metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[S-Allyl-4-(4-hy­dr­oxy-2-oxido­benzyl­­idene-κO)-1-(2-oxido­benzyl­­idene-κO)iso­thio­semicarbazidato-κ2N1,N4](ethanol-κO)dioxido­uranium(VI) ethanol monosolvate

aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran, and bDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 10 November 2011; accepted 20 November 2011; online 25 November 2011)

In the title compound, [U(C18H15N3O3S)O2(C2H5OH)]·C2H5OH, the UVI ion is in a distorted penta­gonal–bipyramidal coordination geometry, with two oxide O atoms in axial sites. Two N and two O atoms of the tetra­dentate ligand and an O atom of an ethanol ligand form the equatorial plane. The dihedral angle between the mean planes of the two benzene rings is 34.8 (3)°. In the crystal, relatively strong O—H⋯O hydrogen bonds connect the complex and ethanol solvent mol­ecules into alternating centrosymmetric R22(8) and R44(16) ring motifs, forming chains along [100]. Weak inter­molecular C—H⋯O hydrogen bonds are also present.

Related literature

For background information on salicyl­aldehyde-S-alkyl-thio­semicarbazone compounds, see: Gerbeleu & Revenko (1971[Gerbeleu, N. V. & Revenko, M. D. (1971). Zh. Neorg. Khim. 16, 1046-1049.]); Revenko et al. (1986[Revenko, M. D., Gerbeleu, N. V., Rusu, V. G., Shova, S. G. & Simonov, Yu. A. (1986). Zh. Neorg. Khim. 31, 1737-1743.]); Simonov et al. (1985[Simonov, Yu. A., Yampol'skaya, M. A., Shova, S. G., Bel'skii, V. K. & Gerbeleu, N. V. (1985). Dokl. Akad. Nauk SSSR, 282, 895-900.]); Yampol'skaya et al. (1982[Yampol'skaya, M. A., Shova, S. G., Gerbeleu, N. V., Bel'skii, V. K. & Simonov, Yu. A. (1982). Zh. Neorg. Khim. 27, 2551-2557.], 1983[Yampol'skaya, M. A., Shova, S. G., Gerbeleu, N. V., Simonov, Yu. A., Bel'skii, V. K. & Dvorkin, A. A. (1983). Zh. Neorg. Khim. 28, 1744-1754.]). For a related structure, see: Kawasaki & Kitazawa (2008[Kawasaki, T. & Kitazawa, T. (2008). Acta Cryst. E64, m673-m674.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573]).

[Scheme 1]

Experimental

Crystal data
  • [U(C18H15N3O3S)O2(C2H6O)]·C2H6O

  • Mr = 715.56

  • Monoclinic, P 21 /c

  • a = 12.0152 (4) Å

  • b = 17.6609 (4) Å

  • c = 13.1076 (3) Å

  • β = 109.195 (3)°

  • V = 2626.79 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.30 mm−1

  • T = 100 K

  • 0.20 × 0.12 × 0.10 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.424, Tmax = 1.000

  • 11844 measured reflections

  • 5467 independent reflections

  • 4148 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.120

  • S = 1.01

  • 5467 reflections

  • 309 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 2.48 e Å−3

  • Δρmin = −1.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O8i 0.86 1.75 2.601 (7) 173
O29—H29⋯O1S 0.86 1.79 2.646 (9) 171
O1S—H1S1⋯O26ii 0.86 1.87 2.718 (8) 169
C23—H23⋯O2iii 0.95 2.49 3.395 (9) 158
C27—H27⋯O1S 0.95 2.51 3.189 (10) 128
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+1, -y, -z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some salicylaldehyde-S-alkyl-thiosemicarbazones have been synthesized by template condensation of S-alkylisothiosemicarbazide with related aldehydes and ketones. These compounds were synthesized and characterized for the first time by Gerbeleu & Revenko (1971) and a few studies of these compounds have been carried out (e.g. Yampol'skaya et al., 1982, 1983; Simonov et al., 1985, Revenko et al., 1986). The fundamental investigations of the bonding and structure of uranium complexes provides important information on the field of backend chemistry (Kawasaki & Kitazawa, 2008). We report herein the synthesis and crystal structure of the title compound (I).

The molecular structure of (I) is shown in Fig. 1. The ligand takes part in the coordination to uranium as a double-deprotonated tetradentate N2O2 ligand (maximum deviation from the least-squares plane by four coordinating atoms is 0.35 Å). The coordination is a quite distorted pentagonal bipyramid with two oxo O atoms in the axial sites, and the pentagonal equatorial plane, which is relatively far from planarity, is completed by an ethanol ligand. The ligand molecule itself is slightly folded as the dihedral angle between the benzene ring planes is 34.8 (3)°; the CCH2 group is almost perpendicular to the mean ring plane (S18—C19—C20C21 torsion angle = -100.9 (10)°).

In the crystal, relatively strong and directional O—H···O hydrogen bonds join the complex molecules into dimers which are further expanded into a chain. There are two different centrosymmetric dimers, one created by the O4—H4···O8(2 - x,-y,-z) interactions, with the graph set R22(8) (Bernstein et al., 1995) and the other formed by O29—H29···O1S and O1S—H1S···O26 (1-x,-y,-z), with the graph set R44(16). The sequence of these dimers creates a hydrogen-bonded chain (Fig. 2).

Related literature top

For background information on salicylaldehyde-S-alkyl-thiosemicarbazone compounds, see: Gerbeleu & Revenko (1971); Revenko et al. (1986); Simonov et al. (1985); Yampol'skaya et al. (1982, 1983). For a related structure, see: Kawasaki & Kitazawa (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

UO2(OAc)2.2H2O (0.42 g, 1.0 mmol) in 20 cm3 ethanol was added to a solution of salicylaldehyde mono-S-allylisothiosemicarbazone hydrobromide (0.32 g, 1.0 mmol), 2,4-dihydroxybenzaldehyde (0.14 g, 1.0 mmol) and 0.35 cm3 (2.5 mmol) triethylamine. This red solution was heated under reflux for 1 h at 343K. Red crystals appeared after 4 days then were collected by filtration, washed with ethanol, and dried in air.

Refinement top

Hydrogen atoms were generated geometrically and refined as a riding model with their Uiso(H) set at 1.2-1.5 times Ueq of appropriate carrier atom. A weak distance constraint were applied to the C—C distance in the coordinated ethanol molecule.

Structure description top

Some salicylaldehyde-S-alkyl-thiosemicarbazones have been synthesized by template condensation of S-alkylisothiosemicarbazide with related aldehydes and ketones. These compounds were synthesized and characterized for the first time by Gerbeleu & Revenko (1971) and a few studies of these compounds have been carried out (e.g. Yampol'skaya et al., 1982, 1983; Simonov et al., 1985, Revenko et al., 1986). The fundamental investigations of the bonding and structure of uranium complexes provides important information on the field of backend chemistry (Kawasaki & Kitazawa, 2008). We report herein the synthesis and crystal structure of the title compound (I).

The molecular structure of (I) is shown in Fig. 1. The ligand takes part in the coordination to uranium as a double-deprotonated tetradentate N2O2 ligand (maximum deviation from the least-squares plane by four coordinating atoms is 0.35 Å). The coordination is a quite distorted pentagonal bipyramid with two oxo O atoms in the axial sites, and the pentagonal equatorial plane, which is relatively far from planarity, is completed by an ethanol ligand. The ligand molecule itself is slightly folded as the dihedral angle between the benzene ring planes is 34.8 (3)°; the CCH2 group is almost perpendicular to the mean ring plane (S18—C19—C20C21 torsion angle = -100.9 (10)°).

In the crystal, relatively strong and directional O—H···O hydrogen bonds join the complex molecules into dimers which are further expanded into a chain. There are two different centrosymmetric dimers, one created by the O4—H4···O8(2 - x,-y,-z) interactions, with the graph set R22(8) (Bernstein et al., 1995) and the other formed by O29—H29···O1S and O1S—H1S···O26 (1-x,-y,-z), with the graph set R44(16). The sequence of these dimers creates a hydrogen-bonded chain (Fig. 2).

For background information on salicylaldehyde-S-alkyl-thiosemicarbazone compounds, see: Gerbeleu & Revenko (1971); Revenko et al. (1986); Simonov et al. (1985); Yampol'skaya et al. (1982, 1983). For a related structure, see: Kawasaki & Kitazawa (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic ellipsoid representation of (I) with ellipsoids drawn at 50% probability level. Hydrogen atoms are depicted as spheres with arbitrary radii.
[Figure 2] Fig. 2. A hydrogen bonded (dotted lines) chain along [100].
[S-Allyl-4-(4-hydroxy-2-oxidobenzylidene-κO)-1-(2- oxidobenzylidene-κO)isothiosemicarbazidato- κ2N1,N4](ethanol-κO)dioxidouranium(VI) ethanol monosolvate top
Crystal data top
[U(C18H15N3O3S)O2(C2H6O)]·C2H6OF(000) = 1376
Mr = 715.56Dx = 1.809 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4645 reflections
a = 12.0152 (4) Åθ = 2.8–28.2°
b = 17.6609 (4) ŵ = 6.30 mm1
c = 13.1076 (3) ÅT = 100 K
β = 109.195 (3)°Block, red
V = 2626.79 (12) Å30.2 × 0.12 × 0.1 mm
Z = 4
Data collection top
Agilent Xcalibur Eos
diffractometer
5467 independent reflections
Radiation source: Enhance (Mo) X-ray Source4148 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.1544 pixels mm-1θmax = 28.3°, θmin = 2.9°
ω–scanh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2221
Tmin = 0.424, Tmax = 1.000l = 1616
11844 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.070P)2 + 2.0206P]
where P = (Fo2 + 2Fc2)/3
5467 reflections(Δ/σ)max = 0.001
309 parametersΔρmax = 2.48 e Å3
1 restraintΔρmin = 1.18 e Å3
Crystal data top
[U(C18H15N3O3S)O2(C2H6O)]·C2H6OV = 2626.79 (12) Å3
Mr = 715.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0152 (4) ŵ = 6.30 mm1
b = 17.6609 (4) ÅT = 100 K
c = 13.1076 (3) Å0.2 × 0.12 × 0.1 mm
β = 109.195 (3)°
Data collection top
Agilent Xcalibur Eos
diffractometer
5467 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4148 reflections with I > 2σ(I)
Tmin = 0.424, Tmax = 1.000Rint = 0.031
11844 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.120H-atom parameters constrained
S = 1.01Δρmax = 2.48 e Å3
5467 reflectionsΔρmin = 1.18 e Å3
309 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.85612 (2)0.123346 (13)0.019954 (19)0.02921 (11)
O20.7621 (4)0.1424 (3)0.1531 (4)0.0344 (11)
O30.9470 (4)0.1011 (3)0.1138 (4)0.0347 (11)
O40.8352 (4)0.0092 (2)0.0602 (4)0.0310 (10)
H40.88550.04130.02190.037*
C50.7523 (9)0.0468 (5)0.1482 (8)0.084 (4)
H5A0.79170.06240.20030.101*
H5B0.68870.01080.18560.101*
C60.6985 (12)0.1151 (6)0.1151 (12)0.122 (7)
H6A0.76060.15180.08010.183*
H6B0.64170.13830.17900.183*
H6C0.65810.10000.06440.183*
C71.0608 (6)0.1338 (4)0.1445 (6)0.0354 (17)
O81.0218 (5)0.1062 (3)0.0663 (4)0.0356 (11)
C91.1165 (6)0.0868 (4)0.1974 (6)0.0384 (17)
H91.12500.03440.18040.046*
C101.1594 (7)0.1156 (4)0.2739 (7)0.0441 (19)
H101.19800.08280.30900.053*
C111.1473 (7)0.1928 (5)0.3016 (6)0.048 (2)
H111.17600.21200.35600.057*
C121.0942 (7)0.2394 (4)0.2495 (6)0.0431 (19)
H121.08830.29180.26660.052*
C131.0469 (6)0.2121 (4)0.1696 (6)0.0379 (17)
C140.9981 (6)0.2648 (4)0.1165 (6)0.0397 (18)
H141.00810.31650.13150.048*
N150.9399 (5)0.2520 (3)0.0483 (5)0.0397 (15)
N160.9061 (6)0.3185 (4)0.0119 (6)0.0482 (17)
C170.8425 (7)0.3098 (4)0.0480 (6)0.0363 (17)
S180.7961 (2)0.39101 (11)0.09995 (18)0.0496 (5)
C190.8632 (9)0.4648 (4)0.0437 (8)0.059 (2)
H19A0.94770.45360.05820.070*
H19B0.82410.46780.03550.070*
C200.8496 (9)0.5379 (5)0.0953 (8)0.057 (2)
H200.90200.54860.16580.068*
C210.7689 (9)0.5878 (5)0.0483 (8)0.065 (3)
H21A0.71550.57840.02220.078*
H21B0.76370.63360.08440.078*
N220.8004 (5)0.2383 (3)0.0693 (5)0.0353 (14)
C230.7552 (6)0.2332 (4)0.1475 (6)0.0395 (18)
H230.75680.27790.18830.047*
C240.7047 (7)0.1687 (5)0.1774 (6)0.0411 (18)
C250.6751 (6)0.1012 (4)0.1140 (6)0.0337 (16)
O260.6906 (4)0.0979 (3)0.0188 (4)0.0325 (11)
C270.6239 (7)0.0409 (4)0.1483 (6)0.0379 (17)
H270.60410.00360.10560.046*
C280.6012 (7)0.0454 (4)0.2465 (6)0.0431 (19)
O290.5576 (5)0.0114 (4)0.2859 (5)0.0623 (17)
H290.53650.04870.24160.075*
C300.6283 (8)0.1125 (5)0.3084 (7)0.054 (2)
H300.61270.11600.37470.065*
C310.6763 (7)0.1708 (5)0.2730 (6)0.0443 (19)
H310.69190.21600.31460.053*
O1S0.5141 (6)0.1238 (3)0.1448 (6)0.0641 (18)
H1S10.45040.12150.09020.077*
C2S0.5324 (11)0.1992 (7)0.1650 (15)0.131 (7)
H2S10.45970.22280.17000.157*
H2S20.59580.20660.23510.157*
C3S0.5674 (15)0.2376 (10)0.0748 (16)0.187 (10)
H3S10.62590.20640.05700.280*
H3S20.49750.24340.01060.280*
H3S30.60110.28760.09940.280*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.03164 (17)0.02203 (15)0.03026 (15)0.00084 (11)0.00514 (11)0.00180 (10)
O20.037 (3)0.027 (2)0.037 (3)0.002 (2)0.010 (2)0.004 (2)
O30.037 (3)0.027 (2)0.038 (3)0.001 (2)0.010 (2)0.002 (2)
O40.030 (3)0.026 (2)0.030 (2)0.002 (2)0.001 (2)0.001 (2)
C50.084 (8)0.055 (6)0.074 (7)0.001 (6)0.026 (6)0.012 (5)
C60.081 (10)0.057 (7)0.168 (16)0.022 (6)0.042 (10)0.001 (7)
C70.026 (4)0.037 (4)0.034 (4)0.006 (3)0.003 (3)0.011 (3)
O80.033 (3)0.030 (2)0.043 (3)0.002 (2)0.011 (2)0.008 (2)
C90.036 (4)0.034 (4)0.043 (4)0.006 (3)0.010 (4)0.002 (3)
C100.036 (4)0.046 (5)0.047 (5)0.004 (4)0.009 (4)0.010 (4)
C110.041 (5)0.057 (5)0.048 (5)0.003 (4)0.019 (4)0.019 (4)
C120.036 (4)0.040 (4)0.044 (4)0.002 (4)0.001 (4)0.019 (4)
C130.035 (4)0.033 (4)0.042 (4)0.000 (3)0.008 (4)0.008 (3)
C140.031 (4)0.039 (4)0.043 (4)0.005 (3)0.004 (3)0.012 (3)
N150.041 (4)0.022 (3)0.046 (4)0.002 (3)0.001 (3)0.003 (3)
N160.050 (4)0.030 (3)0.057 (4)0.001 (3)0.006 (4)0.002 (3)
C170.048 (5)0.018 (3)0.035 (4)0.004 (3)0.003 (4)0.001 (3)
S180.0659 (15)0.0357 (10)0.0487 (12)0.0003 (10)0.0211 (11)0.0008 (9)
C190.079 (7)0.030 (4)0.067 (6)0.003 (4)0.025 (5)0.002 (4)
C200.067 (6)0.038 (5)0.064 (6)0.007 (4)0.020 (5)0.004 (4)
C210.088 (8)0.030 (4)0.067 (6)0.000 (5)0.013 (6)0.002 (4)
N220.042 (4)0.026 (3)0.033 (3)0.001 (3)0.006 (3)0.002 (3)
C230.038 (4)0.036 (4)0.037 (4)0.008 (3)0.002 (3)0.004 (3)
C240.044 (5)0.049 (5)0.028 (4)0.008 (4)0.008 (3)0.006 (3)
C250.032 (4)0.036 (4)0.032 (4)0.011 (3)0.008 (3)0.007 (3)
O260.034 (3)0.029 (2)0.034 (3)0.002 (2)0.010 (2)0.002 (2)
C270.035 (4)0.038 (4)0.040 (4)0.005 (3)0.012 (3)0.002 (3)
C280.044 (5)0.040 (4)0.042 (4)0.009 (4)0.010 (4)0.010 (4)
O290.061 (4)0.073 (4)0.048 (3)0.019 (3)0.012 (3)0.003 (3)
C300.052 (5)0.077 (7)0.032 (4)0.012 (5)0.013 (4)0.013 (4)
C310.053 (5)0.045 (5)0.036 (4)0.002 (4)0.017 (4)0.011 (4)
O1S0.043 (4)0.066 (4)0.067 (4)0.005 (3)0.004 (3)0.005 (3)
C2S0.058 (8)0.067 (8)0.25 (2)0.008 (7)0.020 (10)0.049 (11)
C3S0.118 (14)0.139 (15)0.23 (2)0.061 (12)0.046 (14)0.079 (15)
Geometric parameters (Å, º) top
U1—O21.772 (5)C17—S181.756 (7)
U1—O31.778 (5)S18—C191.812 (9)
U1—O262.254 (5)C19—C201.492 (11)
U1—O82.285 (5)C19—H19A0.9900
U1—O42.394 (4)C19—H19B0.9900
U1—N222.540 (6)C20—C211.306 (12)
U1—N152.562 (6)C20—H200.9500
O4—C51.417 (10)C21—H21A0.9500
O4—H40.8600C21—H21B0.9500
C5—C61.4995 (10)N22—C231.310 (9)
C5—H5A0.9900C23—C241.406 (11)
C5—H5B0.9900C23—H230.9500
C6—H6A0.9800C24—C311.404 (10)
C6—H6B0.9800C24—C251.429 (10)
C6—H6C0.9800C25—O261.323 (8)
C7—O81.351 (9)C25—C271.376 (10)
C7—C91.386 (10)C27—C281.403 (10)
C7—C131.419 (9)C27—H270.9500
C9—C101.367 (10)C28—O291.314 (9)
C9—H90.9500C28—C301.411 (11)
C10—C111.406 (10)O29—H290.8600
C10—H100.9500C30—C311.337 (11)
C11—C121.356 (11)C30—H300.9500
C11—H110.9500C31—H310.9500
C12—C131.429 (10)O1S—C2S1.362 (12)
C12—H120.9500O1S—H1S10.8601
C13—C141.400 (10)C2S—C3S1.54 (2)
C14—N151.322 (9)C2S—H2S10.9900
C14—H140.9500C2S—H2S20.9900
N15—N161.378 (8)C3S—H3S10.9800
N16—C171.273 (10)C3S—H3S20.9800
C17—N221.422 (9)C3S—H3S30.9800
O2—U1—O3177.8 (2)C14—N15—U1124.7 (5)
O2—U1—O2686.3 (2)N16—N15—U1122.1 (5)
O3—U1—O2692.0 (2)C17—N16—N15114.5 (6)
O2—U1—O895.3 (2)N16—C17—N22123.6 (7)
O3—U1—O885.8 (2)N16—C17—S18118.2 (5)
O26—U1—O8160.74 (18)N22—C17—S18118.1 (6)
O2—U1—O488.96 (18)C17—S18—C19100.9 (4)
O3—U1—O489.27 (19)C20—C19—S18107.9 (6)
O26—U1—O479.50 (16)C20—C19—H19A110.1
O8—U1—O481.34 (16)S18—C19—H19A110.1
O2—U1—N2297.1 (2)C20—C19—H19B110.1
O3—U1—N2283.8 (2)S18—C19—H19B110.1
O26—U1—N2270.73 (18)H19A—C19—H19B108.4
O8—U1—N22127.82 (19)C21—C20—C19123.0 (9)
O4—U1—N22149.10 (18)C21—C20—H20118.5
O2—U1—N1580.9 (2)C19—C20—H20118.5
O3—U1—N15101.3 (2)C20—C21—H21A120.0
O26—U1—N15128.91 (19)C20—C21—H21B120.0
O8—U1—N1570.15 (18)H21A—C21—H21B120.0
O4—U1—N15148.54 (18)C23—N22—C17118.7 (6)
N22—U1—N1562.2 (2)C23—N22—U1123.0 (5)
C5—O4—U1129.2 (5)C17—N22—U1117.0 (5)
C5—O4—H4109.7N22—C23—C24127.0 (7)
U1—O4—H4120.9N22—C23—H23116.5
O4—C5—C6113.3 (8)C24—C23—H23116.5
O4—C5—H5A108.9C31—C24—C23118.7 (7)
C6—C5—H5A108.9C31—C24—C25117.0 (7)
O4—C5—H5B108.9C23—C24—C25124.2 (7)
C6—C5—H5B108.9O26—C25—C27119.4 (7)
H5A—C5—H5B107.7O26—C25—C24120.0 (7)
C5—C6—H6A109.5C27—C25—C24120.5 (7)
C5—C6—H6B109.5C25—O26—U1127.8 (4)
H6A—C6—H6B109.5C25—C27—C28119.9 (7)
C5—C6—H6C109.5C25—C27—H27120.0
H6A—C6—H6C109.5C28—C27—H27120.0
H6B—C6—H6C109.5O29—C28—C27122.7 (7)
O8—C7—C9120.6 (6)O29—C28—C30117.5 (7)
O8—C7—C13118.9 (7)C27—C28—C30119.8 (7)
C9—C7—C13120.5 (7)C28—O29—H29112.8
C7—O8—U1134.8 (4)C31—C30—C28119.4 (7)
C10—C9—C7120.3 (7)C31—C30—H30120.3
C10—C9—H9119.8C28—C30—H30120.3
C7—C9—H9119.8C30—C31—C24123.2 (7)
C9—C10—C11121.2 (8)C30—C31—H31118.4
C9—C10—H10119.4C24—C31—H31118.4
C11—C10—H10119.4C2S—O1S—H1S1104.6
C12—C11—C10119.0 (7)O1S—C2S—C3S110.5 (14)
C12—C11—H11120.5O1S—C2S—H2S1109.6
C10—C11—H11120.5C3S—C2S—H2S1109.6
C11—C12—C13122.1 (7)O1S—C2S—H2S2109.6
C11—C12—H12119.0C3S—C2S—H2S2109.6
C13—C12—H12119.0H2S1—C2S—H2S2108.1
C14—C13—C7124.7 (7)C2S—C3S—H3S1109.5
C14—C13—C12118.2 (7)C2S—C3S—H3S2109.5
C7—C13—C12116.9 (7)H3S1—C3S—H3S2109.5
N15—C14—C13128.6 (7)C2S—C3S—H3S3109.5
N15—C14—H14115.7H3S1—C3S—H3S3109.5
C13—C14—H14115.7H3S2—C3S—H3S3109.5
C14—N15—N16111.7 (6)
O2—U1—O4—C514.1 (7)N16—C17—S18—C190.2 (7)
O3—U1—O4—C5164.5 (7)N22—C17—S18—C19176.1 (6)
O26—U1—O4—C572.3 (7)C17—S18—C19—C20170.4 (7)
O8—U1—O4—C5109.6 (7)S18—C19—C20—C21100.9 (10)
N22—U1—O4—C587.9 (8)N16—C17—N22—C23167.0 (7)
N15—U1—O4—C584.7 (8)S18—C17—N22—C2317.3 (9)
U1—O4—C5—C6134.3 (8)N16—C17—N22—U10.5 (9)
C9—C7—O8—U1138.9 (6)S18—C17—N22—U1175.2 (3)
C13—C7—O8—U142.9 (10)O2—U1—N22—C23120.5 (6)
O2—U1—O8—C729.9 (6)O3—U1—N22—C2357.4 (6)
O3—U1—O8—C7152.1 (6)O26—U1—N22—C2336.9 (5)
O26—U1—O8—C7123.9 (7)O8—U1—N22—C23137.2 (5)
O4—U1—O8—C7118.0 (6)O4—U1—N22—C2320.7 (8)
N22—U1—O8—C773.3 (7)N15—U1—N22—C23163.7 (6)
N15—U1—O8—C748.5 (6)O2—U1—N22—C1772.5 (5)
O8—C7—C9—C10177.8 (7)O3—U1—N22—C17109.6 (5)
C13—C7—C9—C100.4 (11)O26—U1—N22—C17156.1 (5)
C7—C9—C10—C110.6 (12)O8—U1—N22—C1729.8 (6)
C9—C10—C11—C121.4 (12)O4—U1—N22—C17172.4 (4)
C10—C11—C12—C132.0 (12)N15—U1—N22—C173.3 (5)
O8—C7—C13—C142.1 (11)C17—N22—C23—C24177.0 (7)
C9—C7—C13—C14176.2 (7)U1—N22—C23—C2416.3 (10)
O8—C7—C13—C12177.2 (6)N22—C23—C24—C31170.9 (7)
C9—C7—C13—C121.0 (11)N22—C23—C24—C2512.0 (12)
C11—C12—C13—C14177.3 (7)C31—C24—C25—O26174.5 (7)
C11—C12—C13—C71.8 (11)C23—C24—C25—O262.7 (11)
C7—C13—C14—N1512.0 (13)C31—C24—C25—C271.7 (11)
C12—C13—C14—N15172.9 (7)C23—C24—C25—C27178.9 (7)
C13—C14—N15—N16179.5 (7)C27—C25—O26—U1130.7 (6)
C13—C14—N15—U114.2 (11)C24—C25—O26—U153.1 (8)
O2—U1—N15—C1468.2 (6)O2—U1—O26—C25155.6 (6)
O3—U1—N15—C14112.1 (6)O3—U1—O26—C2525.9 (6)
O26—U1—N15—C14146.0 (5)O8—U1—O26—C25108.9 (7)
O8—U1—N15—C1430.8 (5)O4—U1—O26—C25114.8 (5)
O4—U1—N15—C144.5 (8)N22—U1—O26—C2556.8 (5)
N22—U1—N15—C14171.2 (6)N15—U1—O26—C2580.4 (6)
O2—U1—N15—N1696.7 (5)O26—C25—C27—C28176.5 (7)
O3—U1—N15—N1683.0 (5)C24—C25—C27—C280.3 (11)
O26—U1—N15—N1619.0 (6)C25—C27—C28—O29176.7 (7)
O8—U1—N15—N16164.3 (6)C25—C27—C28—C301.5 (12)
O4—U1—N15—N16169.5 (4)O29—C28—C30—C31177.9 (8)
N22—U1—N15—N166.3 (5)C27—C28—C30—C310.4 (13)
C14—N15—N16—C17175.2 (7)C28—C30—C31—C241.8 (14)
U1—N15—N16—C178.5 (8)C23—C24—C31—C30179.8 (8)
N15—N16—C17—N225.1 (10)C25—C24—C31—C302.9 (12)
N15—N16—C17—S18179.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O8i0.861.752.601 (7)173
O29—H29···O1S0.861.792.646 (9)171
O1S—H1S1···O26ii0.861.872.718 (8)169
C23—H23···O2iii0.952.493.395 (9)158
C27—H27···O1S0.952.513.189 (10)128
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[U(C18H15N3O3S)O2(C2H6O)]·C2H6O
Mr715.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.0152 (4), 17.6609 (4), 13.1076 (3)
β (°) 109.195 (3)
V3)2626.79 (12)
Z4
Radiation typeMo Kα
µ (mm1)6.30
Crystal size (mm)0.2 × 0.12 × 0.1
Data collection
DiffractometerAgilent Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.424, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11844, 5467, 4148
Rint0.031
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.120, 1.01
No. of reflections5467
No. of parameters309
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.48, 1.18

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O8i0.861.752.601 (7)173.3
O29—H29···O1S0.861.792.646 (9)170.8
O1S—H1S1···O26ii0.861.872.718 (8)169.1
C23—H23···O2iii0.952.493.395 (9)158.2
C27—H27···O1S0.952.513.189 (10)128.4
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Ferdowsi University of Mashhad for financial support.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573  CrossRef CAS Web of Science Google Scholar
First citationGerbeleu, N. V. & Revenko, M. D. (1971). Zh. Neorg. Khim. 16, 1046–1049.  CAS Google Scholar
First citationKawasaki, T. & Kitazawa, T. (2008). Acta Cryst. E64, m673–m674.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRevenko, M. D., Gerbeleu, N. V., Rusu, V. G., Shova, S. G. & Simonov, Yu. A. (1986). Zh. Neorg. Khim. 31, 1737–1743.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimonov, Yu. A., Yampol'skaya, M. A., Shova, S. G., Bel'skii, V. K. & Gerbeleu, N. V. (1985). Dokl. Akad. Nauk SSSR, 282, 895–900.  CAS Google Scholar
First citationYampol'skaya, M. A., Shova, S. G., Gerbeleu, N. V., Bel'skii, V. K. & Simonov, Yu. A. (1982). Zh. Neorg. Khim. 27, 2551–2557.  CAS Google Scholar
First citationYampol'skaya, M. A., Shova, S. G., Gerbeleu, N. V., Simonov, Yu. A., Bel'skii, V. K. & Dvorkin, A. A. (1983). Zh. Neorg. Khim. 28, 1744–1754.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds