organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[(E)-(5-Bromo-2-hy­dr­oxy­benzyl­­idene)amino]-1,3,4-thia­diazole-2(3H)-thione

aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran, bX-ray Crystallography Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, cDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: hkargar@pnu.ac.ir, dmntahir_uos@yahoo.com

(Received 13 November 2011; accepted 21 November 2011; online 25 November 2011)

In the title mol­ecule, C9H6BrN3OS2, the dihedral angle between the benzene ring and the five-membered ring is 5.5 (3)°. An intra­molecular O—H⋯N hydrogen bond forms an S(6) ring motif. In the crystal, N—H⋯S hydrogen bonds link mol­ecules into centrosymmetric dimers creating R22(8) ring motifs. In addition, there are inter­molecular S⋯S [3.430 (2) Å] contacts. The crystal used was a non-merohedral twin with a ratio of 0.113 (3):0.887 (3) for the components.

Related literature

For the biological versatility of thione ligands, see, for example: Kumar et al. (1988[Kumar, R., Giri S. & Nizamuddin (1988). J. Indian Chem. Soc., 65, 572-573.]); Yadav et al. (1989[Yadav, L. D. S., Shukla, K. N. & Singh, H. (1989). Indian J. Chem. Sect. B, 28, 78-80.]). For related structures, see: Zhang (2003[Zhang, Y.-X. (2003). Acta Cryst. E59, o581-o582.]); Kargar et al. (2011[Kargar, H., Kia, R. & Tahir, M. N. (2011). Acta Cryst. E67, o3311.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J.Phys.Chem., 68, 441-451.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H6BrN3OS2

  • Mr = 316.20

  • Monoclinic, P 21 /c

  • a = 18.3690 (13) Å

  • b = 4.0016 (3) Å

  • c = 16.2877 (13) Å

  • β = 112.660 (4)°

  • V = 1104.82 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.08 mm−1

  • T = 291 K

  • 0.11 × 0.05 × 0.02 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.663, Tmax = 0.923

  • 10313 measured reflections

  • 2734 independent reflections

  • 1760 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.140

  • S = 1.08

  • 2734 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.94 2.664 (7) 147
N3—H3⋯S2i 0.97 2.36 3.327 (5) 173
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The biological versatility of compounds incorporating a thiadiazole ring is well known (Kumar et al., 1988; Yadav et al., 1989). In continuation of our work on the crystal structure of thione-Schiff base ligands (Kargar et al., 2011), we have determined the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to related structures (Kargar et al., 2011; Zhang, 2003).

The dihedral angle between the benzene ring and the five-membered ring is 5.5 (3)°. An intramolecular O—H···N hydrogen bond forms an S(6) ring motif. Intermolecular N—H···S interactions link molecules into centrosymmetric dimers with R22(8) ring motifs (Bernstein et al.,1995). An interesting feature of the crystal structure is the short S1···S1i [3.430 (2)Å; (i) 2 - x, -1/2 + y, 1/2 - z] contact which is shorter than the sum of the Van der Waals radius of S [3.60Å] atoms (Bondi, 1964). The crystal was a non-merohedral twin with a refined BASF ratio of 0.113 (3)/0.887 (3).

Related literature top

For the biological versatility of thione ligands, see, for example: Kumar et al. (1988); Yadav et al. (1989). For related structures, see: Zhang (2003); Kargar et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For van der Waals radii, see: Bondi (1964). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by adding 5-bromo-salicylaldehyde (1 mmol) to a solution of 5-aminothiophene-2-thiol (1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered. Yellow single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvent at room temperature over several days.

Refinement top

All hydrogen atoms were positioned geometrically with C—H = 0.93 Å, N—H = 0.97 Å, O—H = 0.82 Å and included in a riding-model approximation with Uiso(H) = 1.2Ueq(C,N) and 1.5 Ueq(O). The crystal was a non-merohedral twin {Twin Law (1 0 0)[5 0 2]} which was treated TwinRotMat routine in PLATON (Spek, 2009) with a refined BASF ratio of 0.113 (3)/0.887 (3).

Structure description top

The biological versatility of compounds incorporating a thiadiazole ring is well known (Kumar et al., 1988; Yadav et al., 1989). In continuation of our work on the crystal structure of thione-Schiff base ligands (Kargar et al., 2011), we have determined the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to related structures (Kargar et al., 2011; Zhang, 2003).

The dihedral angle between the benzene ring and the five-membered ring is 5.5 (3)°. An intramolecular O—H···N hydrogen bond forms an S(6) ring motif. Intermolecular N—H···S interactions link molecules into centrosymmetric dimers with R22(8) ring motifs (Bernstein et al.,1995). An interesting feature of the crystal structure is the short S1···S1i [3.430 (2)Å; (i) 2 - x, -1/2 + y, 1/2 - z] contact which is shorter than the sum of the Van der Waals radius of S [3.60Å] atoms (Bondi, 1964). The crystal was a non-merohedral twin with a refined BASF ratio of 0.113 (3)/0.887 (3).

For the biological versatility of thione ligands, see, for example: Kumar et al. (1988); Yadav et al. (1989). For related structures, see: Zhang (2003); Kargar et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For van der Waals radii, see: Bondi (1964). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids. The dashed line shows an intramolecular hydrogen bond.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed along the b-axis showing short intermolecular S···S contacts and centrosymmetric dimers formed by intermolecular N—H···S hydrogen bonds. The dashed lines indicate the intermolecular interactions.
5-[(E)-(5-bromo-2-hydroxybenzylidene)amino]- 1,3,4-thiadiazole-2(3H)-thione top
Crystal data top
C9H6BrN3OS2F(000) = 624
Mr = 316.20Dx = 1.901 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2573 reflections
a = 18.3690 (13) Åθ = 2.5–29.3°
b = 4.0016 (3) ŵ = 4.08 mm1
c = 16.2877 (13) ÅT = 291 K
β = 112.660 (4)°Block, yellow
V = 1104.82 (14) Å30.11 × 0.05 × 0.02 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10313 independent reflections
Radiation source: fine-focus sealed tube1760 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
φ and ω scansθmax = 28.3°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2424
Tmin = 0.663, Tmax = 0.923k = 55
2734 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0412P)2 + 3.7473P]
where P = (Fo2 + 2Fc2)/3
2734 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 1.25 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
C9H6BrN3OS2V = 1104.82 (14) Å3
Mr = 316.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.3690 (13) ŵ = 4.08 mm1
b = 4.0016 (3) ÅT = 291 K
c = 16.2877 (13) Å0.11 × 0.05 × 0.02 mm
β = 112.660 (4)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10313 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1760 reflections with I > 2σ(I)
Tmin = 0.663, Tmax = 0.923Rint = 0.071
2734 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.08Δρmax = 1.25 e Å3
2734 reflectionsΔρmin = 0.71 e Å3
147 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.65016 (4)0.82937 (19)0.22477 (5)0.0438 (2)
S10.92727 (8)0.4125 (4)0.25824 (11)0.0306 (4)
S21.06396 (9)0.3421 (4)0.43539 (10)0.0329 (4)
O10.6140 (2)0.1515 (13)0.0870 (3)0.0439 (12)
H10.65630.14080.12960.066*
N10.7683 (3)0.2398 (13)0.1762 (3)0.0314 (12)
N20.8404 (3)0.0884 (14)0.3226 (4)0.0355 (13)
N30.9159 (3)0.1150 (13)0.3865 (3)0.0347 (13)
H30.92110.00020.44080.042*
C10.6244 (3)0.3022 (18)0.0192 (4)0.0340 (15)
C20.6990 (3)0.4180 (15)0.0246 (4)0.0286 (13)
C30.7065 (3)0.5752 (15)0.0484 (4)0.0315 (14)
H3A0.75560.64770.04530.038*
C40.6402 (3)0.6216 (15)0.1255 (4)0.0313 (14)
C50.5670 (4)0.5144 (17)0.1308 (4)0.0365 (15)
H5A0.52290.54880.18290.044*
C60.5587 (3)0.3570 (17)0.0598 (4)0.0367 (15)
H6A0.50910.28640.06420.044*
C70.7688 (3)0.3839 (16)0.1055 (4)0.0339 (15)
H7A0.81620.46970.10660.041*
C80.8377 (3)0.2352 (15)0.2507 (4)0.0260 (13)
C90.9707 (3)0.2737 (14)0.3678 (4)0.0261 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0511 (4)0.0493 (4)0.0304 (4)0.0088 (3)0.0152 (3)0.0084 (3)
S10.0242 (7)0.0387 (9)0.0263 (8)0.0014 (6)0.0067 (6)0.0065 (7)
S20.0252 (7)0.0429 (9)0.0264 (9)0.0014 (7)0.0055 (6)0.0007 (7)
O10.030 (2)0.065 (3)0.033 (3)0.009 (2)0.008 (2)0.008 (3)
N10.026 (3)0.039 (3)0.026 (3)0.002 (2)0.006 (2)0.001 (2)
N20.024 (2)0.051 (3)0.029 (3)0.006 (2)0.006 (2)0.003 (3)
N30.033 (3)0.047 (3)0.024 (3)0.005 (2)0.010 (2)0.006 (3)
C10.029 (3)0.053 (4)0.024 (3)0.008 (3)0.014 (3)0.004 (3)
C20.027 (3)0.031 (3)0.026 (3)0.001 (2)0.008 (3)0.001 (3)
C30.024 (3)0.041 (4)0.028 (3)0.002 (3)0.008 (3)0.000 (3)
C40.033 (3)0.032 (3)0.026 (3)0.001 (3)0.007 (3)0.003 (3)
C50.033 (3)0.044 (4)0.025 (3)0.003 (3)0.003 (3)0.002 (3)
C60.024 (3)0.045 (4)0.037 (4)0.003 (3)0.008 (3)0.001 (3)
C70.023 (3)0.042 (4)0.034 (4)0.002 (3)0.007 (3)0.001 (3)
C80.021 (3)0.033 (3)0.023 (3)0.003 (2)0.007 (2)0.003 (2)
C90.032 (3)0.026 (3)0.021 (3)0.002 (2)0.010 (3)0.003 (2)
Geometric parameters (Å, º) top
Br1—C41.889 (6)C1—C61.402 (8)
S1—C91.741 (6)C1—C21.417 (8)
S1—C81.752 (6)C2—C31.399 (8)
S2—C91.663 (6)C2—C71.448 (8)
O1—C11.334 (7)C3—C41.384 (8)
O1—H10.8200C3—H3A0.9300
N1—C71.292 (8)C4—C51.382 (9)
N1—C81.381 (7)C5—C61.377 (9)
N2—C81.293 (8)C5—H5A0.9300
N2—N31.381 (7)C6—H6A0.9300
N3—C91.322 (8)C7—H7A0.9300
N3—H30.9690
C9—S1—C889.4 (3)C5—C4—Br1119.7 (5)
C1—O1—H1109.5C3—C4—Br1119.6 (5)
C7—N1—C8117.9 (5)C6—C5—C4120.6 (6)
C8—N2—N3108.9 (5)C6—C5—H5A119.7
C9—N3—N2119.8 (5)C4—C5—H5A119.7
C9—N3—H3128.5C5—C6—C1120.6 (6)
N2—N3—H3111.7C5—C6—H6A119.7
O1—C1—C6118.9 (5)C1—C6—H6A119.7
O1—C1—C2122.7 (6)N1—C7—C2123.0 (6)
C6—C1—C2118.4 (6)N1—C7—H7A118.5
C3—C2—C1120.3 (6)C2—C7—H7A118.5
C3—C2—C7118.2 (5)N2—C8—N1120.1 (5)
C1—C2—C7121.5 (6)N2—C8—S1114.4 (4)
C4—C3—C2119.4 (5)N1—C8—S1125.5 (5)
C4—C3—H3A120.3N3—C9—S2127.4 (5)
C2—C3—H3A120.3N3—C9—S1107.5 (4)
C5—C4—C3120.8 (6)S2—C9—S1125.1 (4)
C8—N2—N3—C90.2 (8)C8—N1—C7—C2177.1 (5)
O1—C1—C2—C3179.9 (6)C3—C2—C7—N1179.2 (6)
C6—C1—C2—C31.7 (10)C1—C2—C7—N11.9 (10)
O1—C1—C2—C71.1 (10)N3—N2—C8—N1179.3 (5)
C6—C1—C2—C7177.1 (6)N3—N2—C8—S10.1 (7)
C1—C2—C3—C41.1 (9)C7—N1—C8—N2178.7 (6)
C7—C2—C3—C4177.7 (6)C7—N1—C8—S10.6 (8)
C2—C3—C4—C50.1 (9)C9—S1—C8—N20.0 (5)
C2—C3—C4—Br1179.3 (5)C9—S1—C8—N1179.3 (5)
C3—C4—C5—C60.4 (10)N2—N3—C9—S2178.3 (5)
Br1—C4—C5—C6178.8 (5)N2—N3—C9—S10.2 (7)
C4—C5—C6—C10.1 (10)C8—S1—C9—N30.1 (5)
O1—C1—C6—C5179.4 (6)C8—S1—C9—S2178.4 (4)
C2—C1—C6—C51.2 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.942.664 (7)147
N3—H3···S2i0.972.363.327 (5)173
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC9H6BrN3OS2
Mr316.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)18.3690 (13), 4.0016 (3), 16.2877 (13)
β (°) 112.660 (4)
V3)1104.82 (14)
Z4
Radiation typeMo Kα
µ (mm1)4.08
Crystal size (mm)0.11 × 0.05 × 0.02
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.663, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
2734, 10313, 1760
Rint0.071
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.140, 1.08
No. of reflections2734
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.25, 0.71

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.942.664 (7)147
N3—H3···S2i0.972.363.327 (5)173
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

HK thanks PNU for financial support. RK thanks the Islamic Azad University. MNT thanks the GC University of Sargodha, Pakistan for research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBondi, A. (1964). J.Phys.Chem., 68, 441–451.  CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKargar, H., Kia, R. & Tahir, M. N. (2011). Acta Cryst. E67, o3311.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, R., Giri S. & Nizamuddin (1988). J. Indian Chem. Soc., 65, 572–573.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadav, L. D. S., Shukla, K. N. & Singh, H. (1989). Indian J. Chem. Sect. B, 28, 78–80.  Google Scholar
First citationZhang, Y.-X. (2003). Acta Cryst. E59, o581–o582.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds