organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(5,7-Dihy­dr­oxy-2,2-di­methylchroman-6-yl)ethanone

aSchool of Chemistry, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa
*Correspondence e-mail: akermanm@ukzn.ac.za

(Received 2 November 2011; accepted 11 November 2011; online 23 November 2011)

In the title mol­ecule, C13H16O4, the pyran ring is in a half-chair conformation. There is an intra­molecular hydrogen bond involving the ketone O atom and an H atom of a phenol group which forms an S(6) ring. The ketone O atom is also involved in an inter­molecular hydrogen bond with a different phenolic H atom of a symmetry-related mol­ecule, forming C(6) chains along the c-axis direction.

Related literature

For applications of the title compound, see: Kraus et al. (2011[Kraus, G. A., Mengwasser, J. & Maury, W. (2011). Bioorg. Med. Chem. Lett. 21, 1399-1401.]); Basabe et al. (2010[Basabe, P., de Roman, M., Marcos, I. S., Diez, D., Blanco, A., Bodero, O., Mollinedo, F., Sierra, B. G. & Urones, J. G. (2010). Eur. J. Med. Chem. 45, 4258-4269.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a related structure, see: Chakkaravarthi et al. (2007[Chakkaravarthi, G., Anthonysamy, A., Balasubramanian, S. & Manivannan, V. (2007). Acta Cryst. E63, o4725.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16O4

  • Mr = 236.26

  • Tetragonal, P 41 21 2

  • a = 10.5677 (2) Å

  • c = 21.4244 (5) Å

  • V = 2392.6 (1) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.6 × 0.4 × 0.4 mm

Data collection
  • Oxford Diffraction Xcalibur 2 CCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.955, Tmax = 0.962

  • 26011 measured reflections

  • 2366 independent reflections

  • 2046 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.091

  • S = 1.08

  • 2366 reflections

  • 166 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.11 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 931 Friedel pairs

  • Flack parameter: 0.7 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H102⋯O4i 0.97 (2) 1.77 (2) 2.737 (2) 179 (1)
O3—H103⋯O4 0.86 (2) 1.71 (2) 2.501 (2) 151 (2)
Symmetry code: (i) [y+{\script{1\over 2}}, -x+{\script{3\over 2}}, z-{\script{1\over 4}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was synthesized as an intermediate in the preparation of flavonoids or other phenolic derivatives and an intermediate for an anti-HIV chromanone (Kraus et al., 2011). It has also been obtained as a side product in the preparation of prenylated flavonoids with antitumour activity (Basabe et al., 2010). The molecular structure of the title compound is shown in Fig. 1. The pyran ring is in a half-chair conformation. There are two types of hydrogen bonds, one intramolecular and one intermolecular. The intramolecular O3—H103···O4 hydrogen bond forms an S(6) ring motif (Bernstein et al., 1995). This hydrogen bond motif is common to molecules which contain derivatized (2-hydroxyphenyl)ethanone structures (Chakkaravarthi et al., 2007). In addition to the intramolecular hydrogen bonding, there is an intermolecular hydrogen bond between the phenolic group and the ketone O atom of an adjacent molecule. This O2—H102···O4i (see Table 1 for symmetry code) hydrogen bond links the molecules to form infinite one-dimensional C(6) chains parallel to the c axis (base vector [0 0 1]). The same ketone oxygen atom therefore accepts two hydrogen bonds, one intermolecular and one intramolecular. The hydrogen bond lengths and bond angles are summarized in Table 1. Fig.2 depicts both the intermolecular and intramolecular hydrogen bonds. The length of intermolecular hydrogen bond is 0.303 Å shorter than the sum of the van der Waals radii. Although the length of hydrogen bonds does not necessarily correlate linearly with bond strength, due to packing constraints in the lattice, it is probable that this very short bond is moderate to strong. This is especially likely considering that the bond angle very closely approaches ideality.

Related literature top

For applications of the title compound, see: Kraus et al. (2011); Basabe et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure, see: Chakkaravarthi et al. (2007).

Experimental top

To a solution of 6-hydroxy-2,4-dimethoxymethyloxy-3-prenylacetophenone (80 mg, 0.25 mmol) in methanol (20 ml) was added 1.0 M HCl (6 ml). The reaction mixture was refluxed for 1 h before cooling. The solvent was evaporated and the residue purified by column chromatography using hexane:ethyl acetate: 2:1 to afford 1-(5,7-dihydroxy-2,2-dimethylchroman-6-yl)ethanone as yellow crystals (10 mg, 17%): mp 501–502 K;

Refinement top

The positions of all hydrogen atoms bonded to C atoms were calculated using the standard riding model of SHELXL97 (Sheldrick, 2008) with C—H(aromatic) and C—H (methylene) distances of 0.93 Å and Uiso = 1.2 Ueq, and CH(methyl) distances of 0.96 Å and Uiso = 1.5Ueq. The phenolic hydrogen atoms were located in the difference Fourier map and allowed to refine isotropically.

Structure description top

The title compound was synthesized as an intermediate in the preparation of flavonoids or other phenolic derivatives and an intermediate for an anti-HIV chromanone (Kraus et al., 2011). It has also been obtained as a side product in the preparation of prenylated flavonoids with antitumour activity (Basabe et al., 2010). The molecular structure of the title compound is shown in Fig. 1. The pyran ring is in a half-chair conformation. There are two types of hydrogen bonds, one intramolecular and one intermolecular. The intramolecular O3—H103···O4 hydrogen bond forms an S(6) ring motif (Bernstein et al., 1995). This hydrogen bond motif is common to molecules which contain derivatized (2-hydroxyphenyl)ethanone structures (Chakkaravarthi et al., 2007). In addition to the intramolecular hydrogen bonding, there is an intermolecular hydrogen bond between the phenolic group and the ketone O atom of an adjacent molecule. This O2—H102···O4i (see Table 1 for symmetry code) hydrogen bond links the molecules to form infinite one-dimensional C(6) chains parallel to the c axis (base vector [0 0 1]). The same ketone oxygen atom therefore accepts two hydrogen bonds, one intermolecular and one intramolecular. The hydrogen bond lengths and bond angles are summarized in Table 1. Fig.2 depicts both the intermolecular and intramolecular hydrogen bonds. The length of intermolecular hydrogen bond is 0.303 Å shorter than the sum of the van der Waals radii. Although the length of hydrogen bonds does not necessarily correlate linearly with bond strength, due to packing constraints in the lattice, it is probable that this very short bond is moderate to strong. This is especially likely considering that the bond angle very closely approaches ideality.

For applications of the title compound, see: Kraus et al. (2011); Basabe et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure, see: Chakkaravarthi et al. (2007).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids. Hydrogen atoms have been rendered as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of a hydrogen bonded (dashed lines) chain along [001].
1-(5,7-Dihydroxy-2,2-dimethylchroman-6-yl)ethanone top
Crystal data top
C13H16O4Dx = 1.312 Mg m3
Mr = 236.26Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 2366 reflections
Hall symbol: P 4abw 2nwθ = 2.9–26.0°
a = 10.5677 (2) ŵ = 0.10 mm1
c = 21.4244 (5) ÅT = 298 K
V = 2392.6 (1) Å3Needle, colourless
Z = 80.6 × 0.4 × 0.4 mm
F(000) = 1008
Data collection top
Oxford Diffraction Xcalibur 2 CCD
diffractometer
2366 independent reflections
Radiation source: fine-focus sealed tube2046 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 8.4190 pixels mm-1θmax = 26.0°, θmin = 2.9°
ω scans at fixed θ anglesh = 1313
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1313
Tmin = 0.955, Tmax = 0.962l = 2626
26011 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.0612P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.12 e Å3
2366 reflectionsΔρmin = 0.11 e Å3
166 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0094 (18)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 931 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.7 (11)
Crystal data top
C13H16O4Z = 8
Mr = 236.26Mo Kα radiation
Tetragonal, P41212µ = 0.10 mm1
a = 10.5677 (2) ÅT = 298 K
c = 21.4244 (5) Å0.6 × 0.4 × 0.4 mm
V = 2392.6 (1) Å3
Data collection top
Oxford Diffraction Xcalibur 2 CCD
diffractometer
2366 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2046 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.962Rint = 0.047
26011 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091Δρmax = 0.12 e Å3
S = 1.08Δρmin = 0.11 e Å3
2366 reflectionsAbsolute structure: Flack (1983), 931 Friedel pairs
166 parametersAbsolute structure parameter: 0.7 (11)
0 restraints
Special details top

Experimental. 1H NMR (400 MHz, CD3OD) 1.31 (2x 3H, s, C(CH3)2), 1.78 (2H, t, J = 6.7 Hz, CH2), 2.55 (2H, t, J = 6.7 Hz, CH2), 2.62 (3H, s, COCH3), 5.77 (1H, s, ArH); 13C NMR 15.6 (C(CH3)2), 25.6 (2 × CH2), 31.3 (C(CH3)2), 31.8 (COCH3), 75.3 (C(CH3)2, 94.5 (C-5), 99.9 (C-1), 104.2 (C-3), 160.0, 160.9, 163.3 (C-2,4,6), 203.4 (COCH3); ESITOFMS, m/z 259.0945 [M+Na]+ (calc. for C13H16NaO4 259.0946); IR (KBr) υ 2961 2918 2872 1654 1611 1433 1159 cm-1.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H1021.1657 (18)0.6538 (18)0.1786 (9)0.064 (5)*
H1030.794 (2)0.877 (2)0.3250 (10)0.075 (7)*
O10.94129 (10)0.98280 (11)0.09038 (5)0.0540 (3)
O21.11831 (12)0.66838 (11)0.21655 (5)0.0563 (3)
C90.93675 (14)0.92341 (14)0.14598 (6)0.0410 (3)
O30.77624 (12)0.92148 (12)0.29235 (6)0.0619 (3)
C71.03346 (13)0.76254 (13)0.20884 (7)0.0390 (3)
O40.87361 (12)0.75511 (12)0.36008 (5)0.0611 (4)
C81.02635 (13)0.82754 (14)0.15389 (7)0.0403 (3)
H81.08150.80790.12150.048*
C40.85141 (14)0.95417 (14)0.19248 (7)0.0452 (3)
C60.95010 (13)0.79073 (13)0.25928 (6)0.0397 (3)
C120.95429 (15)0.72843 (14)0.31906 (7)0.0468 (4)
C50.86024 (13)0.88832 (13)0.24823 (7)0.0427 (3)
C10.83994 (17)1.07167 (15)0.07346 (8)0.0553 (4)
C20.79788 (18)1.14369 (17)0.12997 (8)0.0657 (5)
H2A0.72821.19880.11860.079*
H2B0.86701.19660.14440.079*
C30.75608 (18)1.05776 (18)0.18283 (9)0.0670 (5)
H3A0.74741.10670.22090.080*
H3B0.67431.02110.17300.080*
C131.0503 (2)0.6319 (2)0.33569 (9)0.0717 (6)
H13A1.03840.60620.37830.108*
H13B1.13340.66710.33080.108*
H13C1.04120.55980.30880.108*
C100.9031 (2)1.15856 (19)0.02626 (9)0.0774 (6)
H10A0.97461.19910.04530.116*
H10B0.84371.22160.01270.116*
H10C0.93071.10980.00900.116*
C110.7364 (2)0.9942 (2)0.04359 (11)0.0801 (6)
H11A0.76870.95370.00680.120*
H11B0.66721.04850.03250.120*
H11C0.70760.93110.07250.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0605 (7)0.0550 (7)0.0466 (6)0.0166 (5)0.0064 (5)0.0060 (5)
O20.0642 (7)0.0578 (7)0.0469 (6)0.0220 (6)0.0037 (5)0.0064 (5)
C90.0420 (8)0.0391 (8)0.0418 (7)0.0004 (6)0.0102 (6)0.0035 (6)
O30.0626 (7)0.0610 (8)0.0621 (8)0.0078 (6)0.0188 (7)0.0060 (6)
C70.0381 (7)0.0363 (7)0.0427 (7)0.0005 (6)0.0055 (6)0.0035 (6)
O40.0725 (8)0.0614 (7)0.0495 (6)0.0088 (6)0.0142 (6)0.0021 (5)
C80.0384 (7)0.0433 (8)0.0393 (7)0.0037 (6)0.0016 (5)0.0030 (6)
C40.0408 (8)0.0400 (8)0.0548 (8)0.0043 (6)0.0045 (7)0.0072 (6)
C60.0425 (8)0.0359 (7)0.0406 (7)0.0070 (6)0.0024 (6)0.0052 (6)
C120.0533 (9)0.0437 (8)0.0433 (8)0.0129 (7)0.0015 (7)0.0023 (7)
C50.0388 (8)0.0403 (7)0.0492 (8)0.0038 (6)0.0028 (6)0.0100 (6)
C10.0624 (10)0.0412 (8)0.0622 (10)0.0110 (7)0.0207 (8)0.0042 (7)
C20.0660 (11)0.0489 (9)0.0822 (12)0.0191 (9)0.0169 (10)0.0018 (9)
C30.0609 (11)0.0643 (11)0.0758 (12)0.0237 (9)0.0025 (9)0.0044 (9)
C130.0795 (13)0.0825 (14)0.0532 (10)0.0105 (10)0.0037 (9)0.0208 (9)
C100.0952 (15)0.0560 (11)0.0811 (13)0.0109 (11)0.0145 (11)0.0178 (10)
C110.0806 (14)0.0621 (11)0.0975 (15)0.0070 (11)0.0408 (12)0.0017 (11)
Geometric parameters (Å, º) top
O1—C91.3471 (18)C1—C21.497 (2)
O1—C11.4699 (18)C1—C111.509 (3)
O2—C71.3496 (17)C1—C101.520 (3)
O2—H1020.97 (2)C2—C31.517 (3)
C9—C41.383 (2)C2—H2A0.9700
C9—C81.397 (2)C2—H2B0.9700
O3—C51.3432 (18)C3—H3A0.9700
O3—H1030.86 (2)C3—H3B0.9700
C7—C81.365 (2)C13—H13A0.9600
C7—C61.426 (2)C13—H13B0.9600
O4—C121.2566 (19)C13—H13C0.9600
C8—H80.9300C10—H10A0.9600
C4—C51.386 (2)C10—H10B0.9600
C4—C31.502 (2)C10—H10C0.9600
C6—C51.422 (2)C11—H11A0.9600
C6—C121.441 (2)C11—H11B0.9600
C12—C131.482 (2)C11—H11C0.9600
C9—O1—C1119.33 (12)C1—C2—C3112.68 (15)
C7—O2—H102111.0 (11)C1—C2—H2A109.1
O1—C9—C4123.42 (14)C3—C2—H2A109.1
O1—C9—C8114.90 (12)C1—C2—H2B109.1
C4—C9—C8121.68 (13)C3—C2—H2B109.1
C5—O3—H103106.8 (14)H2A—C2—H2B107.8
O2—C7—C8120.88 (13)C4—C3—C2110.10 (15)
O2—C7—C6118.15 (13)C4—C3—H3A109.6
C8—C7—C6120.97 (13)C2—C3—H3A109.6
C7—C8—C9120.46 (13)C4—C3—H3B109.6
C7—C8—H8119.8C2—C3—H3B109.6
C9—C8—H8119.8H3A—C3—H3B108.2
C9—C4—C5117.34 (13)C12—C13—H13A109.5
C9—C4—C3120.64 (15)C12—C13—H13B109.5
C5—C4—C3121.99 (14)H13A—C13—H13B109.5
C5—C6—C7115.98 (13)C12—C13—H13C109.5
C5—C6—C12120.00 (13)H13A—C13—H13C109.5
C7—C6—C12124.01 (13)H13B—C13—H13C109.5
O4—C12—C6119.89 (15)C1—C10—H10A109.5
O4—C12—C13116.79 (14)C1—C10—H10B109.5
C6—C12—C13123.32 (14)H10A—C10—H10B109.5
O3—C5—C4115.54 (14)C1—C10—H10C109.5
O3—C5—C6120.90 (14)H10A—C10—H10C109.5
C4—C5—C6123.56 (13)H10B—C10—H10C109.5
O1—C1—C2109.98 (12)C1—C11—H11A109.5
O1—C1—C11106.62 (13)C1—C11—H11B109.5
C2—C1—C11113.80 (18)H11A—C11—H11B109.5
O1—C1—C10103.32 (15)C1—C11—H11C109.5
C2—C1—C10111.17 (15)H11A—C11—H11C109.5
C11—C1—C10111.33 (16)H11B—C11—H11C109.5
C1—O1—C9—C49.6 (2)C9—C4—C5—O3179.59 (12)
C1—O1—C9—C8170.94 (13)C3—C4—C5—O31.4 (2)
O2—C7—C8—C9178.90 (13)C9—C4—C5—C61.1 (2)
C6—C7—C8—C90.0 (2)C3—C4—C5—C6179.29 (14)
O1—C9—C8—C7178.31 (12)C7—C6—C5—O3179.24 (13)
C4—C9—C8—C71.2 (2)C12—C6—C5—O31.8 (2)
O1—C9—C4—C5177.76 (13)C7—C6—C5—C40.0 (2)
C8—C9—C4—C51.7 (2)C12—C6—C5—C4178.93 (13)
O1—C9—C4—C30.5 (2)C9—O1—C1—C236.82 (19)
C8—C9—C4—C3179.93 (15)C9—O1—C1—C1187.00 (18)
O2—C7—C6—C5178.34 (12)C9—O1—C1—C10155.56 (14)
C8—C7—C6—C50.6 (2)O1—C1—C2—C355.9 (2)
O2—C7—C6—C122.7 (2)C11—C1—C2—C363.6 (2)
C8—C7—C6—C12178.32 (13)C10—C1—C2—C3169.70 (14)
C5—C6—C12—O44.3 (2)C9—C4—C3—C219.4 (2)
C7—C6—C12—O4176.84 (14)C5—C4—C3—C2158.76 (15)
C5—C6—C12—C13175.88 (16)C1—C2—C3—C447.0 (2)
C7—C6—C12—C133.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H102···O4i0.97 (2)1.77 (2)2.737 (2)179 (1)
O3—H103···O40.86 (2)1.71 (2)2.501 (2)151 (2)
Symmetry code: (i) y+1/2, x+3/2, z1/4.

Experimental details

Crystal data
Chemical formulaC13H16O4
Mr236.26
Crystal system, space groupTetragonal, P41212
Temperature (K)298
a, c (Å)10.5677 (2), 21.4244 (5)
V3)2392.6 (1)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.6 × 0.4 × 0.4
Data collection
DiffractometerOxford Diffraction Xcalibur 2 CCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.955, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
26011, 2366, 2046
Rint0.047
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.091, 1.08
No. of reflections2366
No. of parameters166
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.11
Absolute structureFlack (1983), 931 Friedel pairs
Absolute structure parameter0.7 (11)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H102···O4i0.97 (2)1.77 (2)2.737 (2)179 (1)
O3—H103···O40.86 (2)1.71 (2)2.501 (2)151 (2)
Symmetry code: (i) y+1/2, x+3/2, z1/4.
 

Acknowledgements

We would like to thank the University of KwaZulu-Natal for their facilities and Kirsty Stewart for the data collection. We also wish to acknowledge the National Research Foundation of South Africa for their financial support.

References

First citationBasabe, P., de Roman, M., Marcos, I. S., Diez, D., Blanco, A., Bodero, O., Mollinedo, F., Sierra, B. G. & Urones, J. G. (2010). Eur. J. Med. Chem. 45, 4258–4269.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChakkaravarthi, G., Anthonysamy, A., Balasubramanian, S. & Manivannan, V. (2007). Acta Cryst. E63, o4725.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKraus, G. A., Mengwasser, J. & Maury, W. (2011). Bioorg. Med. Chem. Lett. 21, 1399–1401.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds