metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{5,10,15,20-Tetra­kis[4-(oct­yl­oxy)phen­yl]porphyrinato}copper(II)

aDepartment of Organic Chemistry, The College of Chemistry, Xiangtan University, Hunan 411105, People's Republic of China, bCollege of Chemistry and Environmental Engineering, Dongguan University of Technology, Guangdong 523808, People's Republic of China, and cCleaner Production Center, Dongguan University of Technology, Guangdong 523808, People's Republic of China
*Correspondence e-mail: zhhbhanlf@163.com

(Received 1 September 2011; accepted 21 October 2011; online 5 November 2011)

In the title compound, [Cu(C76H92N4O4)], the central Cu(II) ion is situated on an inversion centre. The porphyrinate core exhibits a nearly planar conformation [maximum deviation = 0.027 (3) Å], with Cu—N distances of 1.997 (2) and 2.001 (2) Å. The benzene rings of the 4-octyloxyphenyl groups are rotated at angles of 84.02 (8) and 77.02 (6)° with respect to the mean plane of the porphyrin fragment. The two terminal C atoms in the octyl group are disordered over two positions of equal occupancy.

Related literature

For general background to porphyrin species and their applications, see: Holten et al. (2002[Holten, D., Bocian, D. F. & Lindsey, J. S. (2002). Acc. Chem. Res. 35, 57-69.]); Gust & Moore (1985[Gust, D. & Moore, T. A. (1985). J. Photochem. 29, 174-184.]); Gunter & Johnston (1992[Gunter, M. J. & Johnston, M. R. (1992). J. Chem. Soc. Chem. Commun. 17, 1163-1165.]); Anderson & Sanders (1995[Anderson, H. L. & Sanders, J. K. M. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 2223-2229.]). For related structures, see: Fleischer (1963[Fleischer, E. B. (1963). J. Am. Chem. Soc. 85, 1353-1354.]); Fleischer et al. (1964[Fleischer, E. B., Miller, C. K. & Webb, L. E. (1964). J. Am. Chem. Soc. 86, 2342-2347.]); He (2007[He, H.-S. (2007). Acta Cryst. E63, m976-m977.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C76H92N4O4)]

  • Mr = 1189.08

  • Monoclinic, P 21 /c

  • a = 16.0521 (16) Å

  • b = 19.2628 (18) Å

  • c = 10.4767 (10) Å

  • β = 90.024 (2)°

  • V = 3239.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 185 K

  • 0.22 × 0.14 × 0.08 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.919, Tmax = 0.970

  • 17425 measured reflections

  • 5732 independent reflections

  • 3710 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.124

  • S = 1.03

  • 5732 reflections

  • 406 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Porphyrins, metalloporphyrins, and their derivatives are researched in many fields, such as molecular electronic devices (Holten et al., 2002), natural photosynthetic systems (Gust & Moore, 1985), electronic devices (Gunter & Johnston, 1992) or enzyme mimics (Anderson & Sanders, 1995). In this paper, we report the crystal structure of the title compound.

The porphyrin moiety in the title compound is essentially planar, the macrocyclic core 24-menbered ring is planar with the mean deviation of 0.027 (3) Å. The fourcoordinate Cu ion fitting into its center at 1.997 (2)-2.001 (2) Å, from the surrouding pyrrole N atoms, in agreement with that found in the related compounds (Fleischer 1963; Fleischer et al., 1964; He 2007.). The p-octyloxyphenyl groups are rotated at angles of 84.02 (8) ° (C11-C16) and 77.02 (6) ° (C25-C30) with respect to the porphyrin mean plane, due to steric hindrance with the pyrrole-H atoms of the macrocycle. Two terminal C atoms (C23 & C24) in the octyl group are disordered over two positions with site occupancy factors, from refinement of 0.4510 (7) (part A) and 0.5489 (3) (part B).

Related literature top

For general background to porphyrin species and their applications, see: Holten et al. (2002); Gust & Moore (1985); Gunter & Johnston (1992); Anderson & Sanders (1995). For related structures, see: Fleischer (1963); Fleischer et al. (1964); He (2007).

Experimental top

0.04mmol meso-tetrakis[p-(octyloxy)phenyl] porphyrin and 0.40mmol Cu(CH3COO)2.H2O were dissolved in 20 ml chloroform, refluxed for 8 hours, and the solvent was removed by a rotary evaporator, the residue was purified by column chromatography with chloroform, then crystallized by methanol and chloroform, and a purple solid was obtained (yield=55%). Single crystals were recrystallization from a dichloromethane solution at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 (aromatic), 0.99 (CH2) and 0.98 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). Two terminal C atoms (C23 & C24) in the octyl group are disordered over two positions with site occupancy factors, from refinement of 0.4510 (7) (part A) and 0.5489 (3) (part B). The distance of equivalent C-C pairs were restrained to 1.540 (1) Å and 0.001 Å using command DFIX and SADI, respectively, and displacement ellipsoids of C23 & C24 set were restrained to 0.01 using command ISOR and DELU.

Structure description top

Porphyrins, metalloporphyrins, and their derivatives are researched in many fields, such as molecular electronic devices (Holten et al., 2002), natural photosynthetic systems (Gust & Moore, 1985), electronic devices (Gunter & Johnston, 1992) or enzyme mimics (Anderson & Sanders, 1995). In this paper, we report the crystal structure of the title compound.

The porphyrin moiety in the title compound is essentially planar, the macrocyclic core 24-menbered ring is planar with the mean deviation of 0.027 (3) Å. The fourcoordinate Cu ion fitting into its center at 1.997 (2)-2.001 (2) Å, from the surrouding pyrrole N atoms, in agreement with that found in the related compounds (Fleischer 1963; Fleischer et al., 1964; He 2007.). The p-octyloxyphenyl groups are rotated at angles of 84.02 (8) ° (C11-C16) and 77.02 (6) ° (C25-C30) with respect to the porphyrin mean plane, due to steric hindrance with the pyrrole-H atoms of the macrocycle. Two terminal C atoms (C23 & C24) in the octyl group are disordered over two positions with site occupancy factors, from refinement of 0.4510 (7) (part A) and 0.5489 (3) (part B).

For general background to porphyrin species and their applications, see: Holten et al. (2002); Gust & Moore (1985); Gunter & Johnston (1992); Anderson & Sanders (1995). For related structures, see: Fleischer (1963); Fleischer et al. (1964); He (2007).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Two terminal C atoms (C23 & C24) in the octyl group are disordered over two positions with site occupancy factors, from refinement of 0.4510 (7) (part A) and 0.5489 (3) (part B). H atoms were omitted for clarity. [Symmetry codes: (i) - x + 1, - y + 1, - z + 1.]
{5,10,15,20-Tetrakis[4-(octyloxy)phenyl]porphyrinato}copper(II) top
Crystal data top
[Cu(C76H92N4O4)]F(000) = 1274
Mr = 1189.08Dx = 1.219 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3031 reflections
a = 16.0521 (16) Åθ = 2.5–23.5°
b = 19.2628 (18) ŵ = 0.39 mm1
c = 10.4767 (10) ÅT = 185 K
β = 90.024 (2)°Block, purple
V = 3239.5 (5) Å30.22 × 0.14 × 0.08 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
5732 independent reflections
Radiation source: fine-focus sealed tube3710 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
phi and ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1619
Tmin = 0.919, Tmax = 0.970k = 2222
17425 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: difference Fourier map
wR(F2) = 0.124H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.5451P]
where P = (Fo2 + 2Fc2)/3
5732 reflections(Δ/σ)max = 0.002
406 parametersΔρmax = 0.52 e Å3
4 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Cu(C76H92N4O4)]V = 3239.5 (5) Å3
Mr = 1189.08Z = 2
Monoclinic, P21/cMo Kα radiation
a = 16.0521 (16) ŵ = 0.39 mm1
b = 19.2628 (18) ÅT = 185 K
c = 10.4767 (10) Å0.22 × 0.14 × 0.08 mm
β = 90.024 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
5732 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3710 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.970Rint = 0.064
17425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0504 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.03Δρmax = 0.52 e Å3
5732 reflectionsΔρmin = 0.43 e Å3
406 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.00000.00000.00000.01922 (16)
N10.06186 (15)0.08619 (10)0.0474 (2)0.0187 (6)
N20.09244 (15)0.05769 (11)0.0721 (2)0.0210 (6)
O10.47610 (14)0.09309 (10)0.4409 (2)0.0348 (6)
O20.09354 (13)0.46495 (9)0.07939 (19)0.0286 (5)
C10.13671 (19)0.09088 (14)0.1114 (3)0.0210 (7)
C20.1588 (2)0.16259 (14)0.1298 (3)0.0248 (8)
H20.20700.17970.17210.030*
C30.09840 (19)0.20081 (14)0.0755 (3)0.0248 (7)
H30.09670.25000.07100.030*
C40.03719 (19)0.15420 (14)0.0259 (3)0.0207 (7)
C50.03763 (19)0.17514 (14)0.0293 (3)0.0207 (7)
C60.09829 (19)0.12931 (14)0.0732 (3)0.0217 (7)
C70.17422 (19)0.14997 (15)0.1334 (3)0.0261 (8)
H70.19290.19630.14580.031*
C80.2143 (2)0.09192 (14)0.1693 (3)0.0279 (8)
H80.26660.08950.21150.033*
C90.16300 (19)0.03415 (14)0.1318 (3)0.0228 (7)
C100.18378 (19)0.03500 (14)0.1551 (3)0.0222 (7)
C110.26082 (19)0.05015 (13)0.2320 (3)0.0220 (7)
C120.3363 (2)0.06474 (16)0.1743 (3)0.0355 (9)
H120.33990.06510.08380.043*
C130.4071 (2)0.07895 (16)0.2466 (3)0.0355 (8)
H130.45840.08920.20540.043*
C140.4027 (2)0.07817 (14)0.3783 (3)0.0247 (7)
C150.3287 (2)0.06294 (16)0.4370 (3)0.0345 (8)
H150.32570.06150.52750.041*
C160.2579 (2)0.04953 (16)0.3638 (3)0.0338 (8)
H160.20660.03980.40540.041*
C170.4775 (2)0.08613 (16)0.5752 (3)0.0385 (9)
H17A0.46830.03710.59970.046*
H17B0.43310.11480.61420.046*
C180.5628 (2)0.11044 (16)0.6209 (3)0.0411 (10)
H18A0.60650.08360.57610.049*
H18B0.56810.10090.71340.049*
C190.5769 (2)0.18808 (15)0.5972 (3)0.0406 (10)
H19A0.58600.19550.50480.049*
H19B0.52580.21360.62160.049*
C200.6503 (2)0.21847 (15)0.6702 (3)0.0398 (9)
H20A0.70260.19810.63720.048*
H20B0.64540.20590.76150.048*
C210.6541 (3)0.29707 (17)0.6576 (4)0.0622 (14)
H21A0.59850.31620.67850.075*
H21B0.66590.30870.56730.075*
C220.7184 (3)0.33295 (15)0.7409 (4)0.0556 (12)
H22A0.77460.31700.70900.067*0.50
H22B0.71320.31240.82830.067*0.50
H22C0.77480.31570.71580.067*0.50
H22D0.70930.31980.83040.067*0.50
C230.6963 (7)0.4092 (3)0.7736 (8)0.058 (3)0.50
H23A0.74180.42980.82500.070*0.50
H23B0.64480.41030.82550.070*0.50
C240.6835 (11)0.4525 (9)0.6519 (11)0.074 (5)0.50
H24A0.73450.45160.60060.111*0.50
H24B0.67040.50050.67530.111*0.50
H24C0.63740.43290.60230.111*0.50
C23'0.7397 (4)0.4077 (3)0.6990 (8)0.0375 (19)0.50
H23C0.78370.42740.75470.045*0.50
H23D0.76000.40810.60980.045*0.50
C24'0.6590 (8)0.4505 (7)0.7108 (15)0.071 (4)0.50
H24D0.61960.43580.64460.106*0.50
H24E0.67180.49990.70010.106*0.50
H24F0.63430.44290.79520.106*0.50
C250.05312 (19)0.25190 (13)0.0433 (3)0.0207 (7)
C260.0115 (2)0.28857 (15)0.1366 (3)0.0331 (8)
H260.02600.26480.19140.040*
C270.0233 (2)0.36000 (15)0.1522 (3)0.0323 (8)
H270.00570.38440.21720.039*
C280.07731 (19)0.39466 (14)0.0727 (3)0.0237 (7)
C290.1196 (2)0.35866 (15)0.0213 (3)0.0333 (8)
H290.15730.38230.07600.040*
C300.1069 (2)0.28784 (15)0.0352 (3)0.0313 (8)
H300.13600.26350.10040.038*
C310.04455 (19)0.50473 (14)0.1677 (3)0.0291 (7)
H31A0.04790.48400.25400.035*
H31B0.01450.50510.14060.035*
C320.0785 (2)0.57783 (14)0.1696 (3)0.0297 (8)
H32A0.03970.60800.21770.036*
H32B0.08170.59550.08110.036*
C330.1645 (2)0.58193 (14)0.2305 (3)0.0281 (8)
H33A0.20370.55420.17840.034*
H33B0.16180.56030.31610.034*
C340.1993 (2)0.65486 (14)0.2445 (3)0.0313 (8)
H34A0.21170.67390.15880.038*
H34B0.15690.68500.28480.038*
C350.2782 (2)0.65601 (15)0.3246 (3)0.0317 (8)
H35A0.32140.62850.28010.038*
H35B0.26650.63270.40690.038*
C360.3136 (2)0.72779 (16)0.3526 (3)0.0441 (10)
H36A0.33640.74750.27270.053*
H36B0.26780.75850.38150.053*
C370.3816 (2)0.72724 (18)0.4536 (4)0.0523 (11)
H37A0.35750.71060.53500.063*
H37B0.40110.77540.46720.063*
C380.4555 (3)0.6823 (2)0.4201 (4)0.0675 (13)
H38A0.43650.63500.40220.101*
H38B0.49470.68160.49180.101*
H38C0.48330.70120.34440.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0204 (3)0.0137 (2)0.0236 (3)0.0008 (2)0.0081 (2)0.0002 (2)
N10.0211 (15)0.0150 (12)0.0199 (13)0.0008 (10)0.0039 (11)0.0011 (10)
N20.0232 (15)0.0152 (12)0.0245 (13)0.0005 (11)0.0078 (12)0.0003 (10)
O10.0303 (14)0.0343 (12)0.0398 (13)0.0059 (10)0.0178 (11)0.0014 (10)
O20.0362 (14)0.0160 (10)0.0338 (12)0.0042 (9)0.0001 (11)0.0041 (9)
C10.0227 (19)0.0195 (15)0.0207 (16)0.0004 (13)0.0048 (14)0.0018 (12)
C20.028 (2)0.0177 (15)0.0288 (18)0.0044 (13)0.0066 (15)0.0023 (13)
C30.028 (2)0.0162 (15)0.0302 (17)0.0013 (13)0.0048 (15)0.0030 (13)
C40.027 (2)0.0146 (14)0.0204 (16)0.0006 (13)0.0001 (14)0.0010 (12)
C50.0239 (19)0.0171 (15)0.0212 (16)0.0010 (13)0.0029 (14)0.0014 (12)
C60.0251 (19)0.0158 (14)0.0241 (16)0.0022 (13)0.0055 (14)0.0010 (12)
C70.028 (2)0.0173 (15)0.0333 (18)0.0031 (13)0.0088 (15)0.0009 (13)
C80.025 (2)0.0231 (16)0.0352 (18)0.0033 (14)0.0132 (15)0.0030 (14)
C90.0226 (19)0.0210 (16)0.0247 (17)0.0019 (13)0.0059 (15)0.0004 (13)
C100.0225 (19)0.0200 (15)0.0239 (17)0.0004 (13)0.0057 (14)0.0013 (13)
C110.0231 (19)0.0136 (13)0.0293 (18)0.0018 (13)0.0061 (15)0.0006 (13)
C120.032 (2)0.047 (2)0.0276 (18)0.0055 (17)0.0092 (17)0.0038 (15)
C130.023 (2)0.047 (2)0.036 (2)0.0092 (16)0.0029 (16)0.0014 (16)
C140.024 (2)0.0174 (15)0.0324 (18)0.0010 (13)0.0105 (15)0.0020 (13)
C150.033 (2)0.043 (2)0.0271 (18)0.0059 (17)0.0072 (16)0.0046 (15)
C160.025 (2)0.044 (2)0.033 (2)0.0059 (16)0.0044 (16)0.0031 (15)
C170.037 (2)0.0327 (18)0.046 (2)0.0014 (16)0.0179 (18)0.0003 (16)
C180.042 (2)0.0279 (18)0.053 (2)0.0003 (16)0.0260 (19)0.0030 (16)
C190.041 (2)0.0244 (17)0.056 (2)0.0008 (16)0.0239 (19)0.0009 (16)
C200.036 (2)0.0232 (17)0.060 (2)0.0016 (15)0.0238 (19)0.0013 (16)
C210.071 (3)0.0264 (19)0.089 (3)0.0103 (19)0.048 (3)0.0037 (19)
C220.060 (3)0.0280 (19)0.079 (3)0.0016 (18)0.037 (2)0.0059 (19)
C230.067 (7)0.038 (5)0.071 (7)0.008 (5)0.023 (6)0.006 (4)
C240.121 (14)0.042 (7)0.059 (9)0.034 (8)0.011 (7)0.003 (6)
C23'0.036 (5)0.031 (4)0.046 (5)0.010 (3)0.008 (4)0.006 (4)
C24'0.068 (9)0.017 (5)0.127 (14)0.003 (5)0.013 (9)0.004 (9)
C250.0227 (18)0.0160 (14)0.0232 (16)0.0007 (13)0.0057 (14)0.0001 (13)
C260.044 (2)0.0224 (16)0.0333 (19)0.0090 (15)0.0062 (17)0.0008 (14)
C270.042 (2)0.0220 (16)0.0327 (19)0.0030 (15)0.0068 (17)0.0076 (14)
C280.027 (2)0.0181 (14)0.0258 (17)0.0043 (13)0.0088 (15)0.0002 (13)
C290.036 (2)0.0259 (17)0.038 (2)0.0071 (15)0.0109 (17)0.0027 (15)
C300.034 (2)0.0214 (16)0.0386 (19)0.0001 (14)0.0081 (17)0.0077 (14)
C310.0313 (19)0.0213 (15)0.0346 (17)0.0000 (15)0.0004 (15)0.0068 (15)
C320.031 (2)0.0189 (15)0.0387 (19)0.0027 (14)0.0070 (16)0.0032 (14)
C330.033 (2)0.0187 (15)0.0330 (18)0.0009 (14)0.0063 (16)0.0013 (13)
C340.037 (2)0.0194 (15)0.0372 (19)0.0010 (14)0.0089 (17)0.0004 (14)
C350.037 (2)0.0222 (16)0.0357 (19)0.0012 (15)0.0099 (17)0.0013 (14)
C360.050 (3)0.0279 (18)0.055 (2)0.0076 (17)0.019 (2)0.0024 (17)
C370.060 (3)0.0310 (19)0.066 (3)0.0086 (19)0.029 (2)0.0057 (18)
C380.048 (3)0.079 (3)0.076 (3)0.010 (2)0.023 (2)0.014 (2)
Geometric parameters (Å, º) top
Cu1—N1i1.997 (2)C21—H21B0.9900
Cu1—N11.997 (2)C22—C23'1.544 (4)
Cu1—N22.002 (2)C22—C231.550 (5)
Cu1—N2i2.002 (2)C22—H22A1.0101
N1—C11.379 (3)C22—H22B1.0014
N1—C41.387 (3)C22—H22C1.0006
N2—C91.371 (3)C22—H22D0.9822
N2—C61.383 (3)C23—C241.537 (5)
O1—C141.379 (3)C23—H23A0.9900
O1—C171.414 (4)C23—H23B0.9900
O2—C281.381 (3)C24—H24A0.9800
O2—C311.436 (3)C24—H24B0.9800
C1—C101.392 (4)C24—H24C0.9800
C1—C21.439 (4)C23'—C24'1.540 (5)
C2—C31.344 (4)C23'—H23C0.9900
C2—H20.9500C23'—H23D0.9900
C3—C41.429 (4)C24'—H24D0.9800
C3—H30.9500C24'—H24E0.9800
C4—C51.393 (4)C24'—H24F0.9800
C5—C61.393 (4)C25—C301.379 (4)
C5—C251.507 (4)C25—C261.379 (4)
C6—C71.429 (4)C26—C271.399 (4)
C7—C81.343 (4)C26—H260.9500
C7—H70.9500C27—C281.375 (4)
C8—C91.439 (4)C27—H270.9500
C8—H80.9500C28—C291.383 (4)
C9—C10i1.394 (4)C29—C301.387 (4)
C10—C9i1.395 (4)C29—H290.9500
C10—C111.504 (4)C30—H300.9500
C11—C121.383 (4)C31—C321.510 (4)
C11—C161.381 (4)C31—H31A0.9900
C12—C131.393 (4)C31—H31B0.9900
C12—H120.9500C32—C331.522 (4)
C13—C141.381 (4)C32—H32A0.9900
C13—H130.9500C32—H32B0.9900
C14—C151.369 (4)C33—C341.519 (4)
C15—C161.396 (4)C33—H33A0.9900
C15—H150.9500C33—H33B0.9900
C16—H160.9500C34—C351.519 (4)
C17—C181.523 (4)C34—H34A0.9900
C17—H17A0.9900C34—H34B0.9900
C17—H17B0.9900C35—C361.523 (4)
C18—C191.533 (4)C35—H35A0.9900
C18—H18A0.9900C35—H35B0.9900
C18—H18B0.9900C36—C371.520 (4)
C19—C201.521 (4)C36—H36A0.9900
C19—H19A0.9900C36—H36B0.9900
C19—H19B0.9900C37—C381.510 (5)
C20—C211.521 (4)C37—H37A0.9900
C20—H20A0.9900C37—H37B0.9900
C20—H20B0.9900C38—H38A0.9800
C21—C221.518 (4)C38—H38B0.9800
C21—H21A0.9900C38—H38C0.9800
N1i—Cu1—N1180.00 (6)C23—C22—H22A124.4
N1i—Cu1—N289.96 (9)C21—C22—H22A106.2
N1—Cu1—N290.04 (9)C23'—C22—H22B130.3
N1i—Cu1—N2i90.04 (9)C23—C22—H22B98.8
N1—Cu1—N2i89.96 (9)C21—C22—H22B106.9
N2—Cu1—N2i180.0H22A—C22—H22B104.8
C1—N1—C4105.4 (2)C23'—C22—H22C92.0
C1—N1—Cu1127.47 (17)C23—C22—H22C125.5
C4—N1—Cu1127.10 (19)C21—C22—H22C108.3
C9—N2—C6105.7 (2)C23'—C22—H22D122.9
C9—N2—Cu1126.93 (18)C21—C22—H22D109.4
C6—N2—Cu1127.40 (18)H22C—C22—H22D107.4
C14—O1—C17117.9 (3)C22—C23—C24111.1 (9)
C28—O2—C31116.9 (2)C22—C23—H23A109.4
N1—C1—C10125.6 (2)C24—C23—H23A109.4
N1—C1—C2110.0 (2)C22—C23—H23B109.4
C10—C1—C2124.4 (3)C24—C23—H23B109.4
C3—C2—C1106.9 (3)H23A—C23—H23B108.0
C3—C2—H2126.5C24'—C23'—C22106.8 (7)
C1—C2—H2126.5C24'—C23'—H23C110.4
C2—C3—C4107.8 (2)C22—C23'—H23C110.4
C2—C3—H3126.1C24'—C23'—H23D110.4
C4—C3—H3126.1C22—C23'—H23D110.4
C5—C4—N1125.9 (2)H23C—C23'—H23D108.6
C5—C4—C3124.2 (2)C23'—C24'—H24D109.5
N1—C4—C3109.8 (2)C23'—C24'—H24E109.5
C6—C5—C4123.8 (2)H24D—C24'—H24E109.5
C6—C5—C25118.4 (3)C23'—C24'—H24F109.5
C4—C5—C25117.8 (2)H24D—C24'—H24F109.5
N2—C6—C5125.6 (3)H24E—C24'—H24F109.5
N2—C6—C7109.8 (2)C30—C25—C26118.0 (3)
C5—C6—C7124.4 (2)C30—C25—C5122.5 (3)
C8—C7—C6107.4 (3)C26—C25—C5119.4 (3)
C8—C7—H7126.3C25—C26—C27121.4 (3)
C6—C7—H7126.3C25—C26—H26119.3
C7—C8—C9107.1 (3)C27—C26—H26119.3
C7—C8—H8126.5C28—C27—C26119.5 (3)
C9—C8—H8126.5C28—C27—H27120.3
N2—C9—C10i126.4 (3)C26—C27—H27120.3
N2—C9—C8109.9 (2)O2—C28—C27124.4 (3)
C10i—C9—C8123.7 (3)O2—C28—C29115.8 (3)
C1—C10—C9i123.5 (3)C27—C28—C29119.8 (3)
C1—C10—C11118.2 (2)C28—C29—C30119.7 (3)
C9i—C10—C11118.4 (2)C28—C29—H29120.1
C12—C11—C16118.0 (3)C30—C29—H29120.1
C12—C11—C10121.7 (3)C25—C30—C29121.5 (3)
C16—C11—C10120.3 (3)C25—C30—H30119.2
C11—C12—C13121.1 (3)C29—C30—H30119.2
C11—C12—H12119.4O2—C31—C32108.0 (3)
C13—C12—H12119.4O2—C31—H31A110.1
C12—C13—C14119.9 (3)C32—C31—H31A110.1
C12—C13—H13120.0O2—C31—H31B110.1
C14—C13—H13120.0C32—C31—H31B110.1
C15—C14—O1124.9 (3)H31A—C31—H31B108.4
C15—C14—C13119.7 (3)C31—C32—C33112.4 (2)
O1—C14—C13115.4 (3)C31—C32—H32A109.1
C14—C15—C16120.0 (3)C33—C32—H32A109.1
C14—C15—H15120.0C31—C32—H32B109.1
C16—C15—H15120.0C33—C32—H32B109.1
C11—C16—C15121.3 (3)H32A—C32—H32B107.9
C11—C16—H16119.4C32—C33—C34115.0 (2)
C15—C16—H16119.4C32—C33—H33A108.5
O1—C17—C18107.3 (3)C34—C33—H33A108.5
O1—C17—H17A110.2C32—C33—H33B108.5
C18—C17—H17A110.2C34—C33—H33B108.5
O1—C17—H17B110.2H33A—C33—H33B107.5
C18—C17—H17B110.2C35—C34—C33111.9 (2)
H17A—C17—H17B108.5C35—C34—H34A109.2
C17—C18—C19112.4 (3)C33—C34—H34A109.2
C17—C18—H18A109.1C35—C34—H34B109.2
C19—C18—H18A109.1C33—C34—H34B109.2
C17—C18—H18B109.1H34A—C34—H34B107.9
C19—C18—H18B109.1C34—C35—C36115.5 (2)
H18A—C18—H18B107.9C34—C35—H35A108.4
C20—C19—C18114.1 (2)C36—C35—H35A108.4
C20—C19—H19A108.7C34—C35—H35B108.4
C18—C19—H19A108.7C36—C35—H35B108.4
C20—C19—H19B108.7H35A—C35—H35B107.5
C18—C19—H19B108.7C37—C36—C35113.3 (3)
H19A—C19—H19B107.6C37—C36—H36A108.9
C19—C20—C21111.7 (3)C35—C36—H36A108.9
C19—C20—H20A109.3C37—C36—H36B108.9
C21—C20—H20A109.3C35—C36—H36B108.9
C19—C20—H20B109.3H36A—C36—H36B107.7
C21—C20—H20B109.3C36—C37—C38114.0 (3)
H20A—C20—H20B107.9C36—C37—H37A108.8
C20—C21—C22115.5 (3)C38—C37—H37A108.8
C20—C21—H21A108.4C36—C37—H37B108.8
C22—C21—H21A108.4C38—C37—H37B108.8
C20—C21—H21B108.4H37A—C37—H37B107.7
C22—C21—H21B108.4C37—C38—H38A109.5
H21A—C21—H21B107.5C37—C38—H38B109.5
C23'—C22—C2339.6 (4)H38A—C38—H38B109.5
C23'—C22—C21114.4 (4)C37—C38—H38C109.5
C23—C22—C21113.8 (4)H38A—C38—H38C109.5
C23'—C22—H22A89.5H38B—C38—H38C109.5
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C76H92N4O4)]
Mr1189.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)185
a, b, c (Å)16.0521 (16), 19.2628 (18), 10.4767 (10)
β (°) 90.024 (2)
V3)3239.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.22 × 0.14 × 0.08
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.919, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
17425, 5732, 3710
Rint0.064
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.124, 1.03
No. of reflections5732
No. of parameters406
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.43

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Changchun, China.

References

First citationAnderson, H. L. & Sanders, J. K. M. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 2223–2229.  CrossRef Web of Science Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFleischer, E. B. (1963). J. Am. Chem. Soc. 85, 1353–1354.  CrossRef CAS Web of Science Google Scholar
First citationFleischer, E. B., Miller, C. K. & Webb, L. E. (1964). J. Am. Chem. Soc. 86, 2342–2347.  CSD CrossRef CAS Web of Science Google Scholar
First citationGunter, M. J. & Johnston, M. R. (1992). J. Chem. Soc. Chem. Commun. 17, 1163–1165.  CrossRef Web of Science Google Scholar
First citationGust, D. & Moore, T. A. (1985). J. Photochem. 29, 174–184.  CrossRef Web of Science Google Scholar
First citationHe, H.-S. (2007). Acta Cryst. E63, m976–m977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHolten, D., Bocian, D. F. & Lindsey, J. S. (2002). Acc. Chem. Res. 35, 57–69.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds