organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Morpholinium hydrogen chloranilate methanol monosolvate

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

(Received 8 November 2011; accepted 11 November 2011; online 16 November 2011)

In the crystal structure of the title compound, C4H10NO+·C6HCl2O4·CH4O, the components are held together by bifurcated O—H⋯(O,O), O—H⋯(O,Cl) and N—H⋯(O,O) hydrogen bonds into a centrosymmetric 2+2+2 aggregate. The aggregates are further connected by another bifurcated N—H⋯(O, O) hydrogen bond, forming a double-tape structure along the b axis. A weak C—H⋯O inter­action is observed between the tapes.

Related literature

For a related structure, see: Ishida & Kashino (1999[Ishida, H. & Kashino, S. (1999). Acta Cryst. C55, 1923-1926.]). For 35Cl nuclear quadrupole resonance studies on proton-transfer in chloranilic acid–organic base systems, see: Ikeda et al. (2005[Ikeda, R., Takahashi, S., Nihei, T., Ishihara, H. & Ishida, H. (2005). Bull. Chem. Soc. Jpn, 78, 1241-1245.]); Asaji, Hoshino et al. (2010[Asaji, T., Hoshino, M., Ishida, H., Konnai, A., Shinoda, Y., Seliger, J. & Žagar, V. (2010). Hyperfine Interact. 198, 85-91.]); Asaji, Seliger et al. (2010[Asaji, T., Seliger, J., Žagar, V. & Ishida, H. (2010). Magn. Reson. Chem. 48, 531-536.]).

[Scheme 1]

Experimental

Crystal data
  • C4H10NO+·C6HCl2O4·CH4O

  • Mr = 328.15

  • Triclinic, [P \overline 1]

  • a = 9.11845 (17) Å

  • b = 9.39881 (17) Å

  • c = 9.96935 (18) Å

  • α = 107.8089 (7)°

  • β = 107.5510 (7)°

  • γ = 110.2398 (7)°

  • V = 679.25 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 170 K

  • 0.45 × 0.41 × 0.30 mm

Data collection
  • Rigaku R-AXIS RAPID II diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.817, Tmax = 0.860

  • 17817 measured reflections

  • 3928 independent reflections

  • 3636 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.077

  • S = 1.08

  • 3928 reflections

  • 197 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.878 (18) 2.391 (18) 3.0069 (12) 127.5 (16)
N1—H1A⋯O3i 0.878 (18) 2.180 (19) 2.9255 (13) 142.5 (16)
N1—H1B⋯O1ii 0.852 (19) 2.170 (19) 2.9207 (14) 146.9 (17)
N1—H1B⋯O4ii 0.852 (19) 2.233 (19) 2.9277 (14) 138.7 (16)
O2—H2⋯O3 0.82 (2) 2.26 (2) 2.6605 (12) 110.6 (16)
O2—H2⋯O6 0.82 (2) 1.79 (2) 2.5564 (13) 153.4 (19)
O6—H6⋯Cl2i 0.742 (19) 2.761 (19) 3.3342 (9) 136.0 (18)
O6—H6⋯O3i 0.742 (19) 2.119 (19) 2.7812 (12) 149 (2)
C8—H8A⋯O2iii 0.99 2.51 3.4115 (15) 152
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) -x+2, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound was accidentally obtained in the preparation of morpholinium hydrogen chloranilate (Ishida & Kashino, 1999), C4H10NO+.C6HCl2O4-, which is an interesting model compound for investigating proton transfer in the hydrogen bond systems (Ikeda et al., 2005; Asaji, Hoshino et al., 2010; Asaji, Seliger et al., 2010).

In the title compound, the three components (Fig. 1) are held together by bifurcated O—H···(O, O), O—H···(O, Cl) and N—H···(O, O) hydrogen bonds [O2—H2···(O3, O6), O6—H6···(O3i, Cl2i) and N1—H1A···(O3, O3i); symmetry code in Table 1] into a centrosymmetric 2 + 2+2 aggregate (Fig. 2). The aggregates are connected by another N—H···(O, O) hydrogen bond between the cation and the anion [N1—H1B···(O1ii, O4ii), symmetry code in Table 1], forming a double-tape structure along the b axis (Fig. 3). The tapes are further linked a weak C—H···O interaction, forming a three-dimensional network.

Related literature top

For a related structure, see: Ishida & Kashino (1999). For 35Cl nuclear quadrupole resonance studies on proton-transfer in chloranilic acid–organic base systems, see: Ikeda et al. (2005); Asaji, Hoshino et al. (2010); Asaji, Seliger et al. (2010).

Experimental top

Single crystals were obtained by slow evaporation from a methanol solution (50 ml) of chloranilic acid (0.102 g) and morpholine (0.044 g) at room temperature.

Refinement top

C-bound H atoms were positioned geometrically (C—H = 0.98 or 0.99 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The O– and N-bound H atoms were found in a difference Fourier map and refined freely. The refined distances are O—H = 0.82 (2) and 0.742 (19) Å, and N—H = 0.852 (19) and 0.878 (18) Å.

Structure description top

The title compound was accidentally obtained in the preparation of morpholinium hydrogen chloranilate (Ishida & Kashino, 1999), C4H10NO+.C6HCl2O4-, which is an interesting model compound for investigating proton transfer in the hydrogen bond systems (Ikeda et al., 2005; Asaji, Hoshino et al., 2010; Asaji, Seliger et al., 2010).

In the title compound, the three components (Fig. 1) are held together by bifurcated O—H···(O, O), O—H···(O, Cl) and N—H···(O, O) hydrogen bonds [O2—H2···(O3, O6), O6—H6···(O3i, Cl2i) and N1—H1A···(O3, O3i); symmetry code in Table 1] into a centrosymmetric 2 + 2+2 aggregate (Fig. 2). The aggregates are connected by another N—H···(O, O) hydrogen bond between the cation and the anion [N1—H1B···(O1ii, O4ii), symmetry code in Table 1], forming a double-tape structure along the b axis (Fig. 3). The tapes are further linked a weak C—H···O interaction, forming a three-dimensional network.

For a related structure, see: Ishida & Kashino (1999). For 35Cl nuclear quadrupole resonance studies on proton-transfer in chloranilic acid–organic base systems, see: Ikeda et al. (2005); Asaji, Hoshino et al. (2010); Asaji, Seliger et al. (2010).

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. The dashed lines indicate the O—H···O and N—H···O hydrogen bonds.
[Figure 2] Fig. 2. A view of the centrosymmetric 2 + 2+2 aggregate of the title compound. The O—H···(O, O), O—H···(O, Cl) and N—H···(O, O) hydrogen bonds are indicated by dashed lines. H atoms not involved in the hydrogen bonds have been omitted. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]
[Figure 3] Fig. 3. A partial packing view of the title compound, showing the double-tape structure. H atoms not involved in the hydrogen bonds have been omitted. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) x, y + 1, z.]
Morpholin-1-ium 2,5-dichloro-4-hydroxy-3,6-dioxocyclohexa-1,4-dien-1-olate methanol monosolvate top
Crystal data top
C4H10NO+·C6HCl2O4·CH4OZ = 2
Mr = 328.15F(000) = 340.00
Triclinic, P1Dx = 1.604 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 9.11845 (17) ÅCell parameters from 16546 reflections
b = 9.39881 (17) Åθ = 3.6–30.1°
c = 9.96935 (18) ŵ = 0.50 mm1
α = 107.8089 (7)°T = 170 K
β = 107.5510 (7)°Block, brown
γ = 110.2398 (7)°0.45 × 0.41 × 0.30 mm
V = 679.25 (2) Å3
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
3636 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.025
ω scansθmax = 30.0°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1212
Tmin = 0.817, Tmax = 0.860k = 1313
17817 measured reflectionsl = 1414
3928 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.1482P]
where P = (Fo2 + 2Fc2)/3
3928 reflections(Δ/σ)max = 0.001
197 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C4H10NO+·C6HCl2O4·CH4Oγ = 110.2398 (7)°
Mr = 328.15V = 679.25 (2) Å3
Triclinic, P1Z = 2
a = 9.11845 (17) ÅMo Kα radiation
b = 9.39881 (17) ŵ = 0.50 mm1
c = 9.96935 (18) ÅT = 170 K
α = 107.8089 (7)°0.45 × 0.41 × 0.30 mm
β = 107.5510 (7)°
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
3928 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3636 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 0.860Rint = 0.025
17817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.51 e Å3
3928 reflectionsΔρmin = 0.28 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.01275 (3)0.30381 (3)0.86968 (3)0.02809 (7)
Cl20.20309 (3)0.06793 (3)0.53010 (3)0.02191 (7)
O10.71379 (10)0.00021 (10)0.82390 (9)0.02629 (15)
O20.84595 (9)0.45763 (9)0.70404 (9)0.02291 (14)
O30.50528 (8)0.35907 (8)0.55923 (8)0.01801 (13)
O40.37147 (9)0.10742 (9)0.67309 (9)0.02464 (15)
O50.58600 (10)0.31839 (10)0.00604 (8)0.02641 (15)
O60.80802 (9)0.70163 (9)0.66544 (10)0.02655 (16)
N10.52494 (12)0.35047 (11)0.26136 (10)0.02167 (16)
C10.67022 (12)0.08381 (11)0.76387 (10)0.01785 (16)
C20.79228 (11)0.23463 (11)0.77003 (11)0.01801 (16)
C30.73479 (11)0.32094 (10)0.70050 (10)0.01635 (15)
C40.54246 (11)0.26734 (10)0.61815 (9)0.01450 (15)
C50.42266 (11)0.12427 (11)0.61394 (10)0.01582 (15)
C60.47242 (11)0.02420 (11)0.67825 (10)0.01687 (16)
C70.70652 (13)0.42900 (12)0.27855 (11)0.02421 (18)
H7A0.78870.43000.37060.029*
H7B0.74510.54820.29620.029*
C80.70673 (13)0.32531 (13)0.12851 (12)0.02324 (18)
H8A0.82630.37740.13760.028*
H8B0.67450.20810.11500.028*
C90.41236 (13)0.23401 (14)0.02607 (12)0.0271 (2)
H9A0.38300.11730.03910.033*
H9B0.32850.22420.12310.033*
C100.39445 (13)0.33079 (14)0.11517 (12)0.02451 (19)
H10A0.41490.44450.12400.029*
H10B0.27420.26780.10120.029*
C110.98148 (13)0.84290 (14)0.75821 (14)0.0311 (2)
H11A1.04340.83240.85080.047*
H11B0.97540.94930.79330.047*
H11C1.04480.84410.69430.047*
H1A0.520 (2)0.414 (2)0.3435 (19)0.036 (4)*
H1B0.4968 (19)0.252 (2)0.2566 (17)0.032 (4)*
H20.801 (2)0.512 (2)0.675 (2)0.052 (5)*
H60.750 (2)0.718 (2)0.609 (2)0.041 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01597 (11)0.02532 (12)0.03726 (14)0.00939 (9)0.00314 (9)0.01727 (10)
Cl20.01479 (10)0.02700 (12)0.02709 (12)0.01005 (8)0.00953 (8)0.01609 (9)
O10.0255 (3)0.0270 (3)0.0347 (4)0.0155 (3)0.0119 (3)0.0222 (3)
O20.0153 (3)0.0180 (3)0.0339 (4)0.0068 (2)0.0065 (3)0.0162 (3)
O30.0178 (3)0.0170 (3)0.0206 (3)0.0095 (2)0.0066 (2)0.0109 (2)
O40.0229 (3)0.0235 (3)0.0338 (4)0.0104 (3)0.0144 (3)0.0198 (3)
O50.0241 (3)0.0382 (4)0.0223 (3)0.0151 (3)0.0135 (3)0.0172 (3)
O60.0189 (3)0.0227 (3)0.0357 (4)0.0082 (3)0.0056 (3)0.0194 (3)
N10.0300 (4)0.0218 (4)0.0196 (4)0.0145 (3)0.0139 (3)0.0120 (3)
C10.0194 (4)0.0179 (4)0.0189 (4)0.0104 (3)0.0084 (3)0.0103 (3)
C20.0146 (3)0.0170 (4)0.0213 (4)0.0081 (3)0.0051 (3)0.0098 (3)
C30.0149 (3)0.0146 (3)0.0176 (4)0.0069 (3)0.0054 (3)0.0073 (3)
C40.0151 (3)0.0144 (3)0.0138 (3)0.0080 (3)0.0058 (3)0.0061 (3)
C50.0136 (3)0.0175 (4)0.0174 (4)0.0079 (3)0.0068 (3)0.0091 (3)
C60.0189 (4)0.0177 (4)0.0178 (4)0.0099 (3)0.0098 (3)0.0097 (3)
C70.0239 (4)0.0213 (4)0.0209 (4)0.0078 (3)0.0067 (3)0.0091 (3)
C80.0207 (4)0.0261 (4)0.0258 (4)0.0119 (3)0.0115 (4)0.0137 (4)
C90.0212 (4)0.0362 (5)0.0194 (4)0.0123 (4)0.0092 (4)0.0096 (4)
C100.0269 (4)0.0327 (5)0.0238 (4)0.0191 (4)0.0145 (4)0.0159 (4)
C110.0194 (4)0.0250 (5)0.0430 (6)0.0080 (4)0.0068 (4)0.0192 (4)
Geometric parameters (Å, º) top
Cl1—C21.7168 (9)C2—C31.3536 (11)
Cl2—C51.7246 (8)C3—C41.5069 (11)
O1—C11.2221 (11)C4—C51.3874 (11)
O2—C31.3148 (10)C5—C61.4107 (11)
O2—H20.825 (19)C7—C81.5161 (13)
O3—C41.2630 (10)C7—H7A0.9900
O4—C61.2349 (11)C7—H7B0.9900
O5—C91.4211 (12)C8—H8A0.9900
O5—C81.4219 (12)C8—H8B0.9900
O6—C111.4260 (12)C9—C101.5148 (13)
O6—H60.740 (17)C9—H9A0.9900
N1—C101.4870 (12)C9—H9B0.9900
N1—C71.4904 (13)C10—H10A0.9900
N1—H1A0.876 (16)C10—H10B0.9900
N1—H1B0.853 (16)C11—H11A0.9800
C1—C21.4373 (12)C11—H11B0.9800
C1—C61.5413 (12)C11—H11C0.9800
C3—O2—H2113.5 (13)C8—C7—H7A110.0
C9—O5—C8109.92 (7)N1—C7—H7B110.0
C11—O6—H6111.7 (13)C8—C7—H7B110.0
C10—N1—C7111.68 (7)H7A—C7—H7B108.4
C10—N1—H1A109.0 (10)O5—C8—C7110.97 (8)
C7—N1—H1A109.8 (10)O5—C8—H8A109.4
C10—N1—H1B108.2 (10)C7—C8—H8A109.4
C7—N1—H1B109.5 (10)O5—C8—H8B109.4
H1A—N1—H1B108.6 (14)C7—C8—H8B109.4
O1—C1—C2123.92 (8)H8A—C8—H8B108.0
O1—C1—C6117.69 (8)O5—C9—C10110.93 (8)
C2—C1—C6118.39 (7)O5—C9—H9A109.5
C3—C2—C1120.81 (8)C10—C9—H9A109.5
C3—C2—Cl1120.88 (7)O5—C9—H9B109.5
C1—C2—Cl1118.31 (6)C10—C9—H9B109.5
O2—C3—C2120.97 (8)H9A—C9—H9B108.0
O2—C3—C4117.02 (7)N1—C10—C9109.27 (8)
C2—C3—C4122.00 (8)N1—C10—H10A109.8
O3—C4—C5125.78 (8)C9—C10—H10A109.8
O3—C4—C3116.12 (7)N1—C10—H10B109.8
C5—C4—C3118.10 (7)C9—C10—H10B109.8
C4—C5—C6123.01 (8)H10A—C10—H10B108.3
C4—C5—Cl2118.77 (6)O6—C11—H11A109.5
C6—C5—Cl2118.20 (6)O6—C11—H11B109.5
O4—C6—C5125.85 (8)H11A—C11—H11B109.5
O4—C6—C1116.53 (8)O6—C11—H11C109.5
C5—C6—C1117.61 (7)H11A—C11—H11C109.5
N1—C7—C8108.60 (8)H11B—C11—H11C109.5
N1—C7—H7A110.0
O1—C1—C2—C3179.84 (9)C3—C4—C5—Cl2176.39 (6)
C6—C1—C2—C30.87 (13)C4—C5—C6—O4177.30 (9)
O1—C1—C2—Cl10.89 (13)Cl2—C5—C6—O44.08 (13)
C6—C1—C2—Cl1178.40 (6)C4—C5—C6—C13.11 (12)
C1—C2—C3—O2179.07 (8)Cl2—C5—C6—C1175.50 (6)
Cl1—C2—C3—O21.68 (13)O1—C1—C6—O41.84 (12)
C1—C2—C3—C41.85 (13)C2—C1—C6—O4178.82 (8)
Cl1—C2—C3—C4177.40 (6)O1—C1—C6—C5177.79 (8)
O2—C3—C4—O30.18 (11)C2—C1—C6—C51.55 (12)
C2—C3—C4—O3179.29 (8)C10—N1—C7—C853.98 (10)
O2—C3—C4—C5179.49 (8)C9—O5—C8—C762.82 (10)
C2—C3—C4—C50.38 (12)N1—C7—C8—O558.10 (10)
O3—C4—C5—C6178.14 (8)C8—O5—C9—C1062.10 (11)
C3—C4—C5—C62.22 (12)C7—N1—C10—C953.70 (11)
O3—C4—C5—Cl23.25 (12)O5—C9—C10—N157.15 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.878 (18)2.391 (18)3.0069 (12)127.5 (16)
N1—H1A···O3i0.878 (18)2.180 (19)2.9255 (13)142.5 (16)
N1—H1B···O1ii0.852 (19)2.170 (19)2.9207 (14)146.9 (17)
N1—H1B···O4ii0.852 (19)2.233 (19)2.9277 (14)138.7 (16)
O2—H2···O30.82 (2)2.26 (2)2.6605 (12)110.6 (16)
O2—H2···O60.82 (2)1.79 (2)2.5564 (13)153.4 (19)
O6—H6···Cl2i0.742 (19)2.761 (19)3.3342 (9)136.0 (18)
O6—H6···O3i0.742 (19)2.119 (19)2.7812 (12)149 (2)
C8—H8A···O2iii0.992.513.4115 (15)152
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC4H10NO+·C6HCl2O4·CH4O
Mr328.15
Crystal system, space groupTriclinic, P1
Temperature (K)170
a, b, c (Å)9.11845 (17), 9.39881 (17), 9.96935 (18)
α, β, γ (°)107.8089 (7), 107.5510 (7), 110.2398 (7)
V3)679.25 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.45 × 0.41 × 0.30
Data collection
DiffractometerRigaku R-AXIS RAPID II
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.817, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
17817, 3928, 3636
Rint0.025
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.077, 1.08
No. of reflections3928
No. of parameters197
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.28

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.878 (18)2.391 (18)3.0069 (12)127.5 (16)
N1—H1A···O3i0.878 (18)2.180 (19)2.9255 (13)142.5 (16)
N1—H1B···O1ii0.852 (19)2.170 (19)2.9207 (14)146.9 (17)
N1—H1B···O4ii0.852 (19)2.233 (19)2.9277 (14)138.7 (16)
O2—H2···O30.82 (2)2.26 (2)2.6605 (12)110.6 (16)
O2—H2···O60.82 (2)1.79 (2)2.5564 (13)153.4 (19)
O6—H6···Cl2i0.742 (19)2.761 (19)3.3342 (9)136.0 (18)
O6—H6···O3i0.742 (19)2.119 (19)2.7812 (12)149 (2)
C8—H8A···O2iii0.992.513.4115 (15)152
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x+2, y+1, z+1.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 22550013) from the Japan Society for the Promotion of Science.

References

First citationAsaji, T., Hoshino, M., Ishida, H., Konnai, A., Shinoda, Y., Seliger, J. & Žagar, V. (2010). Hyperfine Interact. 198, 85–91.  CrossRef CAS Google Scholar
First citationAsaji, T., Seliger, J., Žagar, V. & Ishida, H. (2010). Magn. Reson. Chem. 48, 531–536.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIkeda, R., Takahashi, S., Nihei, T., Ishihara, H. & Ishida, H. (2005). Bull. Chem. Soc. Jpn, 78, 1241–1245.  Web of Science CrossRef CAS Google Scholar
First citationIshida, H. & Kashino, S. (1999). Acta Cryst. C55, 1923–1926.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds