 153.1 |
O2W—H2WB···O1Wix | 0.88 | 1.99 | 2.864 (3) | 170.1 |
Symmetry codes: (vii) −x, −y, −z+1; (viii) x−1/2, −y+1/2, z+1/2; (ix) −x+1/2, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Sr2(C8H6O8)(H2O)4)] |
Mr | 477.44 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 8.7085 (4), 7.9671 (4), 10.0697 (4) |
β (°) | 95.409 (2) |
V (Å3) | 695.54 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 7.73 |
Crystal size (mm) | 0.25 × 0.15 × 0.13 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2010) |
Tmin, Tmax | 0.248, 0.433 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7782, 1746, 1443 |
Rint | 0.072 |
(sin θ/λ)max (Å−1) | 0.676 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.061, 0.97 |
No. of reflections | 1746 |
No. of parameters | 100 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.58, −0.46 |
Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O3i | 0.85 | 1.90 | 2.729 (3) | 164.5 |
O1W—H1WB···O4ii | 0.85 | 2.14 | 2.944 (3) | 159.1 |
O2W—H2WA···O4 | 0.85 | 2.06 | 2.841 (3) | 153.1 |
O2W—H2WB···O1Wiii | 0.88 | 1.99 | 2.864 (3) | 170.1 |
Symmetry codes: (i) −x, −y, −z+1; (ii) x−1/2, −y+1/2, z+1/2; (iii) −x+1/2, y+1/2, −z+3/2. |
Acknowledgements
This research was supported by the National Science Council, Taiwan (NSC99–2113-M-033–005-MY2) and by the Center-of-Excellence (COE) Program on Membrane Technology from the Ministry of Education (MOE).
References
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Jiang, H.-L. & Xu, Q. (2011). Chem. Commun. 47, 3351–3370. Web of Science CrossRef CAS Google Scholar
Kam, K. C., Young, K. L. M. & Cheetham, A. K. (2007). Cryst. Growth Des. 7, 1522–1532. Web of Science CSD CrossRef CAS Google Scholar
Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. Web of Science CrossRef CAS Google Scholar
Liu, H. K., Tsao, T. H., Zhang, Y. T. & Lin, C. H. (2009). CrystEngComm, 11, 1462–1468. Web of Science CSD CrossRef CAS Google Scholar
Ma, C.-H. & Yan, Y.-S. (2009). Acta Cryst. E65, m1555. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, L. (2009). Acta Cryst. E65, m1425. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Multicarboxylate ligands, are widely used to construct coordination polymers with interesting properties (Kam, et al., 2007; Liu, et al., 2009, Kitagawa et al., 2004; Jiang & Xu, 2011). The butane-1,2,3,4-tetracarboxylato ligand has already been reported in crystal structures (Ma & Yan, 2009; Wu, 2009). In our continuing investigations on metal coordination polymers we report here the structure of a new Sr coordination polymer based on butane-1,2,3,4-tetracarboxylatic acid.
The asymmetric unit of the title compound consists of one strontium, one half carboxylate ligand and two coordinated water molecules (Fig. 1). The stronium is eight coordinated by six O atoms of four symmetry related ligands and two water molecules. The Sr—O distances range from 2.5491 (18) to 2.688 (2) Å. The ligands bridge the neighboring SrII centers forming a three-dimensional framework structure (Fig. 2). The hydrogen bonds involving the water molecules and the carboxylate O atoms further stabilize the three dimensional structure.