organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis[(2,2′:6′,2′′-terpyridin-4′-yl)­­oxy]butane

aSchool of Chemistry, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South Africa
*Correspondence e-mail: akermanm@ukzn.ac.za

(Received 31 October 2011; accepted 23 November 2011; online 30 November 2011)

The title compound, C34H28N6O2, has an inversion centre located at the mid-point of the central C—C bond of the diether bridging unit. The central pyridine rings of the terpyridyl units and the diether chain are co-planar: the maximum deviation from the 18-atom mean plane defined by the bridging unit and the central pyridyl ring is for the pyridyl N atom which sits 0.055 (1) Å above the plane. The dihedral angles between the terminal pyridine rings with this plane are 10.3 (1) and 37.6 (1)°, repectively. In the crystal, weak C—H⋯N inter­actions link the mol­ecules into infinite chains parallel to the a axis.

Related literature

For the structure of the unsubstituted 2,2′:6′,2′′-terpyridine compound, see: Bessel et al. (1992[Bessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1992). J. Chem. Soc. Dalton Trans. pp. 3223-3228.]). For the structure of the precursor of the title compound, 4′-chloro-2,2′: 6′,2′′-terpyridine, see: Beves et al. (2006[Beves, J. E., Constable, E. C., Housecroft, C. E., Neuburger, M. & Schaffner, S. (2006). Acta Cryst. E62, o2497-o2498.]). For reviews of functionalized 2,2′:6′,2′′-terpyridine compounds, see: Fallahpour (2003[Fallahpour, R. A. (2003). Synthesis, pp. 155-184.]); Heller & Schubert (2003[Heller, M. & Schubert, U. S. (2003). Eur. J. Org. Chem. pp. 947-961.]). For a comprehensive review of platinum terpyridines, see: Newkome et al. (2008[Newkome, G. R., Eryazici, I. & Moorefield, C. N. (2008). Chem. Rev. 108, 1834-1895.]). For the structure of bis­(2,2′:6′,2′′-terpyrid-4′-yl) ether, see: Constable et al. (1995[Constable, E. C., Thompson, A. M. W. C., Harveson, P., Macko, L. & Zehnder, M. (1995). Chem. Eur. J. 1, 360-367.]). For the synthesis of the title compound, see: Van der Schilden (2006[Van der Schilden, K. (2006). PhD thesis, Leiden University, The Netherlands.]); Constable et al. (2005[Constable, E. C., Housecroft, C. E., Neuburger, M., Schaffner, S. & Smith, C. B. (2005). Dalton Trans. pp. 2259-2267.]). For the synthesis and structures of related bis­(terpy) structures linked by an alk­oxy substituent, see: Constable et al. (2006[Constable, E. C., Chow, H. S., Housecroft, C. E., Neuburger, M. & Schaffner, S. (2006). Polyhedron, 25, 1831-1843.]).

[Scheme 1]

Experimental

Crystal data
  • C34H28N6O2

  • Mr = 552.62

  • Triclinic, [P \overline 1]

  • a = 6.3678 (2) Å

  • b = 10.5088 (4) Å

  • c = 10.9216 (3) Å

  • α = 72.580 (3)°

  • β = 78.561 (3)°

  • γ = 77.438 (3)°

  • V = 673.64 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur 2 CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.966, Tmax = 0.974

  • 10771 measured reflections

  • 4604 independent reflections

  • 3678 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.148

  • S = 1.04

  • 4604 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯N3i 0.95 2.66 3.592 (1) 168
Symmetry code: (i) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound is one in a series of ligands developed in an attempt to harness multifunctional activity. Upon coordination to platinum(II) these complexes should be able to covalently bind DNA through both metal centres, thus increasing the number of adducts formed. Furthermore the presence of the flexible diol derived linkage will provide the complex with the potential to engage in long range interactions with DNA.

The ligand crystallized in the triclinic space group P-1, with a half molecule in the asymmetric unit and Z = 1. The two halves of the ligand are related by crystallographically imposed inversion symmetry. The inversion centre is located at the mid-point of the di-ether linkage unit. The three pyridine rings adopt a trans, trans conformation as observed in the parent 4'-chloro-2,2':6',2''- terpyridine (Beves et al., 2006) and in uncoordinated terpy ligands in general.

The central pyridine rings of the terpy ligands are in the same plane as the bridging di-ether chain. The terminal pyridine rings of the terpyridine ligand are, however canted relative to the central pyridine ring. The C9–C10–C11–N3 torsion angle is 35.4 (1)°, while the C7–C2–C1–N2 torsion angle is 7.1 (1)° (refer to Figure 1 for the atom numbering scheme). The large torsion angle of the pyridine ring containing N3 is seemingly to allow for hydrogen bonding between the pyridine nitrogen atom N3 and the H13 hydrogen atom of an adjacent molecule (Table 1) . This interaction links the molecules into a one-dimensional chain (Figure 2) along the a-axis direction. There is no indication of meaningful π···π or C–H···π interactions in the crystal, which are often observed in terpyridine structures (Beves et al., 2006).

Related literature top

For the structure of the unsubstituted 2,2':6',2''-terpyridine compound, see: Bessel et al. (1992). For the structure of the precursor of the title compound, 4'-chloro-2,2': 6',2''-terpyridine, see: Beves et al. (2006). For reviews of functionalized 2,2':6',2''-terpyridine compounds, see: Fallahpour (2003); Heller & Schubert (2003). For a comprehensive review of platinum terpyridines, see: Newkome et al. (2008). For the structure of bis(2,2':6',2''-terpyrid-4'-yl) ether, see: Constable et al. (1995). For the synthesis of the title compound, see: Van der Schilden (2006); Constable et al. (2005). For the synthesis and structures of related bis(terpy) structures linked by an alkoxy substituent, see: Constable et al. (2006).

Experimental top

The title compound was prepared by an adaptation of a previously described method (Van der Schilden, 2006 and Constable et al., 2005). Butanediol (1.13 mmol) was added to a suspension of ground potassium hydroxide (6.69 mmol) in DMSO (30 ml). The solution was heated to reflux for 1 h after which 4'-chloro-2,2':6',2''-terpyridine (2.23 mmol) was added. The mixture was again brought to reflux for an additional 24 h. After cooling to room temperature, the brown mixture was added to cold water (100 ml). The resulting off-white precipitate was filtered, rinsed with cold ethanol and air dried. Single crystals of were grown by slow liquid diffusion of n-hexane into a chloroform solution of the compound.

Refinement top

All non-hydrogen atoms were located in the difference Fourier map and refined anisotropically. The positions of all hydrogen atoms were calculated using the standard riding model of SHELXL97. with C—H(aromatic)and C—H (methylene)distances of 0.93 Å and Uiso = 1.2 Ueq.

Structure description top

The title compound is one in a series of ligands developed in an attempt to harness multifunctional activity. Upon coordination to platinum(II) these complexes should be able to covalently bind DNA through both metal centres, thus increasing the number of adducts formed. Furthermore the presence of the flexible diol derived linkage will provide the complex with the potential to engage in long range interactions with DNA.

The ligand crystallized in the triclinic space group P-1, with a half molecule in the asymmetric unit and Z = 1. The two halves of the ligand are related by crystallographically imposed inversion symmetry. The inversion centre is located at the mid-point of the di-ether linkage unit. The three pyridine rings adopt a trans, trans conformation as observed in the parent 4'-chloro-2,2':6',2''- terpyridine (Beves et al., 2006) and in uncoordinated terpy ligands in general.

The central pyridine rings of the terpy ligands are in the same plane as the bridging di-ether chain. The terminal pyridine rings of the terpyridine ligand are, however canted relative to the central pyridine ring. The C9–C10–C11–N3 torsion angle is 35.4 (1)°, while the C7–C2–C1–N2 torsion angle is 7.1 (1)° (refer to Figure 1 for the atom numbering scheme). The large torsion angle of the pyridine ring containing N3 is seemingly to allow for hydrogen bonding between the pyridine nitrogen atom N3 and the H13 hydrogen atom of an adjacent molecule (Table 1) . This interaction links the molecules into a one-dimensional chain (Figure 2) along the a-axis direction. There is no indication of meaningful π···π or C–H···π interactions in the crystal, which are often observed in terpyridine structures (Beves et al., 2006).

For the structure of the unsubstituted 2,2':6',2''-terpyridine compound, see: Bessel et al. (1992). For the structure of the precursor of the title compound, 4'-chloro-2,2': 6',2''-terpyridine, see: Beves et al. (2006). For reviews of functionalized 2,2':6',2''-terpyridine compounds, see: Fallahpour (2003); Heller & Schubert (2003). For a comprehensive review of platinum terpyridines, see: Newkome et al. (2008). For the structure of bis(2,2':6',2''-terpyrid-4'-yl) ether, see: Constable et al. (1995). For the synthesis of the title compound, see: Van der Schilden (2006); Constable et al. (2005). For the synthesis and structures of related bis(terpy) structures linked by an alkoxy substituent, see: Constable et al. (2006).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A view of packing of the title compound.
1,4-Bis[(2,2':6',2''-terpyridin-4'-yl)oxy]butane top
Crystal data top
C34H28N6O2Z = 1
Mr = 552.62F(000) = 290
Triclinic, P1Dx = 1.362 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3678 (2) ÅCell parameters from 4604 reflections
b = 10.5088 (4) Åθ = 3.2–34.2°
c = 10.9216 (3) ŵ = 0.09 mm1
α = 72.580 (3)°T = 100 K
β = 78.561 (3)°Triangular, colourless
γ = 77.438 (3)°0.40 × 0.40 × 0.30 mm
V = 673.64 (4) Å3
Data collection top
Oxford Diffraction Xcalibur 2 CCD
diffractometer
4604 independent reflections
Radiation source: fine-focus sealed tube3678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scans at fixed θ anglesθmax = 34.2°, θmin = 3.2°
Absorption correction: multi-scan
(Blessing, 1995)
h = 109
Tmin = 0.966, Tmax = 0.974k = 1515
10771 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1033P)2]
where P = (Fo2 + 2Fc2)/3
4604 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C34H28N6O2γ = 77.438 (3)°
Mr = 552.62V = 673.64 (4) Å3
Triclinic, P1Z = 1
a = 6.3678 (2) ÅMo Kα radiation
b = 10.5088 (4) ŵ = 0.09 mm1
c = 10.9216 (3) ÅT = 100 K
α = 72.580 (3)°0.40 × 0.40 × 0.30 mm
β = 78.561 (3)°
Data collection top
Oxford Diffraction Xcalibur 2 CCD
diffractometer
4604 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3678 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.974Rint = 0.023
10771 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.04Δρmax = 0.46 e Å3
4604 reflectionsΔρmin = 0.43 e Å3
190 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.91969 (13)0.45081 (8)0.20750 (8)0.01459 (17)
C20.99907 (14)0.57692 (9)0.12469 (8)0.01538 (17)
C31.21800 (15)0.57653 (9)0.07304 (9)0.01893 (18)
H31.31980.49460.08690.023*
C41.28436 (16)0.69785 (10)0.00112 (9)0.0218 (2)
H41.43300.70090.03310.026*
C51.12985 (16)0.81461 (10)0.01999 (9)0.0227 (2)
H51.16980.89900.06990.027*
C60.91517 (17)0.80504 (9)0.03359 (10)0.0231 (2)
H60.80930.88500.01790.028*
C70.70581 (14)0.45958 (9)0.27116 (8)0.01544 (17)
H70.60950.54380.25930.019*
C80.63836 (13)0.34181 (9)0.35221 (8)0.01472 (17)
C90.78076 (13)0.21929 (8)0.36168 (8)0.01555 (17)
H90.73740.13680.41460.019*
C100.98796 (13)0.22108 (8)0.29156 (8)0.01479 (17)
C111.14276 (14)0.09254 (8)0.29357 (8)0.01510 (17)
C121.36485 (14)0.08795 (9)0.28696 (9)0.01945 (19)
H121.41940.16630.28390.023*
C131.50515 (15)0.03274 (10)0.28492 (10)0.0221 (2)
H131.65690.03940.28320.026*
C141.41963 (15)0.14337 (9)0.28550 (10)0.0225 (2)
H141.51180.22650.28080.027*
C151.19601 (15)0.12984 (9)0.29316 (10)0.0213 (2)
H151.13820.20630.29430.026*
C160.29097 (13)0.46356 (9)0.41509 (9)0.01583 (17)
H16A0.26260.50460.32440.019*
H16B0.35430.52750.44170.019*
C170.08210 (13)0.43460 (8)0.50317 (8)0.01595 (18)
H17A0.11220.39280.59340.019*
H17B0.02070.36990.47640.019*
N11.06151 (11)0.33489 (7)0.21789 (7)0.01511 (16)
N20.84919 (13)0.68991 (8)0.10593 (8)0.02008 (17)
N31.05674 (12)0.01556 (7)0.29902 (8)0.01867 (17)
O10.43840 (10)0.33755 (6)0.42503 (6)0.01732 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0132 (4)0.0138 (4)0.0159 (4)0.0007 (3)0.0025 (3)0.0045 (3)
C20.0153 (4)0.0139 (4)0.0154 (4)0.0003 (3)0.0020 (3)0.0036 (3)
C30.0158 (4)0.0180 (4)0.0202 (4)0.0006 (3)0.0003 (3)0.0040 (3)
C40.0197 (4)0.0214 (4)0.0222 (4)0.0047 (3)0.0010 (3)0.0045 (4)
C50.0271 (5)0.0171 (4)0.0220 (5)0.0058 (4)0.0014 (4)0.0022 (4)
C60.0243 (5)0.0146 (4)0.0262 (5)0.0005 (3)0.0026 (4)0.0026 (4)
C70.0129 (4)0.0137 (4)0.0182 (4)0.0020 (3)0.0021 (3)0.0051 (3)
C80.0107 (3)0.0156 (4)0.0171 (4)0.0004 (3)0.0016 (3)0.0053 (3)
C90.0122 (4)0.0135 (4)0.0190 (4)0.0004 (3)0.0019 (3)0.0034 (3)
C100.0118 (3)0.0137 (4)0.0182 (4)0.0012 (3)0.0033 (3)0.0050 (3)
C110.0125 (4)0.0133 (4)0.0172 (4)0.0007 (3)0.0016 (3)0.0031 (3)
C120.0130 (4)0.0156 (4)0.0282 (5)0.0004 (3)0.0035 (3)0.0053 (4)
C130.0128 (4)0.0187 (4)0.0298 (5)0.0024 (3)0.0019 (3)0.0035 (4)
C140.0181 (4)0.0149 (4)0.0289 (5)0.0040 (3)0.0016 (4)0.0038 (4)
C150.0194 (4)0.0131 (4)0.0285 (5)0.0003 (3)0.0028 (4)0.0039 (4)
C160.0115 (4)0.0151 (4)0.0188 (4)0.0020 (3)0.0022 (3)0.0043 (3)
C170.0119 (4)0.0161 (4)0.0184 (4)0.0003 (3)0.0016 (3)0.0049 (3)
N10.0127 (3)0.0130 (3)0.0181 (3)0.0010 (2)0.0024 (3)0.0041 (3)
N20.0186 (4)0.0143 (3)0.0238 (4)0.0015 (3)0.0022 (3)0.0033 (3)
N30.0149 (3)0.0135 (3)0.0252 (4)0.0001 (3)0.0024 (3)0.0034 (3)
O10.0111 (3)0.0143 (3)0.0224 (3)0.0022 (2)0.0010 (2)0.0039 (3)
Geometric parameters (Å, º) top
C1—N11.3385 (10)C10—N11.3473 (11)
C1—C71.3982 (12)C10—C111.4860 (12)
C1—C21.4907 (12)C11—N31.3459 (11)
C2—N21.3423 (11)C11—C121.3927 (12)
C2—C31.3960 (12)C12—C131.3869 (12)
C3—C41.3871 (13)C12—H120.9500
C3—H30.9500C13—C141.3848 (13)
C4—C51.3865 (13)C13—H130.9500
C4—H40.9500C14—C151.3881 (13)
C5—C61.3887 (14)C14—H140.9500
C5—H50.9500C15—N31.3390 (11)
C6—N21.3348 (12)C15—H150.9500
C6—H60.9500C16—O11.4354 (10)
C7—C81.3872 (12)C16—C171.5101 (12)
C7—H70.9500C16—H16A0.9900
C8—O11.3629 (10)C16—H16B0.9900
C8—C91.3930 (11)C17—C17i1.5278 (16)
C9—C101.3889 (12)C17—H17A0.9900
C9—H90.9500C17—H17B0.9900
N1—C1—C7123.79 (8)N3—C11—C10116.45 (7)
N1—C1—C2117.13 (7)C12—C11—C10120.57 (8)
C7—C1—C2119.07 (8)C13—C12—C11118.97 (8)
N2—C2—C3122.59 (8)C13—C12—H12120.5
N2—C2—C1116.08 (8)C11—C12—H12120.5
C3—C2—C1121.31 (8)C14—C13—C12118.66 (8)
C4—C3—C2118.85 (9)C14—C13—H13120.7
C4—C3—H3120.6C12—C13—H13120.7
C2—C3—H3120.6C13—C14—C15118.40 (8)
C5—C4—C3118.82 (9)C13—C14—H14120.8
C5—C4—H4120.6C15—C14—H14120.8
C3—C4—H4120.6N3—C15—C14124.01 (8)
C4—C5—C6118.33 (8)N3—C15—H15118.0
C4—C5—H5120.8C14—C15—H15118.0
C6—C5—H5120.8O1—C16—C17107.75 (7)
N2—C6—C5123.71 (9)O1—C16—H16A110.2
N2—C6—H6118.1C17—C16—H16A110.2
C5—C6—H6118.1O1—C16—H16B110.2
C8—C7—C1118.07 (8)C17—C16—H16B110.2
C8—C7—H7121.0H16A—C16—H16B108.5
C1—C7—H7121.0C16—C17—C17i110.24 (9)
O1—C8—C7123.93 (8)C16—C17—H17A109.6
O1—C8—C9116.87 (7)C17i—C17—H17A109.6
C7—C8—C9119.20 (8)C16—C17—H17B109.6
C10—C9—C8118.14 (8)C17i—C17—H17B109.6
C10—C9—H9120.9H17A—C17—H17B108.1
C8—C9—H9120.9C1—N1—C10116.83 (7)
N1—C10—C9123.81 (8)C6—N2—C2117.68 (8)
N1—C10—C11115.91 (7)C15—N3—C11116.94 (8)
C9—C10—C11120.27 (8)C8—O1—C16117.00 (7)
N3—C11—C12122.95 (8)
N1—C1—C2—N2174.04 (7)C9—C10—C11—C12146.06 (9)
C7—C1—C2—N27.06 (12)N3—C11—C12—C130.47 (15)
N1—C1—C2—C37.51 (12)C10—C11—C12—C13177.97 (8)
C7—C1—C2—C3171.39 (8)C11—C12—C13—C141.97 (15)
N2—C2—C3—C41.01 (14)C12—C13—C14—C152.45 (15)
C1—C2—C3—C4177.34 (8)C13—C14—C15—N30.56 (16)
C2—C3—C4—C51.79 (14)O1—C16—C17—C17i179.99 (8)
C3—C4—C5—C60.89 (14)C7—C1—N1—C101.97 (12)
C4—C5—C6—N20.94 (15)C2—C1—N1—C10179.19 (7)
N1—C1—C7—C81.61 (13)C9—C10—N1—C13.86 (12)
C2—C1—C7—C8177.21 (7)C11—C10—N1—C1175.46 (7)
C1—C7—C8—O1176.41 (7)C5—C6—N2—C21.74 (15)
C1—C7—C8—C93.43 (12)C3—C2—N2—C60.74 (13)
O1—C8—C9—C10178.11 (7)C1—C2—N2—C6179.17 (8)
C7—C8—C9—C101.73 (12)C14—C15—N3—C111.81 (15)
C8—C9—C10—N12.05 (13)C12—C11—N3—C152.32 (14)
C8—C9—C10—C11177.24 (7)C10—C11—N3—C15176.17 (8)
N1—C10—C11—N3143.94 (8)C7—C8—O1—C160.40 (12)
C9—C10—C11—N335.40 (11)C9—C8—O1—C16179.76 (7)
N1—C10—C11—C1234.59 (12)C17—C16—O1—C8179.98 (7)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N3ii0.952.663.592 (1)168
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC34H28N6O2
Mr552.62
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.3678 (2), 10.5088 (4), 10.9216 (3)
α, β, γ (°)72.580 (3), 78.561 (3), 77.438 (3)
V3)673.64 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur 2 CCD
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.966, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
10771, 4604, 3678
Rint0.023
(sin θ/λ)max1)0.791
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.148, 1.04
No. of reflections4604
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.43

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N3i0.9502.663.592 (1)168.4
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We wish to thank the University of KwaZulu-Natal for supporting this research by providing both funding and facilities.

References

First citationBessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1992). J. Chem. Soc. Dalton Trans. pp. 3223–3228.  CSD CrossRef Web of Science Google Scholar
First citationBeves, J. E., Constable, E. C., Housecroft, C. E., Neuburger, M. & Schaffner, S. (2006). Acta Cryst. E62, o2497–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationConstable, E. C., Chow, H. S., Housecroft, C. E., Neuburger, M. & Schaffner, S. (2006). Polyhedron, 25, 1831–1843.  Google Scholar
First citationConstable, E. C., Housecroft, C. E., Neuburger, M., Schaffner, S. & Smith, C. B. (2005). Dalton Trans. pp. 2259–2267.  Web of Science CSD CrossRef Google Scholar
First citationConstable, E. C., Thompson, A. M. W. C., Harveson, P., Macko, L. & Zehnder, M. (1995). Chem. Eur. J. 1, 360–367.  CrossRef CAS Web of Science Google Scholar
First citationFallahpour, R. A. (2003). Synthesis, pp. 155–184.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHeller, M. & Schubert, U. S. (2003). Eur. J. Org. Chem. pp. 947–961.  CrossRef Google Scholar
First citationNewkome, G. R., Eryazici, I. & Moorefield, C. N. (2008). Chem. Rev. 108, 1834–1895.  Web of Science PubMed Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan der Schilden, K. (2006). PhD thesis, Leiden University, The Netherlands.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds