metal-organic compounds
{1,2-Bis[(3,5-dimethyl-1H-pyrazol-1-yl-κN2)methyl]benzene}dichloridozinc(II)
aDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA, and bDepartment of Chemistry, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006, South Africa
*Correspondence e-mail: iguzei@chem.wisc.edu
The title zinc complex, [ZnCl2(C18H22N4)], contains a bidentate 1,2-bis(3,5-dimethyl-1H-pyrazol-1-ylmethyl)benzene ligand that binds to the zinc atom, forming a nine-membered metallocyclic ring. The geometry about the Zn atom is distorted tetrahedral, with the largest deviation observed in the magnitude of the Cl—Zn—Cl angle. Similar distortions are observed in the cobalt analogue and related zinc compounds containing metallocyclic rings with more than six members. The copper analogue exhibits a more severe distortion of the metal coordination sphere than is observed in the title compound.
Related literature
For the coordination modes of poly(pyrazol-1-ylmethyl)benzene see: Hartshorn & Steel (1995, 1997, 1998); Guerrero et al. (2002). For 1,2-bis(3,5-dimethyl-1H-pyrazol-1-ylmethyl)benzene complexes with palladium in square-planar coordination, see: Motsoane et al. (2007). For the cobalt and copper analogues, see: Chang et al. (1994). Discussion of the effect of the size of metallocyclic rings on the distortion of tetrahedral dipyrazole dizinc complexes can be found in Guzei et al. (2011). Related structures were found in the Cambridge Structural Database (Allen, 2002). Bond lengths and angles were confirmed to be typical by a Mogul structural check (Bruno et al., 2002).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL and FCF_filter (Guzei, 2007); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).
Supporting information
https://doi.org/10.1107/S1600536811046368/lr2035sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811046368/lr2035Isup2.hkl
A mixture of solid 1,2-bis(pyrazol-1-ylmethyl)benzene (0.27 g, 0.92 mmol) and anhydrous ZnCl2 (0.120 g, 0.92 mmol) was dissolved in methanol (20 ml), and the resulting solution stirred at room temperature for 12 h. The solvent was removed in vacuo and the residue recrystallized from dichloromethane and hexane. Yield: 0.25 g (64%).
All H-atoms attached to carbon atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients Uiso(H) = 1.5 times Ueq(bearing atom) for methyl H atoms and Uiso(H) = 1.2 times Ueq(bearing atom) for all other H atoms. Default effective X—H distances for T = -173.0 ° C C(sp 3)–2H=0.99, C(sp 3)–3H=0.98, C(sp 2)–H=0.95.
Poly(pyrazol-1-ylmethyl)benzene exhibits several coordination modes depending on the positions of the pyrazolyl unit on the benzene ring (Hartshorn & Steel, 1995, 1997, 1998; Guerrero et al. 2002). There are two types of coordination for the 1,2-bis(pyrazol-1-ylmethyl)benzene analogue. For square planar complexes 1,2-bis(pyrazol-1-ylmethyl)benzene behaves as a monodentate ligand as observed for palladium (Motsoane et al., 2007), whereas for tetrahedral complexes the ligand is bidentate binding to the metal center through nitrogen atoms on each of the pyrazole groups.
In the title complex (I) the bis-pyrazolyl ligand binds to the zinc center to form a nine-membered metallocycle. The dependence of the magnitude of the N—Zn—N angle on the size of the metallocycle was discussed by Guzei et al. (2011) for 2-(3,5-dimethyl-pyrazol-1-yl)-ethylamine zinc(II) chloride (II). In (I) the N—Zn—N angle (111.72 (4)°) is much closer to the ideal tetrahedral value because the size of the ring (nine atoms) exceeds 6, whereas in (II) the metallocycle is six-membered and more sterically constrained, which leads to a smaller angle of 96.88 (6)°. The Zn center in (I) possesses a distorted tetrahedral geometry; the dihedral angle between the planes defined by atoms Zn1, N1, N4 and Zn1, Cl1, Cl2 spans 85.91 (3)°, which is in good agreement with the corresponding angle of 86.77 (4)° in (II). The geometrical distortion of the Zn coordination sphere can be compared to those in the Co and Cu analogues ((III) and (IV), Chang et al., 1994). The Cu analogue is substantially more distorted as revealed by the following values of the Cl—M—Cl angle, N—M—N angle, and a range of the N—M—Cl angles. These values for (I), (III) and (IV), correspondingly are 115.538 (13), 111.72 (4), 103.37 (3)–115.14 (3)°; 115.50 (3), 110.62 (8), 102.56 (6)–112.71 (6)°; 133.4 (7),141 (7), 95.01 (13)–100.68 (12)°. It is noteworthy that the overall molecular geometry of (I) approximately conforms to C2-symmetry, whereas geometries of (III) and (IV) are essentially CS-symmetrical.
The distortion in (I) is noticeably smaller than in relevant compounds in the Cambridge Structural Database (Allen, 2002; Guzei et al. 2011). A structural check of (I) in Mogul confirmed its other geometrical parameters to be typical (Bruno et al. 2002).
For the coordination modes of poly(pyrazol-1-ylmethyl)benzene see: Hartshorn & Steel (1995, 1997, 1998); Guerrero et al. (2002). For square-planar palladium 1,2-bis(pyrazol-1-ylmethyl)benzene complexes see: Motsoane et al. (2007). For the cobalt and copper analogues, see: Chang et al. (1994). Discussion of the effect of the size of metallocyclic rings on the distortion of tetrahedral, dipyrazole, dichloride zinc complexes can be found in Guzei et al. (2011). Related structures were found in the Cambridge Structural Database (Allen, 2002). Bond distances and angles were confirmed to be typical by a Mogul structural check (Bruno et al., 2002).
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008) and FCF_filter (Guzei, 2007); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).Fig. 1. Molecular structure of (I) (Brandenburg, 1999). The thermal ellipsoids are shown at 50% probability level. All hydrogen atoms were omitted for clarity. |
[ZnCl2(C18H22N4)] | Z = 2 |
Mr = 430.67 | F(000) = 444 |
Triclinic, P1 | Dx = 1.505 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.0830 (8) Å | Cell parameters from 9448 reflections |
b = 10.6375 (9) Å | θ = 2.3–28.3° |
c = 11.9558 (10) Å | µ = 1.58 mm−1 |
α = 111.853 (1)° | T = 100 K |
β = 95.476 (1)° | Block, colourless |
γ = 112.636 (1)° | 0.43 × 0.32 × 0.28 mm |
V = 950.38 (14) Å3 |
Bruker CCD-1000 area-detector diffractometer | 4672 independent reflections |
Radiation source: fine-focus sealed tube | 4403 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
0.30° ω scans | θmax = 28.3°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −12→12 |
Tmin = 0.550, Tmax = 0.666 | k = −14→14 |
13237 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0389P)2 + 0.3716P] where P = (Fo2 + 2Fc2)/3 |
4672 reflections | (Δ/σ)max = 0.001 |
230 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
[ZnCl2(C18H22N4)] | γ = 112.636 (1)° |
Mr = 430.67 | V = 950.38 (14) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.0830 (8) Å | Mo Kα radiation |
b = 10.6375 (9) Å | µ = 1.58 mm−1 |
c = 11.9558 (10) Å | T = 100 K |
α = 111.853 (1)° | 0.43 × 0.32 × 0.28 mm |
β = 95.476 (1)° |
Bruker CCD-1000 area-detector diffractometer | 4672 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 4403 reflections with I > 2σ(I) |
Tmin = 0.550, Tmax = 0.666 | Rint = 0.020 |
13237 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.47 e Å−3 |
4672 reflections | Δρmin = −0.23 e Å−3 |
230 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.447154 (17) | 0.646823 (15) | 0.225301 (13) | 0.01268 (6) | |
Cl1 | 0.33460 (4) | 0.70562 (4) | 0.38540 (3) | 0.01945 (8) | |
Cl2 | 0.36462 (4) | 0.40099 (3) | 0.11091 (3) | 0.02033 (8) | |
N1 | 0.39991 (13) | 0.75623 (12) | 0.12959 (10) | 0.0141 (2) | |
N2 | 0.45625 (13) | 0.91072 (12) | 0.18533 (10) | 0.0134 (2) | |
N3 | 0.83014 (13) | 0.82791 (12) | 0.28085 (10) | 0.0142 (2) | |
N4 | 0.69672 (13) | 0.73599 (12) | 0.30515 (10) | 0.0150 (2) | |
C1 | 0.19365 (18) | 0.53631 (16) | −0.06690 (14) | 0.0231 (3) | |
H1A | 0.1488 | 0.4774 | −0.0211 | 0.035* | |
H1B | 0.2708 | 0.5047 | −0.1071 | 0.035* | |
H1C | 0.1024 | 0.5183 | −0.1311 | 0.035* | |
C2 | 0.28349 (16) | 0.70176 (15) | 0.02240 (12) | 0.0168 (2) | |
C3 | 0.26618 (17) | 0.82135 (16) | 0.01074 (13) | 0.0192 (3) | |
H3 | 0.1924 | 0.8139 | −0.0560 | 0.023* | |
C4 | 0.37729 (16) | 0.95269 (15) | 0.11533 (13) | 0.0164 (2) | |
C5 | 0.40993 (18) | 1.11322 (16) | 0.15328 (15) | 0.0232 (3) | |
H5A | 0.5219 | 1.1720 | 0.1503 | 0.035* | |
H5B | 0.4011 | 1.1574 | 0.2388 | 0.035* | |
H5C | 0.3282 | 1.1160 | 0.0957 | 0.035* | |
C6 | 0.58545 (15) | 1.01004 (14) | 0.30583 (12) | 0.0141 (2) | |
H6A | 0.6018 | 0.9463 | 0.3438 | 0.017* | |
H6B | 0.5468 | 1.0772 | 0.3633 | 0.017* | |
C7 | 0.75061 (15) | 1.10757 (14) | 0.29404 (12) | 0.0141 (2) | |
C8 | 0.80300 (17) | 1.26401 (15) | 0.34196 (12) | 0.0170 (2) | |
H8 | 0.7353 | 1.3055 | 0.3812 | 0.020* | |
C9 | 0.95267 (17) | 1.36036 (15) | 0.33336 (13) | 0.0194 (3) | |
H9 | 0.9869 | 1.4666 | 0.3671 | 0.023* | |
C10 | 1.05119 (16) | 1.30043 (16) | 0.27536 (13) | 0.0198 (3) | |
H10 | 1.1526 | 1.3650 | 0.2679 | 0.024* | |
C11 | 1.00063 (16) | 1.14496 (15) | 0.22812 (13) | 0.0177 (2) | |
H11 | 1.0685 | 1.1044 | 0.1881 | 0.021* | |
C12 | 0.85275 (15) | 1.04717 (14) | 0.23806 (12) | 0.0145 (2) | |
C13 | 0.80739 (16) | 0.87931 (14) | 0.18550 (12) | 0.0146 (2) | |
H13A | 0.6897 | 0.8196 | 0.1348 | 0.017* | |
H13B | 0.8760 | 0.8575 | 0.1286 | 0.017* | |
C14 | 1.13949 (17) | 0.93722 (17) | 0.33455 (15) | 0.0228 (3) | |
H14A | 1.1667 | 1.0453 | 0.3732 | 0.034* | |
H14B | 1.1362 | 0.9036 | 0.2457 | 0.034* | |
H14C | 1.2243 | 0.9222 | 0.3773 | 0.034* | |
C15 | 0.97434 (16) | 0.84694 (15) | 0.34583 (13) | 0.0167 (2) | |
C16 | 0.93254 (17) | 0.76621 (15) | 0.41487 (13) | 0.0183 (3) | |
H16 | 1.0067 | 0.7584 | 0.4705 | 0.022* | |
C17 | 0.75974 (17) | 0.69826 (15) | 0.38680 (13) | 0.0172 (2) | |
C18 | 0.65037 (18) | 0.59516 (17) | 0.43404 (15) | 0.0236 (3) | |
H18A | 0.5678 | 0.5006 | 0.3627 | 0.035* | |
H18B | 0.5936 | 0.6454 | 0.4858 | 0.035* | |
H18C | 0.7181 | 0.5720 | 0.4846 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01343 (8) | 0.01059 (8) | 0.01304 (9) | 0.00483 (6) | 0.00326 (6) | 0.00506 (6) |
Cl1 | 0.02365 (16) | 0.01755 (15) | 0.01855 (16) | 0.00964 (13) | 0.01082 (12) | 0.00796 (12) |
Cl2 | 0.02673 (17) | 0.01197 (14) | 0.01843 (16) | 0.00796 (12) | 0.00488 (12) | 0.00416 (12) |
N1 | 0.0146 (5) | 0.0122 (5) | 0.0141 (5) | 0.0056 (4) | 0.0033 (4) | 0.0052 (4) |
N2 | 0.0134 (5) | 0.0122 (5) | 0.0146 (5) | 0.0055 (4) | 0.0036 (4) | 0.0063 (4) |
N3 | 0.0129 (5) | 0.0140 (5) | 0.0155 (5) | 0.0060 (4) | 0.0040 (4) | 0.0065 (4) |
N4 | 0.0142 (5) | 0.0141 (5) | 0.0162 (5) | 0.0054 (4) | 0.0039 (4) | 0.0073 (4) |
C1 | 0.0227 (7) | 0.0197 (6) | 0.0180 (7) | 0.0080 (5) | −0.0017 (5) | 0.0033 (5) |
C2 | 0.0153 (6) | 0.0196 (6) | 0.0149 (6) | 0.0076 (5) | 0.0043 (5) | 0.0073 (5) |
C3 | 0.0184 (6) | 0.0244 (7) | 0.0179 (6) | 0.0108 (5) | 0.0040 (5) | 0.0116 (5) |
C4 | 0.0165 (6) | 0.0199 (6) | 0.0198 (6) | 0.0107 (5) | 0.0078 (5) | 0.0127 (5) |
C5 | 0.0228 (7) | 0.0203 (6) | 0.0342 (8) | 0.0127 (6) | 0.0092 (6) | 0.0165 (6) |
C6 | 0.0156 (6) | 0.0126 (5) | 0.0122 (5) | 0.0053 (5) | 0.0039 (4) | 0.0051 (5) |
C7 | 0.0144 (5) | 0.0141 (5) | 0.0122 (5) | 0.0048 (5) | 0.0022 (4) | 0.0065 (5) |
C8 | 0.0199 (6) | 0.0152 (6) | 0.0146 (6) | 0.0068 (5) | 0.0030 (5) | 0.0069 (5) |
C9 | 0.0218 (6) | 0.0143 (6) | 0.0171 (6) | 0.0033 (5) | 0.0011 (5) | 0.0080 (5) |
C10 | 0.0150 (6) | 0.0197 (6) | 0.0202 (6) | 0.0015 (5) | 0.0016 (5) | 0.0120 (5) |
C11 | 0.0150 (6) | 0.0212 (6) | 0.0174 (6) | 0.0068 (5) | 0.0037 (5) | 0.0108 (5) |
C12 | 0.0146 (6) | 0.0150 (6) | 0.0132 (6) | 0.0054 (5) | 0.0023 (4) | 0.0074 (5) |
C13 | 0.0150 (6) | 0.0153 (6) | 0.0137 (6) | 0.0067 (5) | 0.0044 (4) | 0.0068 (5) |
C14 | 0.0147 (6) | 0.0255 (7) | 0.0303 (8) | 0.0095 (5) | 0.0061 (5) | 0.0141 (6) |
C15 | 0.0146 (6) | 0.0164 (6) | 0.0180 (6) | 0.0086 (5) | 0.0027 (5) | 0.0055 (5) |
C16 | 0.0182 (6) | 0.0174 (6) | 0.0184 (6) | 0.0093 (5) | 0.0009 (5) | 0.0068 (5) |
C17 | 0.0196 (6) | 0.0154 (6) | 0.0160 (6) | 0.0081 (5) | 0.0031 (5) | 0.0066 (5) |
C18 | 0.0230 (7) | 0.0250 (7) | 0.0265 (7) | 0.0085 (6) | 0.0040 (5) | 0.0183 (6) |
Zn1—N1 | 2.0323 (11) | C6—H6B | 0.9900 |
Zn1—N4 | 2.0512 (11) | C7—C8 | 1.3974 (17) |
Zn1—Cl2 | 2.2145 (4) | C7—C12 | 1.4066 (18) |
Zn1—Cl1 | 2.2526 (4) | C8—C9 | 1.3934 (19) |
N1—C2 | 1.3466 (17) | C8—H8 | 0.9500 |
N1—N2 | 1.3707 (14) | C9—C10 | 1.384 (2) |
N2—C4 | 1.3506 (16) | C9—H9 | 0.9500 |
N2—C6 | 1.4693 (16) | C10—C11 | 1.3912 (19) |
N3—C15 | 1.3581 (16) | C10—H10 | 0.9500 |
N3—N4 | 1.3695 (15) | C11—C12 | 1.3954 (18) |
N3—C13 | 1.4654 (16) | C11—H11 | 0.9500 |
N4—C17 | 1.3429 (17) | C12—C13 | 1.5173 (17) |
C1—C2 | 1.4942 (19) | C13—H13A | 0.9900 |
C1—H1A | 0.9800 | C13—H13B | 0.9900 |
C1—H1B | 0.9800 | C14—C15 | 1.4889 (19) |
C1—H1C | 0.9800 | C14—H14A | 0.9800 |
C2—C3 | 1.3944 (19) | C14—H14B | 0.9800 |
C3—C4 | 1.3810 (19) | C14—H14C | 0.9800 |
C3—H3 | 0.9500 | C15—C16 | 1.378 (2) |
C4—C5 | 1.4892 (18) | C16—C17 | 1.3943 (19) |
C5—H5A | 0.9800 | C16—H16 | 0.9500 |
C5—H5B | 0.9800 | C17—C18 | 1.4961 (19) |
C5—H5C | 0.9800 | C18—H18A | 0.9800 |
C6—C7 | 1.5159 (17) | C18—H18B | 0.9800 |
C6—H6A | 0.9900 | C18—H18C | 0.9800 |
N1—Zn1—N4 | 111.72 (4) | C8—C7—C12 | 119.12 (12) |
N1—Zn1—Cl2 | 115.14 (3) | C8—C7—C6 | 118.15 (11) |
N4—Zn1—Cl2 | 104.72 (3) | C12—C7—C6 | 122.74 (11) |
N1—Zn1—Cl1 | 103.37 (3) | C9—C8—C7 | 121.27 (13) |
N4—Zn1—Cl1 | 106.19 (3) | C9—C8—H8 | 119.4 |
Cl2—Zn1—Cl1 | 115.538 (13) | C7—C8—H8 | 119.4 |
C2—N1—N2 | 105.94 (10) | C10—C9—C8 | 119.63 (12) |
C2—N1—Zn1 | 130.14 (9) | C10—C9—H9 | 120.2 |
N2—N1—Zn1 | 121.78 (8) | C8—C9—H9 | 120.2 |
C4—N2—N1 | 110.96 (10) | C9—C10—C11 | 119.51 (12) |
C4—N2—C6 | 127.34 (11) | C9—C10—H10 | 120.2 |
N1—N2—C6 | 121.69 (10) | C11—C10—H10 | 120.2 |
C15—N3—N4 | 110.72 (11) | C10—C11—C12 | 121.65 (13) |
C15—N3—C13 | 127.79 (11) | C10—C11—H11 | 119.2 |
N4—N3—C13 | 121.15 (10) | C12—C11—H11 | 119.2 |
C17—N4—N3 | 105.97 (10) | C11—C12—C7 | 118.78 (12) |
C17—N4—Zn1 | 123.61 (9) | C11—C12—C13 | 118.43 (11) |
N3—N4—Zn1 | 130.10 (8) | C7—C12—C13 | 122.78 (11) |
C2—C1—H1A | 109.5 | N3—C13—C12 | 114.37 (10) |
C2—C1—H1B | 109.5 | N3—C13—H13A | 108.7 |
H1A—C1—H1B | 109.5 | C12—C13—H13A | 108.7 |
C2—C1—H1C | 109.5 | N3—C13—H13B | 108.7 |
H1A—C1—H1C | 109.5 | C12—C13—H13B | 108.7 |
H1B—C1—H1C | 109.5 | H13A—C13—H13B | 107.6 |
N1—C2—C3 | 109.73 (12) | C15—C14—H14A | 109.5 |
N1—C2—C1 | 122.31 (12) | C15—C14—H14B | 109.5 |
C3—C2—C1 | 127.95 (12) | H14A—C14—H14B | 109.5 |
C4—C3—C2 | 106.51 (12) | C15—C14—H14C | 109.5 |
C4—C3—H3 | 126.7 | H14A—C14—H14C | 109.5 |
C2—C3—H3 | 126.7 | H14B—C14—H14C | 109.5 |
N2—C4—C3 | 106.85 (11) | N3—C15—C16 | 106.88 (12) |
N2—C4—C5 | 123.21 (12) | N3—C15—C14 | 122.67 (12) |
C3—C4—C5 | 129.92 (13) | C16—C15—C14 | 130.42 (12) |
C4—C5—H5A | 109.5 | C15—C16—C17 | 106.36 (12) |
C4—C5—H5B | 109.5 | C15—C16—H16 | 126.8 |
H5A—C5—H5B | 109.5 | C17—C16—H16 | 126.8 |
C4—C5—H5C | 109.5 | N4—C17—C16 | 110.06 (12) |
H5A—C5—H5C | 109.5 | N4—C17—C18 | 121.69 (12) |
H5B—C5—H5C | 109.5 | C16—C17—C18 | 128.24 (12) |
N2—C6—C7 | 113.37 (10) | C17—C18—H18A | 109.5 |
N2—C6—H6A | 108.9 | C17—C18—H18B | 109.5 |
C7—C6—H6A | 108.9 | H18A—C18—H18B | 109.5 |
N2—C6—H6B | 108.9 | C17—C18—H18C | 109.5 |
C7—C6—H6B | 108.9 | H18A—C18—H18C | 109.5 |
H6A—C6—H6B | 107.7 | H18B—C18—H18C | 109.5 |
N4—Zn1—N1—C2 | 144.03 (11) | C4—N2—C6—C7 | −71.13 (16) |
Cl2—Zn1—N1—C2 | 24.75 (12) | N1—N2—C6—C7 | 109.17 (12) |
Cl1—Zn1—N1—C2 | −102.19 (11) | N2—C6—C7—C8 | 109.89 (13) |
N4—Zn1—N1—N2 | −55.03 (10) | N2—C6—C7—C12 | −70.62 (15) |
Cl2—Zn1—N1—N2 | −174.31 (8) | C12—C7—C8—C9 | 1.10 (19) |
Cl1—Zn1—N1—N2 | 58.75 (9) | C6—C7—C8—C9 | −179.40 (12) |
C2—N1—N2—C4 | 0.12 (14) | C7—C8—C9—C10 | 0.6 (2) |
Zn1—N1—N2—C4 | −164.83 (9) | C8—C9—C10—C11 | −1.0 (2) |
C2—N1—N2—C6 | 179.86 (11) | C9—C10—C11—C12 | −0.3 (2) |
Zn1—N1—N2—C6 | 14.91 (15) | C10—C11—C12—C7 | 1.91 (19) |
C15—N3—N4—C17 | 0.24 (14) | C10—C11—C12—C13 | −179.28 (12) |
C13—N3—N4—C17 | 174.00 (11) | C8—C7—C12—C11 | −2.29 (18) |
C15—N3—N4—Zn1 | −173.30 (9) | C6—C7—C12—C11 | 178.22 (11) |
C13—N3—N4—Zn1 | 0.46 (16) | C8—C7—C12—C13 | 178.96 (12) |
N1—Zn1—N4—C17 | 170.83 (10) | C6—C7—C12—C13 | −0.53 (19) |
Cl2—Zn1—N4—C17 | −63.89 (11) | C15—N3—C13—C12 | −78.13 (16) |
Cl1—Zn1—N4—C17 | 58.82 (11) | N4—N3—C13—C12 | 109.26 (13) |
N1—Zn1—N4—N3 | −16.63 (12) | C11—C12—C13—N3 | 105.38 (13) |
Cl2—Zn1—N4—N3 | 108.65 (10) | C7—C12—C13—N3 | −75.87 (15) |
Cl1—Zn1—N4—N3 | −128.64 (10) | N4—N3—C15—C16 | −0.62 (14) |
N2—N1—C2—C3 | −0.15 (14) | C13—N3—C15—C16 | −173.86 (12) |
Zn1—N1—C2—C3 | 163.06 (9) | N4—N3—C15—C14 | 177.89 (12) |
N2—N1—C2—C1 | 178.95 (12) | C13—N3—C15—C14 | 4.6 (2) |
Zn1—N1—C2—C1 | −17.83 (19) | N3—C15—C16—C17 | 0.73 (15) |
N1—C2—C3—C4 | 0.13 (16) | C14—C15—C16—C17 | −177.61 (14) |
C1—C2—C3—C4 | −178.91 (13) | N3—N4—C17—C16 | 0.24 (14) |
N1—N2—C4—C3 | −0.04 (15) | Zn1—N4—C17—C16 | 174.30 (9) |
C6—N2—C4—C3 | −179.76 (12) | N3—N4—C17—C18 | −178.81 (12) |
N1—N2—C4—C5 | 178.73 (12) | Zn1—N4—C17—C18 | −4.75 (18) |
C6—N2—C4—C5 | −1.0 (2) | C15—C16—C17—N4 | −0.61 (15) |
C2—C3—C4—N2 | −0.05 (15) | C15—C16—C17—C18 | 178.36 (14) |
C2—C3—C4—C5 | −178.72 (13) |
Experimental details
Crystal data | |
Chemical formula | [ZnCl2(C18H22N4)] |
Mr | 430.67 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 9.0830 (8), 10.6375 (9), 11.9558 (10) |
α, β, γ (°) | 111.853 (1), 95.476 (1), 112.636 (1) |
V (Å3) | 950.38 (14) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.58 |
Crystal size (mm) | 0.43 × 0.32 × 0.28 |
Data collection | |
Diffractometer | Bruker CCD-1000 area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.550, 0.666 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13237, 4672, 4403 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.065, 1.04 |
No. of reflections | 4672 |
No. of parameters | 230 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.23 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2008) and FCF_filter (Guzei, 2007), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).
Zn1—N1 | 2.0323 (11) | Zn1—Cl2 | 2.2145 (4) |
Zn1—N4 | 2.0512 (11) | Zn1—Cl1 | 2.2526 (4) |
N1—Zn1—N4 | 111.72 (4) | N1—Zn1—Cl1 | 103.37 (3) |
N1—Zn1—Cl2 | 115.14 (3) | N4—Zn1—Cl1 | 106.19 (3) |
N4—Zn1—Cl2 | 104.72 (3) | Cl2—Zn1—Cl1 | 115.538 (13) |
Acknowledgements
We are grateful for financial support for this work through a postdoctoral fellowship to AB by the National Research Foundation (NRF) and the NRF–DST Centre of Excellence in Catalysis (c*change).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Chang, W.-K., Lee, G.-H., Wang, Y., Ho, T.-I., Su, Y. O. & Lin, Y.-C. (1994). Inorg. Chim. Acta, 223, 139–144. CSD CrossRef CAS Web of Science Google Scholar
Guerrero, A. M., Jalon, F. A., Manzano, B. R., Claramunt, R. M., Maria, M. D., Escolastico, C., Elguero, J., Rodriguez, A. M., Maestro, M. A. & Mahia, J. (2002). Eur. J. Inorg. Chem. pp. 3178–3189. Web of Science CrossRef Google Scholar
Guzei, I. A. (2007). FCF_filter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin–Madison, Madison, Wisconsin, USA. Google Scholar
Guzei, I. A., Spencer, L. C., Segapelo, T. V. & Darkwa, J. (2011). Acta Cryst. E67, m1627–m1628. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hartshorn, C. M. & Steel, P. J. (1995). Aust. J. Chem. 48, 1587–1599. CSD CrossRef CAS Web of Science Google Scholar
Hartshorn, C. M. & Steel, P. J. (1997). Chem. Commun. pp. 541–542. CSD CrossRef Web of Science Google Scholar
Hartshorn, C. M. & Steel, P. J. (1998). Organometallics, 17, 3487–3496. Web of Science CSD CrossRef CAS Google Scholar
Motsoane, N. M., Guzei, I. A. & Darkwa, J. (2007). Z. Naturforsch. Teil B, 62, 323–330. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Poly(pyrazol-1-ylmethyl)benzene exhibits several coordination modes depending on the positions of the pyrazolyl unit on the benzene ring (Hartshorn & Steel, 1995, 1997, 1998; Guerrero et al. 2002). There are two types of coordination for the 1,2-bis(pyrazol-1-ylmethyl)benzene analogue. For square planar complexes 1,2-bis(pyrazol-1-ylmethyl)benzene behaves as a monodentate ligand as observed for palladium (Motsoane et al., 2007), whereas for tetrahedral complexes the ligand is bidentate binding to the metal center through nitrogen atoms on each of the pyrazole groups.
In the title complex (I) the bis-pyrazolyl ligand binds to the zinc center to form a nine-membered metallocycle. The dependence of the magnitude of the N—Zn—N angle on the size of the metallocycle was discussed by Guzei et al. (2011) for 2-(3,5-dimethyl-pyrazol-1-yl)-ethylamine zinc(II) chloride (II). In (I) the N—Zn—N angle (111.72 (4)°) is much closer to the ideal tetrahedral value because the size of the ring (nine atoms) exceeds 6, whereas in (II) the metallocycle is six-membered and more sterically constrained, which leads to a smaller angle of 96.88 (6)°. The Zn center in (I) possesses a distorted tetrahedral geometry; the dihedral angle between the planes defined by atoms Zn1, N1, N4 and Zn1, Cl1, Cl2 spans 85.91 (3)°, which is in good agreement with the corresponding angle of 86.77 (4)° in (II). The geometrical distortion of the Zn coordination sphere can be compared to those in the Co and Cu analogues ((III) and (IV), Chang et al., 1994). The Cu analogue is substantially more distorted as revealed by the following values of the Cl—M—Cl angle, N—M—N angle, and a range of the N—M—Cl angles. These values for (I), (III) and (IV), correspondingly are 115.538 (13), 111.72 (4), 103.37 (3)–115.14 (3)°; 115.50 (3), 110.62 (8), 102.56 (6)–112.71 (6)°; 133.4 (7),141 (7), 95.01 (13)–100.68 (12)°. It is noteworthy that the overall molecular geometry of (I) approximately conforms to C2-symmetry, whereas geometries of (III) and (IV) are essentially CS-symmetrical.
The distortion in (I) is noticeably smaller than in relevant compounds in the Cambridge Structural Database (Allen, 2002; Guzei et al. 2011). A structural check of (I) in Mogul confirmed its other geometrical parameters to be typical (Bruno et al. 2002).