metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{1,2-Bis[(3,5-di­methyl-1H-pyrazol-1-yl-κN2)meth­yl]benzene}­di­chloridozinc(II)

aDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA, and bDepartment of Chemistry, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006, South Africa
*Correspondence e-mail: iguzei@chem.wisc.edu

(Received 18 October 2011; accepted 3 November 2011; online 9 November 2011)

The title zinc complex, [ZnCl2(C18H22N4)], contains a bidentate 1,2-bis(3,5-dimethyl-1H-pyrazol-1-ylmeth­yl)benz­ene ligand that binds to the zinc atom, forming a nine-membered metallocyclic ring. The geometry about the Zn atom is distorted tetra­hedral, with the largest deviation observed in the magnitude of the Cl—Zn—Cl angle. Similar distortions are observed in the cobalt analogue and related zinc compounds containing metallocyclic rings with more than six members. The copper analogue exhibits a more severe distortion of the metal coordination sphere than is observed in the title compound.

Related literature

For the coordination modes of poly(pyrazol-1-ylmeth­yl)benzene see: Hartshorn & Steel (1995[Hartshorn, C. M. & Steel, P. J. (1995). Aust. J. Chem. 48, 1587-1599.], 1997[Hartshorn, C. M. & Steel, P. J. (1997). Chem. Commun. pp. 541-542.], 1998[Hartshorn, C. M. & Steel, P. J. (1998). Organometallics, 17, 3487-3496.]); Guerrero et al. (2002[Guerrero, A. M., Jalon, F. A., Manzano, B. R., Claramunt, R. M., Maria, M. D., Escolastico, C., Elguero, J., Rodriguez, A. M., Maestro, M. A. & Mahia, J. (2002). Eur. J. Inorg. Chem. pp. 3178-3189.]). For 1,2-bis(3,5-dimethyl-1H-pyrazol-1-ylmeth­yl)benzene complexes with palladium in square-planar coord­ination, see: Motsoane et al. (2007[Motsoane, N. M., Guzei, I. A. & Darkwa, J. (2007). Z. Naturforsch. Teil B, 62, 323-330.]). For the cobalt and copper analogues, see: Chang et al. (1994[Chang, W.-K., Lee, G.-H., Wang, Y., Ho, T.-I., Su, Y. O. & Lin, Y.-C. (1994). Inorg. Chim. Acta, 223, 139-144.]). Discussion of the effect of the size of metallocyclic rings on the distortion of tetra­hedral dipyrazole dizinc complexes can be found in Guzei et al. (2011[Guzei, I. A., Spencer, L. C., Segapelo, T. V. & Darkwa, J. (2011). Acta Cryst. E67, m1627-m1628.]). Related structures were found in the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). Bond lengths and angles were confirmed to be typical by a Mogul structural check (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C18H22N4)]

  • Mr = 430.67

  • Triclinic, [P \overline 1]

  • a = 9.0830 (8) Å

  • b = 10.6375 (9) Å

  • c = 11.9558 (10) Å

  • α = 111.853 (1)°

  • β = 95.476 (1)°

  • γ = 112.636 (1)°

  • V = 950.38 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.58 mm−1

  • T = 100 K

  • 0.43 × 0.32 × 0.28 mm

Data collection
  • Bruker CCD-1000 area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.550, Tmax = 0.666

  • 13237 measured reflections

  • 4672 independent reflections

  • 4403 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.065

  • S = 1.04

  • 4672 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N1 2.0323 (11)
Zn1—N4 2.0512 (11)
Zn1—Cl2 2.2145 (4)
Zn1—Cl1 2.2526 (4)
N1—Zn1—N4 111.72 (4)
N1—Zn1—Cl2 115.14 (3)
N4—Zn1—Cl2 104.72 (3)
N1—Zn1—Cl1 103.37 (3)
N4—Zn1—Cl1 106.19 (3)
Cl2—Zn1—Cl1 115.538 (13)

Data collection: SMART (Bruker, 2003[Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL and FCF_filter (Guzei, 2007[Guzei, I. A. (2007). FCF_filter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and modiCIFer (Guzei, 2007[Guzei, I. A. (2007). FCF_filter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]).

Supporting information


Comment top

Poly(pyrazol-1-ylmethyl)benzene exhibits several coordination modes depending on the positions of the pyrazolyl unit on the benzene ring (Hartshorn & Steel, 1995, 1997, 1998; Guerrero et al. 2002). There are two types of coordination for the 1,2-bis(pyrazol-1-ylmethyl)benzene analogue. For square planar complexes 1,2-bis(pyrazol-1-ylmethyl)benzene behaves as a monodentate ligand as observed for palladium (Motsoane et al., 2007), whereas for tetrahedral complexes the ligand is bidentate binding to the metal center through nitrogen atoms on each of the pyrazole groups.

In the title complex (I) the bis-pyrazolyl ligand binds to the zinc center to form a nine-membered metallocycle. The dependence of the magnitude of the N—Zn—N angle on the size of the metallocycle was discussed by Guzei et al. (2011) for 2-(3,5-dimethyl-pyrazol-1-yl)-ethylamine zinc(II) chloride (II). In (I) the N—Zn—N angle (111.72 (4)°) is much closer to the ideal tetrahedral value because the size of the ring (nine atoms) exceeds 6, whereas in (II) the metallocycle is six-membered and more sterically constrained, which leads to a smaller angle of 96.88 (6)°. The Zn center in (I) possesses a distorted tetrahedral geometry; the dihedral angle between the planes defined by atoms Zn1, N1, N4 and Zn1, Cl1, Cl2 spans 85.91 (3)°, which is in good agreement with the corresponding angle of 86.77 (4)° in (II). The geometrical distortion of the Zn coordination sphere can be compared to those in the Co and Cu analogues ((III) and (IV), Chang et al., 1994). The Cu analogue is substantially more distorted as revealed by the following values of the Cl—M—Cl angle, N—M—N angle, and a range of the N—M—Cl angles. These values for (I), (III) and (IV), correspondingly are 115.538 (13), 111.72 (4), 103.37 (3)–115.14 (3)°; 115.50 (3), 110.62 (8), 102.56 (6)–112.71 (6)°; 133.4 (7),141 (7), 95.01 (13)–100.68 (12)°. It is noteworthy that the overall molecular geometry of (I) approximately conforms to C2-symmetry, whereas geometries of (III) and (IV) are essentially CS-symmetrical.

The distortion in (I) is noticeably smaller than in relevant compounds in the Cambridge Structural Database (Allen, 2002; Guzei et al. 2011). A structural check of (I) in Mogul confirmed its other geometrical parameters to be typical (Bruno et al. 2002).

Related literature top

For the coordination modes of poly(pyrazol-1-ylmethyl)benzene see: Hartshorn & Steel (1995, 1997, 1998); Guerrero et al. (2002). For square-planar palladium 1,2-bis(pyrazol-1-ylmethyl)benzene complexes see: Motsoane et al. (2007). For the cobalt and copper analogues, see: Chang et al. (1994). Discussion of the effect of the size of metallocyclic rings on the distortion of tetrahedral, dipyrazole, dichloride zinc complexes can be found in Guzei et al. (2011). Related structures were found in the Cambridge Structural Database (Allen, 2002). Bond distances and angles were confirmed to be typical by a Mogul structural check (Bruno et al., 2002).

Experimental top

A mixture of solid 1,2-bis(pyrazol-1-ylmethyl)benzene (0.27 g, 0.92 mmol) and anhydrous ZnCl2 (0.120 g, 0.92 mmol) was dissolved in methanol (20 ml), and the resulting solution stirred at room temperature for 12 h. The solvent was removed in vacuo and the residue recrystallized from dichloromethane and hexane. Yield: 0.25 g (64%).

Refinement top

All H-atoms attached to carbon atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients Uiso(H) = 1.5 times Ueq(bearing atom) for methyl H atoms and Uiso(H) = 1.2 times Ueq(bearing atom) for all other H atoms. Default effective X—H distances for T = -173.0 ° C C(sp 3)–2H=0.99, C(sp 3)–3H=0.98, C(sp 2)–H=0.95.

Structure description top

Poly(pyrazol-1-ylmethyl)benzene exhibits several coordination modes depending on the positions of the pyrazolyl unit on the benzene ring (Hartshorn & Steel, 1995, 1997, 1998; Guerrero et al. 2002). There are two types of coordination for the 1,2-bis(pyrazol-1-ylmethyl)benzene analogue. For square planar complexes 1,2-bis(pyrazol-1-ylmethyl)benzene behaves as a monodentate ligand as observed for palladium (Motsoane et al., 2007), whereas for tetrahedral complexes the ligand is bidentate binding to the metal center through nitrogen atoms on each of the pyrazole groups.

In the title complex (I) the bis-pyrazolyl ligand binds to the zinc center to form a nine-membered metallocycle. The dependence of the magnitude of the N—Zn—N angle on the size of the metallocycle was discussed by Guzei et al. (2011) for 2-(3,5-dimethyl-pyrazol-1-yl)-ethylamine zinc(II) chloride (II). In (I) the N—Zn—N angle (111.72 (4)°) is much closer to the ideal tetrahedral value because the size of the ring (nine atoms) exceeds 6, whereas in (II) the metallocycle is six-membered and more sterically constrained, which leads to a smaller angle of 96.88 (6)°. The Zn center in (I) possesses a distorted tetrahedral geometry; the dihedral angle between the planes defined by atoms Zn1, N1, N4 and Zn1, Cl1, Cl2 spans 85.91 (3)°, which is in good agreement with the corresponding angle of 86.77 (4)° in (II). The geometrical distortion of the Zn coordination sphere can be compared to those in the Co and Cu analogues ((III) and (IV), Chang et al., 1994). The Cu analogue is substantially more distorted as revealed by the following values of the Cl—M—Cl angle, N—M—N angle, and a range of the N—M—Cl angles. These values for (I), (III) and (IV), correspondingly are 115.538 (13), 111.72 (4), 103.37 (3)–115.14 (3)°; 115.50 (3), 110.62 (8), 102.56 (6)–112.71 (6)°; 133.4 (7),141 (7), 95.01 (13)–100.68 (12)°. It is noteworthy that the overall molecular geometry of (I) approximately conforms to C2-symmetry, whereas geometries of (III) and (IV) are essentially CS-symmetrical.

The distortion in (I) is noticeably smaller than in relevant compounds in the Cambridge Structural Database (Allen, 2002; Guzei et al. 2011). A structural check of (I) in Mogul confirmed its other geometrical parameters to be typical (Bruno et al. 2002).

For the coordination modes of poly(pyrazol-1-ylmethyl)benzene see: Hartshorn & Steel (1995, 1997, 1998); Guerrero et al. (2002). For square-planar palladium 1,2-bis(pyrazol-1-ylmethyl)benzene complexes see: Motsoane et al. (2007). For the cobalt and copper analogues, see: Chang et al. (1994). Discussion of the effect of the size of metallocyclic rings on the distortion of tetrahedral, dipyrazole, dichloride zinc complexes can be found in Guzei et al. (2011). Related structures were found in the Cambridge Structural Database (Allen, 2002). Bond distances and angles were confirmed to be typical by a Mogul structural check (Bruno et al., 2002).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008) and FCF_filter (Guzei, 2007); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) (Brandenburg, 1999). The thermal ellipsoids are shown at 50% probability level. All hydrogen atoms were omitted for clarity.
{1,2-Bis[(3,5-dimethyl-1H-pyrazol-1-yl- κN2)methyl]benzene}dichloridozinc(II) top
Crystal data top
[ZnCl2(C18H22N4)]Z = 2
Mr = 430.67F(000) = 444
Triclinic, P1Dx = 1.505 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0830 (8) ÅCell parameters from 9448 reflections
b = 10.6375 (9) Åθ = 2.3–28.3°
c = 11.9558 (10) ŵ = 1.58 mm1
α = 111.853 (1)°T = 100 K
β = 95.476 (1)°Block, colourless
γ = 112.636 (1)°0.43 × 0.32 × 0.28 mm
V = 950.38 (14) Å3
Data collection top
Bruker CCD-1000 area-detector
diffractometer
4672 independent reflections
Radiation source: fine-focus sealed tube4403 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
0.30° ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1212
Tmin = 0.550, Tmax = 0.666k = 1414
13237 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.3716P]
where P = (Fo2 + 2Fc2)/3
4672 reflections(Δ/σ)max = 0.001
230 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[ZnCl2(C18H22N4)]γ = 112.636 (1)°
Mr = 430.67V = 950.38 (14) Å3
Triclinic, P1Z = 2
a = 9.0830 (8) ÅMo Kα radiation
b = 10.6375 (9) ŵ = 1.58 mm1
c = 11.9558 (10) ÅT = 100 K
α = 111.853 (1)°0.43 × 0.32 × 0.28 mm
β = 95.476 (1)°
Data collection top
Bruker CCD-1000 area-detector
diffractometer
4672 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
4403 reflections with I > 2σ(I)
Tmin = 0.550, Tmax = 0.666Rint = 0.020
13237 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.04Δρmax = 0.47 e Å3
4672 reflectionsΔρmin = 0.23 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.447154 (17)0.646823 (15)0.225301 (13)0.01268 (6)
Cl10.33460 (4)0.70562 (4)0.38540 (3)0.01945 (8)
Cl20.36462 (4)0.40099 (3)0.11091 (3)0.02033 (8)
N10.39991 (13)0.75623 (12)0.12959 (10)0.0141 (2)
N20.45625 (13)0.91072 (12)0.18533 (10)0.0134 (2)
N30.83014 (13)0.82791 (12)0.28085 (10)0.0142 (2)
N40.69672 (13)0.73599 (12)0.30515 (10)0.0150 (2)
C10.19365 (18)0.53631 (16)0.06690 (14)0.0231 (3)
H1A0.14880.47740.02110.035*
H1B0.27080.50470.10710.035*
H1C0.10240.51830.13110.035*
C20.28349 (16)0.70176 (15)0.02240 (12)0.0168 (2)
C30.26618 (17)0.82135 (16)0.01074 (13)0.0192 (3)
H30.19240.81390.05600.023*
C40.37729 (16)0.95269 (15)0.11533 (13)0.0164 (2)
C50.40993 (18)1.11322 (16)0.15328 (15)0.0232 (3)
H5A0.52191.17200.15030.035*
H5B0.40111.15740.23880.035*
H5C0.32821.11600.09570.035*
C60.58545 (15)1.01004 (14)0.30583 (12)0.0141 (2)
H6A0.60180.94630.34380.017*
H6B0.54681.07720.36330.017*
C70.75061 (15)1.10757 (14)0.29404 (12)0.0141 (2)
C80.80300 (17)1.26401 (15)0.34196 (12)0.0170 (2)
H80.73531.30550.38120.020*
C90.95267 (17)1.36036 (15)0.33336 (13)0.0194 (3)
H90.98691.46660.36710.023*
C101.05119 (16)1.30043 (16)0.27536 (13)0.0198 (3)
H101.15261.36500.26790.024*
C111.00063 (16)1.14496 (15)0.22812 (13)0.0177 (2)
H111.06851.10440.18810.021*
C120.85275 (15)1.04717 (14)0.23806 (12)0.0145 (2)
C130.80739 (16)0.87931 (14)0.18550 (12)0.0146 (2)
H13A0.68970.81960.13480.017*
H13B0.87600.85750.12860.017*
C141.13949 (17)0.93722 (17)0.33455 (15)0.0228 (3)
H14A1.16671.04530.37320.034*
H14B1.13620.90360.24570.034*
H14C1.22430.92220.37730.034*
C150.97434 (16)0.84694 (15)0.34583 (13)0.0167 (2)
C160.93254 (17)0.76621 (15)0.41487 (13)0.0183 (3)
H161.00670.75840.47050.022*
C170.75974 (17)0.69826 (15)0.38680 (13)0.0172 (2)
C180.65037 (18)0.59516 (17)0.43404 (15)0.0236 (3)
H18A0.56780.50060.36270.035*
H18B0.59360.64540.48580.035*
H18C0.71810.57200.48460.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01343 (8)0.01059 (8)0.01304 (9)0.00483 (6)0.00326 (6)0.00506 (6)
Cl10.02365 (16)0.01755 (15)0.01855 (16)0.00964 (13)0.01082 (12)0.00796 (12)
Cl20.02673 (17)0.01197 (14)0.01843 (16)0.00796 (12)0.00488 (12)0.00416 (12)
N10.0146 (5)0.0122 (5)0.0141 (5)0.0056 (4)0.0033 (4)0.0052 (4)
N20.0134 (5)0.0122 (5)0.0146 (5)0.0055 (4)0.0036 (4)0.0063 (4)
N30.0129 (5)0.0140 (5)0.0155 (5)0.0060 (4)0.0040 (4)0.0065 (4)
N40.0142 (5)0.0141 (5)0.0162 (5)0.0054 (4)0.0039 (4)0.0073 (4)
C10.0227 (7)0.0197 (6)0.0180 (7)0.0080 (5)0.0017 (5)0.0033 (5)
C20.0153 (6)0.0196 (6)0.0149 (6)0.0076 (5)0.0043 (5)0.0073 (5)
C30.0184 (6)0.0244 (7)0.0179 (6)0.0108 (5)0.0040 (5)0.0116 (5)
C40.0165 (6)0.0199 (6)0.0198 (6)0.0107 (5)0.0078 (5)0.0127 (5)
C50.0228 (7)0.0203 (6)0.0342 (8)0.0127 (6)0.0092 (6)0.0165 (6)
C60.0156 (6)0.0126 (5)0.0122 (5)0.0053 (5)0.0039 (4)0.0051 (5)
C70.0144 (5)0.0141 (5)0.0122 (5)0.0048 (5)0.0022 (4)0.0065 (5)
C80.0199 (6)0.0152 (6)0.0146 (6)0.0068 (5)0.0030 (5)0.0069 (5)
C90.0218 (6)0.0143 (6)0.0171 (6)0.0033 (5)0.0011 (5)0.0080 (5)
C100.0150 (6)0.0197 (6)0.0202 (6)0.0015 (5)0.0016 (5)0.0120 (5)
C110.0150 (6)0.0212 (6)0.0174 (6)0.0068 (5)0.0037 (5)0.0108 (5)
C120.0146 (6)0.0150 (6)0.0132 (6)0.0054 (5)0.0023 (4)0.0074 (5)
C130.0150 (6)0.0153 (6)0.0137 (6)0.0067 (5)0.0044 (4)0.0068 (5)
C140.0147 (6)0.0255 (7)0.0303 (8)0.0095 (5)0.0061 (5)0.0141 (6)
C150.0146 (6)0.0164 (6)0.0180 (6)0.0086 (5)0.0027 (5)0.0055 (5)
C160.0182 (6)0.0174 (6)0.0184 (6)0.0093 (5)0.0009 (5)0.0068 (5)
C170.0196 (6)0.0154 (6)0.0160 (6)0.0081 (5)0.0031 (5)0.0066 (5)
C180.0230 (7)0.0250 (7)0.0265 (7)0.0085 (6)0.0040 (5)0.0183 (6)
Geometric parameters (Å, º) top
Zn1—N12.0323 (11)C6—H6B0.9900
Zn1—N42.0512 (11)C7—C81.3974 (17)
Zn1—Cl22.2145 (4)C7—C121.4066 (18)
Zn1—Cl12.2526 (4)C8—C91.3934 (19)
N1—C21.3466 (17)C8—H80.9500
N1—N21.3707 (14)C9—C101.384 (2)
N2—C41.3506 (16)C9—H90.9500
N2—C61.4693 (16)C10—C111.3912 (19)
N3—C151.3581 (16)C10—H100.9500
N3—N41.3695 (15)C11—C121.3954 (18)
N3—C131.4654 (16)C11—H110.9500
N4—C171.3429 (17)C12—C131.5173 (17)
C1—C21.4942 (19)C13—H13A0.9900
C1—H1A0.9800C13—H13B0.9900
C1—H1B0.9800C14—C151.4889 (19)
C1—H1C0.9800C14—H14A0.9800
C2—C31.3944 (19)C14—H14B0.9800
C3—C41.3810 (19)C14—H14C0.9800
C3—H30.9500C15—C161.378 (2)
C4—C51.4892 (18)C16—C171.3943 (19)
C5—H5A0.9800C16—H160.9500
C5—H5B0.9800C17—C181.4961 (19)
C5—H5C0.9800C18—H18A0.9800
C6—C71.5159 (17)C18—H18B0.9800
C6—H6A0.9900C18—H18C0.9800
N1—Zn1—N4111.72 (4)C8—C7—C12119.12 (12)
N1—Zn1—Cl2115.14 (3)C8—C7—C6118.15 (11)
N4—Zn1—Cl2104.72 (3)C12—C7—C6122.74 (11)
N1—Zn1—Cl1103.37 (3)C9—C8—C7121.27 (13)
N4—Zn1—Cl1106.19 (3)C9—C8—H8119.4
Cl2—Zn1—Cl1115.538 (13)C7—C8—H8119.4
C2—N1—N2105.94 (10)C10—C9—C8119.63 (12)
C2—N1—Zn1130.14 (9)C10—C9—H9120.2
N2—N1—Zn1121.78 (8)C8—C9—H9120.2
C4—N2—N1110.96 (10)C9—C10—C11119.51 (12)
C4—N2—C6127.34 (11)C9—C10—H10120.2
N1—N2—C6121.69 (10)C11—C10—H10120.2
C15—N3—N4110.72 (11)C10—C11—C12121.65 (13)
C15—N3—C13127.79 (11)C10—C11—H11119.2
N4—N3—C13121.15 (10)C12—C11—H11119.2
C17—N4—N3105.97 (10)C11—C12—C7118.78 (12)
C17—N4—Zn1123.61 (9)C11—C12—C13118.43 (11)
N3—N4—Zn1130.10 (8)C7—C12—C13122.78 (11)
C2—C1—H1A109.5N3—C13—C12114.37 (10)
C2—C1—H1B109.5N3—C13—H13A108.7
H1A—C1—H1B109.5C12—C13—H13A108.7
C2—C1—H1C109.5N3—C13—H13B108.7
H1A—C1—H1C109.5C12—C13—H13B108.7
H1B—C1—H1C109.5H13A—C13—H13B107.6
N1—C2—C3109.73 (12)C15—C14—H14A109.5
N1—C2—C1122.31 (12)C15—C14—H14B109.5
C3—C2—C1127.95 (12)H14A—C14—H14B109.5
C4—C3—C2106.51 (12)C15—C14—H14C109.5
C4—C3—H3126.7H14A—C14—H14C109.5
C2—C3—H3126.7H14B—C14—H14C109.5
N2—C4—C3106.85 (11)N3—C15—C16106.88 (12)
N2—C4—C5123.21 (12)N3—C15—C14122.67 (12)
C3—C4—C5129.92 (13)C16—C15—C14130.42 (12)
C4—C5—H5A109.5C15—C16—C17106.36 (12)
C4—C5—H5B109.5C15—C16—H16126.8
H5A—C5—H5B109.5C17—C16—H16126.8
C4—C5—H5C109.5N4—C17—C16110.06 (12)
H5A—C5—H5C109.5N4—C17—C18121.69 (12)
H5B—C5—H5C109.5C16—C17—C18128.24 (12)
N2—C6—C7113.37 (10)C17—C18—H18A109.5
N2—C6—H6A108.9C17—C18—H18B109.5
C7—C6—H6A108.9H18A—C18—H18B109.5
N2—C6—H6B108.9C17—C18—H18C109.5
C7—C6—H6B108.9H18A—C18—H18C109.5
H6A—C6—H6B107.7H18B—C18—H18C109.5
N4—Zn1—N1—C2144.03 (11)C4—N2—C6—C771.13 (16)
Cl2—Zn1—N1—C224.75 (12)N1—N2—C6—C7109.17 (12)
Cl1—Zn1—N1—C2102.19 (11)N2—C6—C7—C8109.89 (13)
N4—Zn1—N1—N255.03 (10)N2—C6—C7—C1270.62 (15)
Cl2—Zn1—N1—N2174.31 (8)C12—C7—C8—C91.10 (19)
Cl1—Zn1—N1—N258.75 (9)C6—C7—C8—C9179.40 (12)
C2—N1—N2—C40.12 (14)C7—C8—C9—C100.6 (2)
Zn1—N1—N2—C4164.83 (9)C8—C9—C10—C111.0 (2)
C2—N1—N2—C6179.86 (11)C9—C10—C11—C120.3 (2)
Zn1—N1—N2—C614.91 (15)C10—C11—C12—C71.91 (19)
C15—N3—N4—C170.24 (14)C10—C11—C12—C13179.28 (12)
C13—N3—N4—C17174.00 (11)C8—C7—C12—C112.29 (18)
C15—N3—N4—Zn1173.30 (9)C6—C7—C12—C11178.22 (11)
C13—N3—N4—Zn10.46 (16)C8—C7—C12—C13178.96 (12)
N1—Zn1—N4—C17170.83 (10)C6—C7—C12—C130.53 (19)
Cl2—Zn1—N4—C1763.89 (11)C15—N3—C13—C1278.13 (16)
Cl1—Zn1—N4—C1758.82 (11)N4—N3—C13—C12109.26 (13)
N1—Zn1—N4—N316.63 (12)C11—C12—C13—N3105.38 (13)
Cl2—Zn1—N4—N3108.65 (10)C7—C12—C13—N375.87 (15)
Cl1—Zn1—N4—N3128.64 (10)N4—N3—C15—C160.62 (14)
N2—N1—C2—C30.15 (14)C13—N3—C15—C16173.86 (12)
Zn1—N1—C2—C3163.06 (9)N4—N3—C15—C14177.89 (12)
N2—N1—C2—C1178.95 (12)C13—N3—C15—C144.6 (2)
Zn1—N1—C2—C117.83 (19)N3—C15—C16—C170.73 (15)
N1—C2—C3—C40.13 (16)C14—C15—C16—C17177.61 (14)
C1—C2—C3—C4178.91 (13)N3—N4—C17—C160.24 (14)
N1—N2—C4—C30.04 (15)Zn1—N4—C17—C16174.30 (9)
C6—N2—C4—C3179.76 (12)N3—N4—C17—C18178.81 (12)
N1—N2—C4—C5178.73 (12)Zn1—N4—C17—C184.75 (18)
C6—N2—C4—C51.0 (2)C15—C16—C17—N40.61 (15)
C2—C3—C4—N20.05 (15)C15—C16—C17—C18178.36 (14)
C2—C3—C4—C5178.72 (13)

Experimental details

Crystal data
Chemical formula[ZnCl2(C18H22N4)]
Mr430.67
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.0830 (8), 10.6375 (9), 11.9558 (10)
α, β, γ (°)111.853 (1), 95.476 (1), 112.636 (1)
V3)950.38 (14)
Z2
Radiation typeMo Kα
µ (mm1)1.58
Crystal size (mm)0.43 × 0.32 × 0.28
Data collection
DiffractometerBruker CCD-1000 area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.550, 0.666
No. of measured, independent and
observed [I > 2σ(I)] reflections
13237, 4672, 4403
Rint0.020
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.065, 1.04
No. of reflections4672
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.23

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2008) and FCF_filter (Guzei, 2007), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

Selected geometric parameters (Å, º) top
Zn1—N12.0323 (11)Zn1—Cl22.2145 (4)
Zn1—N42.0512 (11)Zn1—Cl12.2526 (4)
N1—Zn1—N4111.72 (4)N1—Zn1—Cl1103.37 (3)
N1—Zn1—Cl2115.14 (3)N4—Zn1—Cl1106.19 (3)
N4—Zn1—Cl2104.72 (3)Cl2—Zn1—Cl1115.538 (13)
 

Acknowledgements

We are grateful for financial support for this work through a postdoctoral fellowship to AB by the National Research Foundation (NRF) and the NRF–DST Centre of Excellence in Catalysis (c*change).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChang, W.-K., Lee, G.-H., Wang, Y., Ho, T.-I., Su, Y. O. & Lin, Y.-C. (1994). Inorg. Chim. Acta, 223, 139–144.  CSD CrossRef CAS Web of Science Google Scholar
First citationGuerrero, A. M., Jalon, F. A., Manzano, B. R., Claramunt, R. M., Maria, M. D., Escolastico, C., Elguero, J., Rodriguez, A. M., Maestro, M. A. & Mahia, J. (2002). Eur. J. Inorg. Chem. pp. 3178–3189.  Web of Science CrossRef Google Scholar
First citationGuzei, I. A. (2007). FCF_filter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin–Madison, Madison, Wisconsin, USA.  Google Scholar
First citationGuzei, I. A., Spencer, L. C., Segapelo, T. V. & Darkwa, J. (2011). Acta Cryst. E67, m1627–m1628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHartshorn, C. M. & Steel, P. J. (1995). Aust. J. Chem. 48, 1587–1599.  CSD CrossRef CAS Web of Science Google Scholar
First citationHartshorn, C. M. & Steel, P. J. (1997). Chem. Commun. pp. 541–542.  CSD CrossRef Web of Science Google Scholar
First citationHartshorn, C. M. & Steel, P. J. (1998). Organometallics, 17, 3487–3496.  Web of Science CSD CrossRef CAS Google Scholar
First citationMotsoane, N. M., Guzei, I. A. & Darkwa, J. (2007). Z. Naturforsch. Teil B, 62, 323–330.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds