organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-Methyl 3-(3,4-dimeth­­oxy­phen­yl)-2-[2-(di­phenyl­phosphan­yl)benzamido]­propano­ate

aSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4000, South Africa, and bSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 12 October 2011; accepted 8 November 2011; online 12 November 2011)

Mol­ecules of the title compound, C31H30NO5P, show a sttagered conformation about the C—C bond joining the dimeth­oxy­benzene group to the chiral centre, with the dimeth­oxy­benzene ring gauche to the amide group and anti to the ester group. In the crystal, weak inter­molecular N—H⋯O and C—H⋯O hydrogen bonds form layers parallel to (110).

Related literature

For related structures, see: Clegg & Elsegood, (2003[Clegg, W. & Elsegood, M. R. J. (2003). Acta Cryst. E59, o1946-o1948.]). For organocatalysts prepared from a related precursor, see: Naicker et al. (2010[Naicker, T., Petzold, K., Singh, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 2859-2867.], 2011[Naicker, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2011). Eur. J. Org. Chem. In the press. doi:10.1002/ejoc.201100923.]). For analogous precusors to several biologically active compounds, see: Zalán et al. (2006[Zalán, Z., Martinek, T. A., Lázár, L., Sillanpää, R. & Fülöp, F. (2006). Tetrahedron, 62, 2883-2891.]).

[Scheme 1]

Experimental

Crystal data
  • C31H30NO5P

  • Mr = 527.53

  • Monoclinic, P 21

  • a = 10.2218 (3) Å

  • b = 8.4535 (2) Å

  • c = 15.7633 (4) Å

  • β = 100.300 (2)°

  • V = 1340.16 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 173 K

  • 0.18 × 0.15 × 0.14 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 6654 measured reflections

  • 6654 independent reflections

  • 5550 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.079

  • S = 1.04

  • 6654 reflections

  • 350 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3108 Friedel pairs

  • Flack parameter: −0.08 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.816 (17) 2.345 (17) 3.1428 (17) 166 (15)
C10—H10A⋯O3i 0.98 2.56 3.371 (2) 140
C21—H21⋯O4ii 0.95 2.58 3.279 (2) 131
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z]; (ii) [-x+2, y+{\script{1\over 2}}, -z+1].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is being used as a precusor to novel chiral organocatalysts (Naicker et al. 2010 and 2011). Analogous structures are well known precusors to several biologically active compounds (Zalán et al., 2006).

There is an analogous X-ray crystal structure reported (Clegg and Elsegood, 2003), which has a tert-butoxy group at the ester carboxyl carbon and a (9-H-Fluoren-9-yl)-methoxy group attached to the amide carboxyl carbon. The title compound has a methoxy and a 2-diphenylphoshinobenzene group at the these positions respectively.

The title compound exists in a well ordered staggered conformation about the C7—C8 bond (Fig. 1). As in the analogous X-ray structure, the dimethoxybenzene ring is gauche to the amide group and anti to the ester group. The configuration at C8 was confirmed to be S, on the basis of anomalous scaterring effects, Flack x parameter = -0.08 (6).

The molecules in the crystal are connected by relatively weak hydrogen bond interactions (Fig. 2) in which the N1—H1···O2 and the C10—H10A···O3 interactions give chains along the b axis. These chains are interconnected via the C21—H21···O4 interaction giving a layered packing system.

Related literature top

For related structures, see: Clegg & Elsegood, (2003). For organocatalysts prepared from a related precursor, see: Naicker et al. (2010, 2011). For analogous precusors to several biologically active compounds, see: Zalán et al. (2006).

Experimental top

2-(diphenylphosphanyl)benzoic acid (1.3 g, 4.2 mmol) was dissolved was dissolved in DMF (15 ml) and THF (5 ml) followed by addition of HBTU (4.6 mmol), DIPEA (8.4 mmol) and (S)-methyl 2-amino-3-(3,4-dimethoxyphenyl)propanoate (1.0 g, 4.2 mmol). The reaction mixture was then stirred at room temperature until no more starting material could be detected by TLC analysis. The reaction mixture was poured into 30 volumes of chilled water; the mixture was then extracted thrice with ethyl acetate (20 ml). The combined extracts were dried over anhydrous sodium sulfate and then concentrated to dryness affording the crude product. This crude product was purified by column chromatography (50:50 EtOAc/Hexane, Rf = 0.6) to afford the product 2.20 g (98%) as a white solid. M.p. = 420 K.

Recrystallization from ethyl acetate at room temperature afforded crystals suitable for X-ray analysis.

Refinement top

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms could be found in the difference electron density maps. H1N was thus positioned and refined freely with independent isotropic temperature factors. The other hydrogen atoms were placed with idealized positions and refined as riding on their parents atoms with Uiso = 1.2 or 1.5 times Ueq (C).

Structure description top

The title compound is being used as a precusor to novel chiral organocatalysts (Naicker et al. 2010 and 2011). Analogous structures are well known precusors to several biologically active compounds (Zalán et al., 2006).

There is an analogous X-ray crystal structure reported (Clegg and Elsegood, 2003), which has a tert-butoxy group at the ester carboxyl carbon and a (9-H-Fluoren-9-yl)-methoxy group attached to the amide carboxyl carbon. The title compound has a methoxy and a 2-diphenylphoshinobenzene group at the these positions respectively.

The title compound exists in a well ordered staggered conformation about the C7—C8 bond (Fig. 1). As in the analogous X-ray structure, the dimethoxybenzene ring is gauche to the amide group and anti to the ester group. The configuration at C8 was confirmed to be S, on the basis of anomalous scaterring effects, Flack x parameter = -0.08 (6).

The molecules in the crystal are connected by relatively weak hydrogen bond interactions (Fig. 2) in which the N1—H1···O2 and the C10—H10A···O3 interactions give chains along the b axis. These chains are interconnected via the C21—H21···O4 interaction giving a layered packing system.

For related structures, see: Clegg & Elsegood, (2003). For organocatalysts prepared from a related precursor, see: Naicker et al. (2010, 2011). For analogous precusors to several biologically active compounds, see: Zalán et al. (2006).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of packing of the the title compound along the a axis.
(S)-Methyl 3-(3,4-dimethoxyphenyl)-2-[2-(diphenylphosphanyl)benzamido]propanoate top
Crystal data top
C31H30NO5PF(000) = 556
Mr = 527.53Dx = 1.307 Mg m3
Monoclinic, P21Melting point: 420 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 10.2218 (3) ÅCell parameters from 6654 reflections
b = 8.4535 (2) Åθ = 2.6–28.3°
c = 15.7633 (4) ŵ = 0.14 mm1
β = 100.300 (2)°T = 173 K
V = 1340.16 (6) Å3Needle, colourless
Z = 20.18 × 0.15 × 0.14 mm
Data collection top
Nonius KappaCCD
diffractometer
5550 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 28.3°, θmin = 2.6°
1.2° φ scans and ω scansh = 1313
6654 measured reflectionsk = 1111
6654 independent reflectionsl = 2120
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.0315P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
6654 reflectionsΔρmax = 0.17 e Å3
350 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 3108 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (6)
Crystal data top
C31H30NO5PV = 1340.16 (6) Å3
Mr = 527.53Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.2218 (3) ŵ = 0.14 mm1
b = 8.4535 (2) ÅT = 173 K
c = 15.7633 (4) Å0.18 × 0.15 × 0.14 mm
β = 100.300 (2)°
Data collection top
Nonius KappaCCD
diffractometer
5550 reflections with I > 2σ(I)
6654 measured reflectionsRint = 0.000
6654 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079Δρmax = 0.17 e Å3
S = 1.04Δρmin = 0.25 e Å3
6654 reflectionsAbsolute structure: Flack (1983), 3108 Friedel pairs
350 parametersAbsolute structure parameter: 0.08 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.92652 (4)0.26037 (5)0.25790 (2)0.02523 (9)
O10.48837 (10)0.38280 (13)0.10867 (6)0.0317 (2)
O20.32444 (10)0.23354 (13)0.07247 (7)0.0307 (2)
O30.74192 (10)0.13486 (13)0.08701 (8)0.0350 (3)
O40.59931 (12)0.12392 (14)0.36882 (7)0.0368 (3)
O50.60041 (13)0.38582 (16)0.45360 (7)0.0418 (3)
N10.63147 (12)0.36602 (16)0.05671 (8)0.0245 (3)
H1N0.6418 (16)0.461 (2)0.0513 (10)0.028 (5)*
C10.50466 (14)0.2509 (2)0.23296 (9)0.0284 (3)
H10.50240.15380.20240.034*
C20.55163 (14)0.2534 (2)0.32072 (9)0.0285 (3)
C30.55354 (16)0.3961 (2)0.36673 (10)0.0315 (4)
C40.51056 (17)0.5329 (2)0.32311 (11)0.0349 (4)
H40.51190.63010.35350.042*
C50.46479 (16)0.52901 (19)0.23368 (11)0.0334 (4)
H50.43640.62420.20400.040*
C60.46036 (14)0.38986 (19)0.18847 (9)0.0275 (3)
C70.40679 (15)0.3851 (2)0.09251 (9)0.0295 (3)
H7A0.39220.49490.07100.035*
H7B0.31950.33100.08280.035*
C80.49880 (13)0.30031 (16)0.03990 (9)0.0239 (3)
H80.50420.18610.05670.029*
C90.43998 (14)0.31191 (17)0.05562 (9)0.0243 (3)
C100.24347 (15)0.2574 (2)0.15711 (10)0.0361 (4)
H10A0.22960.37090.16770.054*
H10B0.15730.20510.15950.054*
H10C0.28890.21230.20120.054*
C110.74258 (13)0.27876 (18)0.07843 (8)0.0227 (3)
C120.86721 (14)0.37492 (18)0.08839 (9)0.0226 (3)
C130.88991 (15)0.4619 (2)0.01690 (9)0.0288 (3)
H130.82640.45890.03510.035*
C141.00365 (17)0.5522 (2)0.02102 (10)0.0332 (4)
H141.02020.60740.02850.040*
C151.09289 (15)0.56158 (19)0.09765 (11)0.0318 (4)
H151.16940.62690.10160.038*
C161.07142 (14)0.47595 (19)0.16908 (10)0.0281 (3)
H161.13390.48380.22130.034*
C170.96012 (13)0.37840 (18)0.16613 (9)0.0235 (3)
C181.01378 (14)0.37421 (19)0.35058 (9)0.0266 (3)
C190.93471 (16)0.4673 (2)0.39468 (10)0.0344 (4)
H190.84110.46850.37600.041*
C200.99036 (18)0.5573 (2)0.46472 (11)0.0420 (4)
H200.93490.61920.49400.050*
C211.12645 (18)0.5579 (2)0.49259 (11)0.0390 (4)
H211.16480.62140.54030.047*
C221.20615 (16)0.4658 (2)0.45073 (10)0.0361 (4)
H221.29970.46550.47000.043*
C231.15084 (15)0.3736 (2)0.38064 (10)0.0321 (3)
H231.20670.30930.35280.039*
C241.04146 (15)0.09383 (18)0.25728 (9)0.0263 (3)
C251.01978 (17)0.0371 (2)0.30662 (10)0.0346 (4)
H250.94610.03750.33580.042*
C261.10386 (19)0.1664 (2)0.31385 (12)0.0435 (4)
H261.08820.25410.34830.052*
C271.21046 (17)0.1684 (2)0.27115 (11)0.0395 (4)
H271.26880.25680.27680.047*
C281.23209 (16)0.0417 (2)0.22019 (11)0.0351 (4)
H281.30420.04390.18970.042*
C291.14867 (15)0.0889 (2)0.21343 (10)0.0313 (4)
H291.16460.17600.17860.038*
C300.6152 (2)0.0166 (2)0.32221 (12)0.0446 (4)
H30A0.52760.05680.29540.067*
H30B0.66130.09640.36170.067*
H30C0.66760.00660.27740.067*
C310.6213 (2)0.5309 (2)0.50066 (12)0.0485 (5)
H31A0.68190.59850.47510.073*
H31B0.66030.50850.56090.073*
H31C0.53600.58540.49820.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.02244 (17)0.02806 (19)0.02497 (18)0.00083 (17)0.00365 (14)0.00163 (17)
O10.0317 (6)0.0349 (6)0.0290 (5)0.0030 (5)0.0067 (5)0.0031 (5)
O20.0272 (5)0.0309 (6)0.0307 (5)0.0069 (5)0.0039 (4)0.0041 (5)
O30.0266 (6)0.0204 (6)0.0570 (8)0.0016 (5)0.0046 (5)0.0029 (5)
O40.0513 (7)0.0302 (6)0.0272 (6)0.0053 (5)0.0022 (5)0.0015 (5)
O50.0531 (7)0.0453 (7)0.0255 (6)0.0012 (6)0.0026 (5)0.0058 (5)
N10.0206 (6)0.0188 (7)0.0326 (7)0.0002 (5)0.0005 (5)0.0012 (5)
C10.0275 (7)0.0292 (8)0.0285 (7)0.0016 (7)0.0048 (6)0.0028 (7)
C20.0280 (7)0.0297 (8)0.0275 (7)0.0004 (7)0.0040 (6)0.0050 (7)
C30.0304 (8)0.0375 (9)0.0266 (8)0.0006 (7)0.0052 (7)0.0031 (7)
C40.0378 (9)0.0319 (9)0.0357 (9)0.0024 (7)0.0085 (7)0.0056 (7)
C50.0354 (9)0.0298 (9)0.0362 (9)0.0037 (7)0.0092 (7)0.0025 (7)
C60.0213 (7)0.0329 (8)0.0285 (8)0.0010 (6)0.0051 (6)0.0030 (7)
C70.0246 (7)0.0343 (8)0.0293 (8)0.0039 (7)0.0040 (6)0.0050 (7)
C80.0204 (7)0.0225 (8)0.0279 (8)0.0023 (6)0.0016 (6)0.0029 (6)
C90.0234 (7)0.0201 (7)0.0290 (8)0.0004 (6)0.0038 (6)0.0008 (6)
C100.0340 (8)0.0364 (8)0.0324 (8)0.0055 (8)0.0090 (6)0.0034 (8)
C110.0243 (7)0.0253 (8)0.0186 (6)0.0001 (6)0.0038 (5)0.0019 (6)
C120.0203 (7)0.0222 (7)0.0251 (7)0.0025 (6)0.0037 (6)0.0029 (6)
C130.0289 (8)0.0311 (8)0.0258 (8)0.0007 (7)0.0031 (6)0.0029 (7)
C140.0317 (8)0.0358 (9)0.0334 (9)0.0033 (7)0.0089 (7)0.0071 (7)
C150.0233 (7)0.0306 (9)0.0413 (9)0.0051 (7)0.0048 (7)0.0054 (7)
C160.0233 (7)0.0296 (8)0.0297 (8)0.0016 (7)0.0002 (6)0.0010 (7)
C170.0207 (7)0.0221 (7)0.0275 (7)0.0033 (6)0.0036 (6)0.0000 (6)
C180.0280 (8)0.0285 (8)0.0232 (7)0.0004 (7)0.0045 (6)0.0028 (6)
C190.0305 (8)0.0414 (9)0.0318 (9)0.0010 (8)0.0068 (7)0.0020 (8)
C200.0456 (10)0.0476 (11)0.0342 (9)0.0021 (9)0.0111 (8)0.0087 (8)
C210.0453 (10)0.0445 (10)0.0257 (8)0.0064 (9)0.0022 (7)0.0053 (8)
C220.0325 (8)0.0438 (10)0.0296 (8)0.0029 (8)0.0014 (7)0.0015 (8)
C230.0283 (8)0.0382 (9)0.0291 (8)0.0029 (7)0.0031 (6)0.0028 (7)
C240.0273 (8)0.0278 (8)0.0220 (7)0.0023 (6)0.0003 (6)0.0017 (6)
C250.0392 (9)0.0328 (9)0.0320 (8)0.0003 (8)0.0069 (7)0.0050 (7)
C260.0565 (11)0.0281 (9)0.0454 (10)0.0043 (8)0.0079 (9)0.0089 (8)
C270.0393 (9)0.0325 (9)0.0437 (10)0.0092 (8)0.0012 (8)0.0057 (8)
C280.0294 (8)0.0384 (9)0.0372 (9)0.0030 (8)0.0049 (7)0.0069 (8)
C290.0317 (8)0.0323 (9)0.0302 (8)0.0002 (7)0.0063 (7)0.0030 (7)
C300.0605 (12)0.0277 (9)0.0394 (10)0.0049 (9)0.0076 (9)0.0004 (8)
C310.0547 (12)0.0533 (12)0.0361 (10)0.0007 (10)0.0049 (9)0.0177 (9)
Geometric parameters (Å, º) top
P1—C241.8348 (16)C13—H130.9500
P1—C171.8395 (15)C14—C151.380 (2)
P1—C181.8413 (15)C14—H140.9500
O1—C91.2046 (17)C15—C161.389 (2)
O2—C91.3387 (18)C15—H150.9500
O2—C101.4529 (17)C16—C171.399 (2)
O3—C111.2242 (18)C16—H160.9500
O4—C21.371 (2)C18—C231.396 (2)
O4—C301.421 (2)C18—C191.399 (2)
O5—C31.3703 (19)C19—C201.377 (2)
O5—C311.430 (2)C19—H190.9500
N1—C111.3462 (19)C20—C211.382 (2)
N1—C81.4454 (18)C20—H200.9500
N1—H1N0.82 (2)C21—C221.377 (2)
C1—C21.381 (2)C21—H210.9500
C1—C61.401 (2)C22—C231.388 (2)
C1—H10.9500C22—H220.9500
C2—C31.406 (2)C23—H230.9500
C3—C41.377 (2)C24—C251.393 (2)
C4—C51.404 (2)C24—C291.397 (2)
C4—H40.9500C25—C261.383 (2)
C5—C61.372 (2)C25—H250.9500
C5—H50.9500C26—C271.380 (3)
C6—C71.514 (2)C26—H260.9500
C7—C81.538 (2)C27—C281.380 (3)
C7—H7A0.9900C27—H270.9500
C7—H7B0.9900C28—C291.388 (2)
C8—C91.521 (2)C28—H280.9500
C8—H81.0000C29—H290.9500
C10—H10A0.9800C30—H30A0.9800
C10—H10B0.9800C30—H30B0.9800
C10—H10C0.9800C30—H30C0.9800
C11—C121.496 (2)C31—H31A0.9800
C12—C131.399 (2)C31—H31B0.9800
C12—C171.4101 (19)C31—H31C0.9800
C13—C141.383 (2)
C24—P1—C17101.67 (7)C13—C14—H14120.3
C24—P1—C18100.69 (7)C14—C15—C16120.29 (15)
C17—P1—C18102.03 (7)C14—C15—H15119.9
C9—O2—C10116.81 (12)C16—C15—H15119.9
C2—O4—C30116.35 (12)C15—C16—C17121.72 (14)
C3—O5—C31117.21 (14)C15—C16—H16119.1
C11—N1—C8123.87 (13)C17—C16—H16119.1
C11—N1—H1N116.5 (12)C16—C17—C12117.29 (13)
C8—N1—H1N119.6 (12)C16—C17—P1123.97 (11)
C2—C1—C6120.78 (16)C12—C17—P1118.72 (11)
C2—C1—H1119.6C23—C18—C19117.87 (14)
C6—C1—H1119.6C23—C18—P1125.55 (12)
O4—C2—C1124.56 (15)C19—C18—P1116.58 (11)
O4—C2—C3115.41 (12)C20—C19—C18121.10 (15)
C1—C2—C3120.03 (15)C20—C19—H19119.4
O5—C3—C4125.14 (15)C18—C19—H19119.4
O5—C3—C2115.56 (15)C19—C20—C21120.34 (16)
C4—C3—C2119.31 (14)C19—C20—H20119.8
C3—C4—C5120.05 (15)C21—C20—H20119.8
C3—C4—H4120.0C22—C21—C20119.57 (16)
C5—C4—H4120.0C22—C21—H21120.2
C6—C5—C4121.06 (15)C20—C21—H21120.2
C6—C5—H5119.5C21—C22—C23120.49 (16)
C4—C5—H5119.5C21—C22—H22119.8
C5—C6—C1118.76 (14)C23—C22—H22119.8
C5—C6—C7120.94 (14)C22—C23—C18120.61 (15)
C1—C6—C7120.29 (14)C22—C23—H23119.7
C6—C7—C8113.84 (12)C18—C23—H23119.7
C6—C7—H7A108.8C25—C24—C29118.02 (14)
C8—C7—H7A108.8C25—C24—P1116.15 (11)
C6—C7—H7B108.8C29—C24—P1125.82 (12)
C8—C7—H7B108.8C26—C25—C24121.04 (15)
H7A—C7—H7B107.7C26—C25—H25119.5
N1—C8—C9110.39 (11)C24—C25—H25119.5
N1—C8—C7111.48 (12)C27—C26—C25120.21 (16)
C9—C8—C7109.39 (11)C27—C26—H26119.9
N1—C8—H8108.5C25—C26—H26119.9
C9—C8—H8108.5C26—C27—C28119.80 (16)
C7—C8—H8108.5C26—C27—H27120.1
O1—C9—O2124.44 (13)C28—C27—H27120.1
O1—C9—C8125.49 (13)C27—C28—C29120.14 (15)
O2—C9—C8110.06 (12)C27—C28—H28119.9
O2—C10—H10A109.5C29—C28—H28119.9
O2—C10—H10B109.5C28—C29—C24120.76 (15)
H10A—C10—H10B109.5C28—C29—H29119.6
O2—C10—H10C109.5C24—C29—H29119.6
H10A—C10—H10C109.5O4—C30—H30A109.5
H10B—C10—H10C109.5O4—C30—H30B109.5
O3—C11—N1123.47 (13)H30A—C30—H30B109.5
O3—C11—C12123.36 (13)O4—C30—H30C109.5
N1—C11—C12113.14 (13)H30A—C30—H30C109.5
C13—C12—C17120.39 (13)H30B—C30—H30C109.5
C13—C12—C11117.51 (12)O5—C31—H31A109.5
C17—C12—C11122.10 (12)O5—C31—H31B109.5
C14—C13—C12120.76 (14)H31A—C31—H31B109.5
C14—C13—H13119.6O5—C31—H31C109.5
C12—C13—H13119.6H31A—C31—H31C109.5
C15—C14—C13119.45 (14)H31B—C31—H31C109.5
C15—C14—H14120.3
C30—O4—C2—C17.8 (2)C12—C13—C14—C152.7 (2)
C30—O4—C2—C3171.77 (14)C13—C14—C15—C162.6 (3)
C6—C1—C2—O4178.59 (14)C14—C15—C16—C170.0 (2)
C6—C1—C2—C31.0 (2)C15—C16—C17—C122.4 (2)
C31—O5—C3—C48.0 (2)C15—C16—C17—P1179.37 (12)
C31—O5—C3—C2171.56 (14)C13—C12—C17—C162.3 (2)
O4—C2—C3—O51.2 (2)C11—C12—C17—C16178.21 (13)
C1—C2—C3—O5179.23 (13)C13—C12—C17—P1179.38 (11)
O4—C2—C3—C4178.39 (15)C11—C12—C17—P10.11 (18)
C1—C2—C3—C41.2 (2)C24—P1—C17—C1677.33 (14)
O5—C3—C4—C5179.85 (15)C18—P1—C17—C1626.42 (14)
C2—C3—C4—C50.3 (2)C24—P1—C17—C12104.47 (12)
C3—C4—C5—C60.8 (2)C18—P1—C17—C12151.78 (11)
C4—C5—C6—C11.1 (2)C24—P1—C18—C2326.80 (15)
C4—C5—C6—C7178.01 (14)C17—P1—C18—C2377.71 (15)
C2—C1—C6—C50.2 (2)C24—P1—C18—C19152.39 (12)
C2—C1—C6—C7178.91 (13)C17—P1—C18—C19103.10 (12)
C5—C6—C7—C8130.11 (15)C23—C18—C19—C200.9 (2)
C1—C6—C7—C850.83 (19)P1—C18—C19—C20179.80 (14)
C11—N1—C8—C9109.43 (14)C18—C19—C20—C210.4 (3)
C11—N1—C8—C7128.76 (13)C19—C20—C21—C221.1 (3)
C6—C7—C8—N153.92 (17)C20—C21—C22—C230.4 (3)
C6—C7—C8—C9176.30 (13)C21—C22—C23—C180.9 (3)
C10—O2—C9—O110.2 (2)C19—C18—C23—C221.6 (2)
C10—O2—C9—C8168.85 (12)P1—C18—C23—C22179.23 (13)
N1—C8—C9—O18.7 (2)C17—P1—C24—C25165.63 (12)
C7—C8—C9—O1114.33 (16)C18—P1—C24—C2589.57 (13)
N1—C8—C9—O2172.30 (12)C17—P1—C24—C2915.66 (15)
C7—C8—C9—O264.66 (15)C18—P1—C24—C2989.14 (14)
C8—N1—C11—O30.8 (2)C29—C24—C25—C261.7 (2)
C8—N1—C11—C12177.40 (12)P1—C24—C25—C26177.15 (14)
O3—C11—C12—C13119.27 (17)C24—C25—C26—C270.8 (3)
N1—C11—C12—C1358.97 (17)C25—C26—C27—C280.8 (3)
O3—C11—C12—C1760.23 (19)C26—C27—C28—C291.4 (3)
N1—C11—C12—C17121.52 (14)C27—C28—C29—C240.5 (2)
C17—C12—C13—C140.2 (2)C25—C24—C29—C281.0 (2)
C11—C12—C13—C14179.31 (14)P1—C24—C29—C28177.64 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.816 (17)2.345 (17)3.1428 (17)166 (15)
C10—H10A···O3i0.982.563.371 (2)140
C21—H21···O4ii0.952.583.279 (2)131
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC31H30NO5P
Mr527.53
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)10.2218 (3), 8.4535 (2), 15.7633 (4)
β (°) 100.300 (2)
V3)1340.16 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.18 × 0.15 × 0.14
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6654, 6654, 5550
Rint0.000
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.079, 1.04
No. of reflections6654
No. of parameters350
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.25
Absolute structureFlack (1983), 3108 Friedel pairs
Absolute structure parameter0.08 (6)

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.816 (17)2.345 (17)3.1428 (17)166 (15)
C10—H10A···O3i0.982.563.371 (2)140
C21—H21···O4ii0.952.583.279 (2)131
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+2, y+1/2, z+1.
 

Acknowledgements

The authors wish to thank Dr Hong Su of the Chemistry Department of the University of Cape Town for her assistance with the crystallographic data collection.

References

First citationClegg, W. & Elsegood, M. R. J. (2003). Acta Cryst. E59, o1946–o1948.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNaicker, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2011). Eur. J. Org. Chem. In the press. doi:10.1002/ejoc.201100923.  Google Scholar
First citationNaicker, T., Petzold, K., Singh, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 2859–2867.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZalán, Z., Martinek, T. A., Lázár, L., Sillanpää, R. & Fülöp, F. (2006). Tetrahedron, 62, 2883–2891.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds