metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[aqua­(μ5-3,4,5,6-tetra­carb­­oxy­cyclo­hexane-1,2-di­carboxyl­ato)strontium] monohydrate]

aDepartment of Chemistry, R&D Center for Membrane Technology, Center for Nanotechnology, Chung-Yuan Christian University, Chung-Li 320, Taiwan, and bDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: chiaher@cycu.edu.tw

(Received 4 November 2011; accepted 26 November 2011; online 30 November 2011)

In the title compound, {[Sr(C12H10O12)(H2O)]·H2O}n, the SrII ion is coordinated by six O atoms of five symmetry-related 3,4,5,6-tetra­carb­oxy­cyclo­hexane-1,2-dicarboxyl­ate ligands and one water mol­ecule in a slightly distorted monocapped trigonal–prismatic environment. The ligands bridge the SrII ions, forming a two-dimensional structure. In the crystal, O—H⋯O hydrogen bonds further connect the structure into a three-dimensional network. The H atoms of two of the carboxyl groups were refined as half-occupancy.

Related literature

For general background to coordination polymers, see: Liu et al. (2009[Liu, H. K., Tsao, T. H., Zhang, Y. T. & Lin, C. H. (2009). CrystEngComm, 11, 1462-1468.]); Liang et al. (2011[Liang, P. C., Liu, H. K., Yeh, C. T., Lin, C. H. & Zima, V. (2011). Cryst. Growth Des. 11, 699-708.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Jiang & Xu (2011[Jiang, H.-L. & Xu, Q. (2011). Chem. Commun. 47, 3351-3370.]). For details of compounds based on cyclo­hexane-1,2,3,4,5,6-hexacarboxylic acid, see: Canadillas-Delgado et al. (2010[Canadillas-Delgado, L., Fabelo, O., Pasán, J., Julve, M., Lloret, F. & Ruiz-Pérez, C. (2010). Polyhedron, 29, 188-195.]). For related structures, see: Che et al. (2006[Che, G.-B., Liu, C.-B., Liu, H. & Liu, B. (2006). Acta Cryst. E62, m480-m482.]); Yu et al. (2007[Yu, M., Liu, S.-X., Xie, L.-H., Cao, R.-G. & Ren, Y.-H. (2007). Acta Cryst. E63, m1889-m1890.]); Chen & Meng (2010[Chen, J.-X. & Meng, W.-W. (2010). Acta Cryst. E66, m16-m17.]).

[Scheme 1]

Experimental

Crystal data
  • [Sr(C12H10O12)(H2O)]·H2O

  • Mr = 469.85

  • Triclinic, [P \overline 1]

  • a = 6.1583 (3) Å

  • b = 9.4491 (3) Å

  • c = 13.6710 (5) Å

  • α = 77.614 (2)°

  • β = 80.746 (2)°

  • γ = 77.041 (2)°

  • V = 751.89 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.67 mm−1

  • T = 296 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.609, Tmax = 0.710

  • 8798 measured reflections

  • 3616 independent reflections

  • 3184 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.065

  • S = 1.04

  • 3616 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O4i 0.82 1.68 2.493 (3) 172
O5—H11⋯O1 0.82 1.79 2.596 (2) 167
O8—H7⋯O12 0.82 1.75 2.549 (2) 163
O9—H9A⋯O9ii 0.82 1.65 2.457 (3) 168.6
O10—H9⋯O1Wiii 0.82 1.72 2.533 (2) 174
O13—H13A⋯O11iv 0.85 1.97 2.820 (2) 175
O13—H13B⋯O2v 0.85 2.22 3.035 (3) 160
O1W—H1WB⋯O7vi 0.85 2.03 2.836 (3) 159
O1W—H1WB⋯O7vi 0.85 2.03 2.836 (3) 159
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+1, -z; (iii) x-1, y+1, z; (iv) x+1, y-1, z; (v) x, y-1, z; (vi) x+1, y, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The synthesis of coordination polymers via multidentate ligands have received considerable attention, owing to their novel structures and special functional properties (Liu et al., 2009; Liang et al., 2011; Kitagawa et al., 2004; Jiang & Xu, 2011). cyclohexane-1,2,3,4,5,6-hexacarboxylate acid is a flexible ligand for constructing new coordination compounds (Canadillas-Delgado et al., 2010). The structure of the title complex formed from the reaction of this acid with SrII ion is reported herein. Some related structures have already appeared in the literature (Che et al., 2006; Yu et al. 2007; Chen et al., 2010).

The asymmetric unit of the title compound is shown in Fig. 1. The SrII ion atom is seven-coordinated by six oxygen atoms of five carboxylate ligands and one oxygen atom of coordinated water molecules. The Sr—O distances from 2.4614 (19) to 2.7043 (17) Å. The SrII ions are connected via the ligands into a extended two-dimensional layer (Fig. 2). There are hydrogen bonding interactions involving the water molecules and some carboxyl O atoms.

Related literature top

For general background to coordination polymers, see: Liu et al. (2009); Liang et al. (2011); Kitagawa et al. (2004); Jiang & Xu (2011). For details of compounds based on cyclohexane-1,2,3,4,5,6-hexacarboxylate acid, see: Canadillas-Delgado et al. (2010). For related structures, see: Che et al. (2006); Yu et al.(2007); Chen & Meng (2010).

Experimental top

Solvothermal reactions were carried out at 363 K for 2 d in a Teflon-lined acid digestion bomb with an internal volume of 23 ml followed by slow cooling at 6 K/h to room temperature. A single-phase product consisting of colorless crystals of was obtained from a mixture of cyclohexane-1,2,3,4,5,6-hexacarboxylate acid (C12H12O12, 0.0348 g, 0.1 mmol), Sr(NO3)2 (0.0635 g, 0.3 mmol), and ethanol (5.0 ml) and H2O (1.0 ml).

Refinement top

H atoms were constrained to ideal geometries, with C—H = 0.98 Å, O—H = 0.82–0.85 Å and Uiso(H) = 1.2Ueq(C);Uiso(H) = 1.5Ueq(O). The the H atoms of the carboxylic acid groups groups containing O4 and O9 were refined as half occupancy. This is determined by the inversion symmetry realtionship which which cause unrealistic short H···H distances for full occupancy H atoms. The carboxylic acid H atom positions were included on the basis of sensible hydrogen bonds, the longer C-O distance in the group and the non-coordination to Sr.

Structure description top

The synthesis of coordination polymers via multidentate ligands have received considerable attention, owing to their novel structures and special functional properties (Liu et al., 2009; Liang et al., 2011; Kitagawa et al., 2004; Jiang & Xu, 2011). cyclohexane-1,2,3,4,5,6-hexacarboxylate acid is a flexible ligand for constructing new coordination compounds (Canadillas-Delgado et al., 2010). The structure of the title complex formed from the reaction of this acid with SrII ion is reported herein. Some related structures have already appeared in the literature (Che et al., 2006; Yu et al. 2007; Chen et al., 2010).

The asymmetric unit of the title compound is shown in Fig. 1. The SrII ion atom is seven-coordinated by six oxygen atoms of five carboxylate ligands and one oxygen atom of coordinated water molecules. The Sr—O distances from 2.4614 (19) to 2.7043 (17) Å. The SrII ions are connected via the ligands into a extended two-dimensional layer (Fig. 2). There are hydrogen bonding interactions involving the water molecules and some carboxyl O atoms.

For general background to coordination polymers, see: Liu et al. (2009); Liang et al. (2011); Kitagawa et al. (2004); Jiang & Xu (2011). For details of compounds based on cyclohexane-1,2,3,4,5,6-hexacarboxylate acid, see: Canadillas-Delgado et al. (2010). For related structures, see: Che et al. (2006); Yu et al.(2007); Chen & Meng (2010).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing 50% probability displacement ellipsoids. [symmetry codes: (i) -x + 2, -y + 1, -z + 1;(ii) x + 1, y - 1, z; (iii) -x + 1, -y + 1, -z + 1; (iv) x + 1, y, z].
[Figure 2] Fig. 2. The layer structure of the title compound viewed along the b axis.
Poly[[aqua(µ5-3,4,5,6-tetracarboxycyclohexane-1,2- dicarboxylato)strontium] monohydrate] top
Crystal data top
[Sr(C12H10O12)(H2O)]·H2OZ = 2
Mr = 469.85F(000) = 472
Triclinic, P1Dx = 2.075 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.1583 (3) ÅCell parameters from 5438 reflections
b = 9.4491 (3) Åθ = 2.5–28.4°
c = 13.6710 (5) ŵ = 3.67 mm1
α = 77.614 (2)°T = 296 K
β = 80.746 (2)°Columnar, colourless
γ = 77.041 (2)°0.15 × 0.12 × 0.10 mm
V = 751.89 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3616 independent reflections
Radiation source: fine-focus sealed tube3184 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.3333 pixels mm-1θmax = 28.4°, θmin = 1.5°
φ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
k = 1212
Tmin = 0.609, Tmax = 0.710l = 1818
8798 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0333P)2 + 0.1009P]
where P = (Fo2 + 2Fc2)/3
3616 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Sr(C12H10O12)(H2O)]·H2Oγ = 77.041 (2)°
Mr = 469.85V = 751.89 (5) Å3
Triclinic, P1Z = 2
a = 6.1583 (3) ÅMo Kα radiation
b = 9.4491 (3) ŵ = 3.67 mm1
c = 13.6710 (5) ÅT = 296 K
α = 77.614 (2)°0.15 × 0.12 × 0.10 mm
β = 80.746 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3616 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
3184 reflections with I > 2σ(I)
Tmin = 0.609, Tmax = 0.710Rint = 0.027
8798 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.04Δρmax = 0.45 e Å3
3616 reflectionsΔρmin = 0.55 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sr11.02988 (3)0.31958 (2)0.409253 (15)0.01534 (7)
O10.7024 (3)0.53526 (16)0.41114 (12)0.0235 (4)
O20.3026 (3)1.24350 (16)0.26117 (12)0.0216 (4)
O30.1971 (3)0.78708 (16)0.43110 (12)0.0226 (4)
O40.1356 (3)1.02924 (16)0.42401 (12)0.0221 (4)
H4A0.05591.01010.47720.033*0.50
O50.3286 (3)0.50144 (16)0.36308 (12)0.0246 (4)
H110.44810.49830.38330.037*
O60.7105 (3)0.74239 (18)0.46176 (13)0.0294 (4)
O70.1292 (3)0.63238 (18)0.24436 (13)0.0276 (4)
O80.0422 (3)0.90185 (17)0.09955 (12)0.0233 (4)
H70.05020.86450.05740.035*
O90.5394 (3)0.56570 (17)0.06154 (13)0.0264 (4)
H9A0.52480.52750.01510.025*0.50
O100.1959 (3)1.22482 (17)0.11758 (13)0.0273 (4)
H90.12821.30950.12000.041*
O110.0412 (3)0.98476 (18)0.23773 (13)0.0250 (4)
O120.2765 (3)0.7502 (2)0.00060 (14)0.0360 (5)
O130.7610 (3)0.2429 (2)0.31616 (18)0.0494 (6)
H13A0.81480.16260.29480.074*
H13B0.62530.26560.30390.074*
C10.2938 (4)1.1700 (2)0.19893 (16)0.0150 (4)
C20.4656 (4)0.7781 (2)0.13407 (15)0.0130 (4)
H20.61440.79970.10720.016*
C30.2404 (4)0.9094 (2)0.39319 (15)0.0142 (4)
C40.5861 (4)0.7676 (2)0.30273 (15)0.0125 (4)
H50.72440.79070.26210.015*
C50.4433 (3)0.9213 (2)0.31267 (15)0.0121 (4)
H10.53840.97160.33870.015*
C60.4077 (3)1.0093 (2)0.20485 (15)0.0125 (4)
H60.56041.01400.17220.015*
C70.3150 (4)0.9317 (2)0.13770 (15)0.0132 (4)
H40.33480.98920.06930.016*
C80.0628 (4)0.9391 (2)0.16407 (16)0.0164 (4)
C90.4994 (4)0.6810 (2)0.23850 (15)0.0137 (4)
H30.62450.59980.22600.016*
C100.3007 (4)0.6079 (2)0.28292 (16)0.0173 (5)
C110.6685 (4)0.6760 (2)0.40099 (16)0.0162 (4)
C120.4151 (4)0.6951 (2)0.05943 (17)0.0198 (5)
O1W0.9816 (4)0.4880 (2)0.11301 (19)0.0547 (6)
H1WA0.85830.49740.08970.082*
H1WB1.02080.55030.13980.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.01520 (12)0.01490 (10)0.01647 (11)0.00211 (7)0.00322 (7)0.00400 (7)
O10.0279 (10)0.0149 (7)0.0235 (9)0.0039 (6)0.0068 (7)0.0004 (6)
O20.0268 (10)0.0165 (7)0.0224 (8)0.0022 (6)0.0029 (7)0.0078 (6)
O30.0235 (9)0.0176 (7)0.0239 (8)0.0062 (7)0.0073 (7)0.0030 (6)
O40.0257 (10)0.0160 (7)0.0210 (8)0.0014 (6)0.0082 (7)0.0066 (6)
O50.0317 (10)0.0218 (8)0.0235 (9)0.0150 (7)0.0070 (7)0.0020 (6)
O60.0419 (12)0.0280 (9)0.0238 (9)0.0112 (8)0.0203 (8)0.0004 (7)
O70.0199 (10)0.0337 (9)0.0324 (10)0.0093 (7)0.0059 (8)0.0067 (7)
O80.0179 (9)0.0312 (9)0.0231 (9)0.0029 (7)0.0061 (7)0.0090 (7)
O90.0321 (11)0.0214 (8)0.0297 (9)0.0048 (7)0.0133 (7)0.0164 (7)
O100.0382 (11)0.0152 (7)0.0274 (9)0.0043 (7)0.0144 (8)0.0039 (7)
O110.0172 (9)0.0312 (9)0.0285 (9)0.0048 (7)0.0031 (7)0.0138 (7)
O120.0388 (12)0.0400 (10)0.0320 (10)0.0139 (9)0.0240 (9)0.0210 (8)
O130.0267 (12)0.0530 (13)0.0824 (17)0.0043 (9)0.0197 (11)0.0454 (12)
C10.0118 (11)0.0153 (9)0.0168 (10)0.0035 (8)0.0013 (8)0.0018 (8)
C20.0145 (11)0.0127 (9)0.0115 (9)0.0004 (8)0.0019 (8)0.0035 (7)
C30.0125 (11)0.0169 (9)0.0131 (10)0.0012 (8)0.0024 (8)0.0035 (8)
C40.0124 (11)0.0117 (9)0.0137 (10)0.0016 (8)0.0025 (8)0.0030 (7)
C50.0103 (11)0.0122 (9)0.0146 (10)0.0022 (7)0.0020 (8)0.0037 (7)
C60.0102 (11)0.0134 (9)0.0130 (10)0.0015 (8)0.0005 (8)0.0020 (7)
C70.0151 (12)0.0132 (9)0.0116 (9)0.0030 (8)0.0017 (8)0.0025 (7)
C80.0166 (12)0.0137 (9)0.0178 (11)0.0010 (8)0.0041 (9)0.0012 (8)
C90.0133 (11)0.0141 (9)0.0136 (10)0.0018 (8)0.0000 (8)0.0046 (7)
C100.0228 (13)0.0142 (9)0.0169 (11)0.0058 (9)0.0012 (9)0.0056 (8)
C110.0115 (11)0.0194 (10)0.0167 (10)0.0016 (8)0.0036 (8)0.0012 (8)
C120.0210 (13)0.0241 (11)0.0161 (11)0.0028 (9)0.0019 (9)0.0098 (9)
O1W0.0434 (14)0.0313 (11)0.0981 (19)0.0114 (9)0.0392 (13)0.0280 (11)
Geometric parameters (Å, º) top
Sr1—O6i2.4601 (17)O10—H90.8200
Sr1—O12.5267 (15)O11—C81.210 (3)
Sr1—O2ii2.5348 (15)O12—C121.231 (3)
Sr1—O3iii2.5378 (14)O13—H13A0.8499
Sr1—O132.549 (2)O13—H13B0.8497
Sr1—O4ii2.6448 (14)C1—C61.513 (3)
Sr1—O5iv2.7043 (15)C2—C121.519 (3)
O1—C111.280 (2)C2—C91.540 (3)
O2—C11.223 (3)C2—C71.543 (3)
O2—Sr1v2.5348 (15)C2—H20.9800
O3—C31.229 (2)C3—C51.534 (3)
O3—Sr1iii2.5378 (14)C4—C111.528 (3)
O4—C31.291 (2)C4—C51.541 (3)
O4—Sr1v2.6448 (14)C4—C91.543 (3)
O4—H4A0.8194C4—H50.9800
O5—C101.324 (3)C5—C61.552 (3)
O5—Sr1vi2.7043 (15)C5—H10.9800
O5—H110.8197C6—C71.534 (3)
O6—C111.231 (3)C6—H60.9800
O6—Sr1i2.4600 (17)C7—C81.526 (3)
O7—C101.210 (3)C7—H40.9800
O8—C81.319 (3)C9—C101.518 (3)
O8—H70.8199C9—H30.9800
O9—C121.286 (3)O1W—H1WA0.8494
O9—H9A0.8204O1W—H1WB0.8507
O10—C11.303 (3)
O6i—Sr1—O1120.71 (6)C12—C2—H2104.0
O6i—Sr1—O2ii99.27 (6)C9—C2—H2104.0
O1—Sr1—O2ii129.08 (5)C7—C2—H2104.0
O6i—Sr1—O3iii75.76 (6)O3—C3—O4123.21 (19)
O1—Sr1—O3iii82.17 (5)O3—C3—C5119.48 (18)
O2ii—Sr1—O3iii141.73 (5)O4—C3—C5117.00 (17)
O6i—Sr1—O13149.80 (7)C11—C4—C5114.33 (16)
O1—Sr1—O1378.85 (6)C11—C4—C9114.86 (16)
O2ii—Sr1—O1380.94 (6)C5—C4—C9115.82 (18)
O3iii—Sr1—O1385.48 (7)C11—C4—H5103.1
O6i—Sr1—O4ii80.20 (5)C5—C4—H5103.1
O1—Sr1—O4ii143.19 (5)C9—C4—H5103.1
O2ii—Sr1—O4ii67.90 (5)C3—C5—C4111.23 (15)
O3iii—Sr1—O4ii73.88 (5)C3—C5—C6119.73 (18)
O13—Sr1—O4ii71.87 (6)C4—C5—C6107.85 (15)
O6i—Sr1—O5iv69.92 (5)C3—C5—H1105.7
O1—Sr1—O5iv91.80 (5)C4—C5—H1105.7
O2ii—Sr1—O5iv72.48 (5)C6—C5—H1105.7
O3iii—Sr1—O5iv135.64 (5)C1—C6—C7112.61 (18)
O13—Sr1—O5iv136.54 (7)C1—C6—C5115.32 (16)
O4ii—Sr1—O5iv124.84 (5)C7—C6—C5115.75 (16)
O6i—Sr1—Sr1i65.88 (4)C1—C6—H6103.7
O1—Sr1—Sr1i56.51 (4)C7—C6—H6103.7
O2ii—Sr1—Sr1i132.72 (4)C5—C6—H6103.7
O3iii—Sr1—Sr1i80.63 (3)C8—C7—C6111.99 (16)
O13—Sr1—Sr1i134.51 (4)C8—C7—C2117.48 (16)
O4ii—Sr1—Sr1i141.65 (4)C6—C7—C2109.12 (18)
O5iv—Sr1—Sr1i60.24 (3)C8—C7—H4105.8
C11—O1—Sr1138.52 (15)C6—C7—H4105.8
C1—O2—Sr1v132.64 (14)C2—C7—H4105.8
C3—O3—Sr1iii135.56 (13)O11—C8—O8120.5 (2)
C3—O4—Sr1v153.52 (13)O11—C8—C7122.3 (2)
C3—O4—H4A110.5O8—C8—C7117.08 (18)
Sr1v—O4—H4A95.9C10—C9—C2111.94 (19)
C10—O5—Sr1vi116.67 (14)C10—C9—C4119.05 (16)
C10—O5—H11109.5C2—C9—C4108.95 (16)
Sr1vi—O5—H11133.1C10—C9—H3105.2
C11—O6—Sr1i134.49 (15)C2—C9—H3105.2
C8—O8—H7109.5C4—C9—H3105.2
C12—O9—H9A112.4O7—C10—O5119.0 (2)
C1—O10—H9109.5O7—C10—C9123.8 (2)
Sr1—O13—H13A113.5O5—C10—C9116.8 (2)
Sr1—O13—H13B140.9O6—C11—O1124.7 (2)
H13A—O13—H13B105.1O6—C11—C4117.76 (18)
O2—C1—O10123.08 (19)O1—C11—C4117.38 (18)
O2—C1—C6123.6 (2)O12—C12—O9123.6 (2)
O10—C1—C6113.16 (18)O12—C12—C2122.80 (19)
C12—C2—C9113.13 (16)O9—C12—C2113.5 (2)
C12—C2—C7115.66 (19)H1WA—O1W—H1WB126.9
C9—C2—C7114.16 (16)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x1, y+1, z; (vi) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O4vii0.821.682.493 (3)172
O5—H11···O10.821.792.596 (2)167
O8—H7···O120.821.752.549 (2)163
O9—H9A···O9viii0.821.652.457 (3)168.6
O10—H9···O1Wv0.821.722.533 (2)174
O13—H13A···O11ii0.851.972.820 (2)175
O13—H13B···O2ix0.852.223.035 (3)160
O1W—H1WB···O7iv0.852.032.836 (3)159
O1W—H1WB···O7iv0.852.032.836 (3)159
Symmetry codes: (ii) x+1, y1, z; (iv) x+1, y, z; (v) x1, y+1, z; (vii) x, y+2, z+1; (viii) x+1, y+1, z; (ix) x, y1, z.

Experimental details

Crystal data
Chemical formula[Sr(C12H10O12)(H2O)]·H2O
Mr469.85
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.1583 (3), 9.4491 (3), 13.6710 (5)
α, β, γ (°)77.614 (2), 80.746 (2), 77.041 (2)
V3)751.89 (5)
Z2
Radiation typeMo Kα
µ (mm1)3.67
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2010)
Tmin, Tmax0.609, 0.710
No. of measured, independent and
observed [I > 2σ(I)] reflections
8798, 3616, 3184
Rint0.027
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.065, 1.04
No. of reflections3616
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.55

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O4i0.821.682.493 (3)171.8
O5—H11···O10.821.792.596 (2)166.5
O8—H7···O120.821.752.549 (2)163.0
O9—H9A···O9ii0.821.652.457 (3)168.6
O10—H9···O1Wiii0.821.722.533 (2)174.3
O13—H13A···O11iv0.851.972.820 (2)175.2
O13—H13B···O2v0.852.223.035 (3)159.6
O1W—H1WB···O7vi0.852.032.836 (3)158.9
O1W—H1WB···O7vi0.852.032.836 (3)158.9
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z; (iii) x1, y+1, z; (iv) x+1, y1, z; (v) x, y1, z; (vi) x+1, y, z.
 

Acknowledgements

This research was supported by the National Science Council, Taiwan (NSC99–2113-M-033–005-MY2) and the Center-of-Excellence (COE) Program on Membrane Technology from the Ministry of Education (MOE).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCanadillas-Delgado, L., Fabelo, O., Pasán, J., Julve, M., Lloret, F. & Ruiz-Pérez, C. (2010). Polyhedron, 29, 188–195.  CAS Google Scholar
First citationChe, G.-B., Liu, C.-B., Liu, H. & Liu, B. (2006). Acta Cryst. E62, m480–m482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, J.-X. & Meng, W.-W. (2010). Acta Cryst. E66, m16–m17.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJiang, H.-L. & Xu, Q. (2011). Chem. Commun. 47, 3351–3370.  Web of Science CrossRef CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLiang, P. C., Liu, H. K., Yeh, C. T., Lin, C. H. & Zima, V. (2011). Cryst. Growth Des. 11, 699–708.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, H. K., Tsao, T. H., Zhang, Y. T. & Lin, C. H. (2009). CrystEngComm, 11, 1462–1468.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, M., Liu, S.-X., Xie, L.-H., Cao, R.-G. & Ren, Y.-H. (2007). Acta Cryst. E63, m1889–m1890.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds