metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tri­phenyl­tin(IV)]-μ-phenyl­phosphinato-κ2O:O′]

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques–Université Cheikh Anta Diop, Dakar, Senegal, bDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, England, and cInstitute of Physics, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: dlibasse@gmail.com, helen.stoeckli-evans@unine.ch

(Received 21 September 2011; accepted 20 October 2011; online 5 November 2011)

In the structure of the title coordination polymer, [Sn(C6H5)3(C6H6O2P)]n or [PhP(H)O2SnIV(Ph)3]n, the SnIV atom is five-coordinate, with the SnC3O2 framework in a trans trigonal–bipyramidal arrangement having the PhP(H)O2 anions in apical positions. In the crystal, neighbouring polymer chains are linked via C—H⋯π inter­actions, forming a two-dimensional network lying parallel to (001).

Related literature

For medical applications of tin(IV) compounds, see: Evans & Karpel (1985[Evans, J. C. & Karpel, S. (1985). Organotin Compounds in Modern Technology, Journal of Organometallic Chemistry Library, Vol. 16. Amsterdam: Elsevier.]); Kapoor et al. (2005[Kapoor, R. N., Guillory, P., Schulte, L., Cervantes-Lee, F., Haiduc, I., Parkanyi, L. & Pannell, K. H. (2005). Appl. Organomet. Chem. 19, 510-517.]); Yin & Wang (2004[Yin, H.-D. & Wang, C.-H. (2004). Appl. Organomet. Chem. 18, 411-412.]). For literature on new organotin compounds, see: Chandrasekhar et al. (2003[Chandrasekhar, V., Boomishankar, R., Steiner, A. & Bickley, J. F. (2003). Organometallics, 22, 3342-3344.]); Davies & Smith (1982[Davies, A. G. & Smith, P. J. (1982). Organometallic Chemistry, edited by G. Wilkinson, F. G. A. Stone & E. A. Abel, p. 610. Oxford: Pergamon Press.]); Zhang et al. (2006[Zhang, W.-L., Ma, J.-F. & Jiang, H. (2006). Acta Cryst. E62, m460-m461.]). For work in this field carried out by the authors, see: Diassé-Sarr et al. (1997[Diassé-Sarr, A., Diop, L. & Molloy, K. C. (1997). J. Organomet. Chem. 689, 223-229.]); Diop et al. (2002[Diop, C. A. K., Diop, L. & Toscano, A. R. (2002). Main Group Met. Chem. 25, 327-328.], 2003[Diop, L., Mahieu, B., Mahon, M. F., Molloy, K. C. & Okio, K. Y. A. (2003). Appl. Organomet. Chem. 17, 881-882.]); Diallo et al. (2009[Diallo, W., Diassé-Sarr, A., Diop, L., Mahieu, B., Biesemans, M., Willem, R., Kociok-Köhn, G. & Molloy, K. C. (2009). Sci. Study Res. 3, 207-212.]). For related structures, see: Molloy et al. (1981[Molloy, K. C., Hossain, M. B., Van de Helm, D., Cunningham, D. & Zukerman, J. J. (1981). Inorg. Chem. 20, 2402-2406.]); Adair et al. (2003[Adair, B. A., Neeraj, S. & Cheetham, A. K. (2003). Chem. Mater. 15, 1518-1529.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3(C6H6O2P)]

  • Mr = 491.07

  • Orthorhombic, P b c a

  • a = 14.0108 (6) Å

  • b = 11.7674 (7) Å

  • c = 25.7068 (12) Å

  • V = 4238.3 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 173 K

  • 0.18 × 0.13 × 0.10 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.973, Tmax = 1.000

  • 27270 measured reflections

  • 3829 independent reflections

  • 2467 reflections with I > 2σ(I)

  • Rint = 0.117

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.079

  • S = 1.00

  • 3829 reflections

  • 257 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C19–C24 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cg1i 0.95 2.79 3.656 (9) 151
C18—H18⋯Cg1ii 0.95 2.91 3.714 (6) 143
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009[Stoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, PLATON and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As some compounds belonging to the organotin (IV) family have been found to be the subject of applications in medicine, agriculture, industry (Evans & Karpel, 1985; Kapoor et al., 2005; Yin & Wang, 2004), many groups have been involved in the search for new organotin compounds (Davies & Smith, 1982; Zhang et al., 2006; Chandrasekhar et al., 2003). Our group has published a number of papers in this field (Diassé-Sarr et al., 1997; Diop et al., 2003; Diop et al., 2002; Diallo et al., 2009). In a continuation of this work we initiated the study of the interaction between Cy2NH2PhP(H)O2 and Sn(Ph)3Cl, which has led to the synthesis of the title coordination polymer.

The structure of the asymmetric unit of the title compound is illustrated in Fig. 1. The molecular units associate to form an infinite one-dimensional polymer (Fig. 2) in which trimethyltin(IV) groups are axially bridged by –O—P—O– linkages of the phenylphosphinate ligand to yield an almost perfect trigonal bipyramid at the tin(IV) atom; with equatorial location of the phenyl groups and axial disposition of the oxygenated ligand.

The sum of the angles at atom Sn1 by the ipso-carbons [124.1 (2), 119.4 (3), 116.4 (3) °] is 359.9°. The corresponding axial O1—Sn—O2 angle is 175.99 (15) °, indicating a slight deviation from linearity. The two axial Sn—O distances, [Sn1—O1 2.241 (4) Å and Sn—O2 2.237 (3) Å], are longer than the Sn—O axial distances [2.116 (2) Å and 2.132 (3) Å] observed in catena-(µ2-phenylphosphinato-O,O')-choro-tin(II) [Adair et al., 2003]. The two P—O distances of the bridging O1—P1—O2 moieties are also almost equal [P1—O1 1.514 (4) Å and P1—O2 1.501 (4) Å]. The geometry around the phosphorus atom is a distorted tetrahedron with bond angles ranging from 114.4 (2)° for O1—P1—O2 to 103 (2)° for C1—P1—H1. The P1—H1 distance is 1.33 (5) Å, similar to the same distance, of 1.39 (7) Å, observed in the compound mentioned above.

In the crystal, neighbouring chains are linked via C—H···π interactions, involving the phenyl ring (C19—C24). This results in the formation of a two-dimensional network structure lying parallel to the ab-plane (Table 1 and Fig. 3).

Footnote to Table 1: Cg1 is the centroid of ring (C19—C24).

Related literature top

For medical applications of tin(IV) compounds, see: Evans & Karpel (1985); Kapoor et al. (2005); Yin & Wang (2004). For literature on new organotin compounds, see: Chandrasekhar et al. (2003); Davies & Smith (1982); Zhang et al. (2006). For work in this field carried out by the authors, see: Diassé-Sarr et al. (1997); Diop et al. (2003); Diop et al. (2002); Diallo et al. (2009). For related structures, see: Molloy et al. (1981); Adair et al. (2003).

Experimental top

Synthesis: Cy2NH2Ph(H)PO2 (L) was obtained on neutralizing phenylphosphinic acid with dicyclohexylammine, in 1:2 ratio, in water; a white powder was collected after evaporation at 333 K. When (L) was mixed with Sn(Ph)3Cl (1:1 ratio, M.p. +533 K), both in ethanol, a white precipitate formed and the solution was stirred for a further 2 h. The mixture was then filtered and the solid dissolved in 25 ml of slightly hydrated methanol. The solution was then left for the solvent to slowly evaporate giving colourless crystals, suitable for X-ray diffraction analysis, of the title compound. Reaction: Cy2NH2Ph(H)PO2 + Sn(Ph)3Cl --> PhP(H)O2Sn(Ph)3 + Cy2NH2Cl. The same compound could be obtained by refluxing trimethyltin chloride with phenylphosphinic acid in water: Ph(H)PO2H + Sn(Ph)3Cl --> PhP(H)O2Sn(Ph)3 + HCl.

Refinement top

The PH H-atom was located in a difference Fourier map and was refined with Uiso(H) = 1.2Ueq(P); [P—H = 1.33 (5) Å]. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C).

Structure description top

As some compounds belonging to the organotin (IV) family have been found to be the subject of applications in medicine, agriculture, industry (Evans & Karpel, 1985; Kapoor et al., 2005; Yin & Wang, 2004), many groups have been involved in the search for new organotin compounds (Davies & Smith, 1982; Zhang et al., 2006; Chandrasekhar et al., 2003). Our group has published a number of papers in this field (Diassé-Sarr et al., 1997; Diop et al., 2003; Diop et al., 2002; Diallo et al., 2009). In a continuation of this work we initiated the study of the interaction between Cy2NH2PhP(H)O2 and Sn(Ph)3Cl, which has led to the synthesis of the title coordination polymer.

The structure of the asymmetric unit of the title compound is illustrated in Fig. 1. The molecular units associate to form an infinite one-dimensional polymer (Fig. 2) in which trimethyltin(IV) groups are axially bridged by –O—P—O– linkages of the phenylphosphinate ligand to yield an almost perfect trigonal bipyramid at the tin(IV) atom; with equatorial location of the phenyl groups and axial disposition of the oxygenated ligand.

The sum of the angles at atom Sn1 by the ipso-carbons [124.1 (2), 119.4 (3), 116.4 (3) °] is 359.9°. The corresponding axial O1—Sn—O2 angle is 175.99 (15) °, indicating a slight deviation from linearity. The two axial Sn—O distances, [Sn1—O1 2.241 (4) Å and Sn—O2 2.237 (3) Å], are longer than the Sn—O axial distances [2.116 (2) Å and 2.132 (3) Å] observed in catena-(µ2-phenylphosphinato-O,O')-choro-tin(II) [Adair et al., 2003]. The two P—O distances of the bridging O1—P1—O2 moieties are also almost equal [P1—O1 1.514 (4) Å and P1—O2 1.501 (4) Å]. The geometry around the phosphorus atom is a distorted tetrahedron with bond angles ranging from 114.4 (2)° for O1—P1—O2 to 103 (2)° for C1—P1—H1. The P1—H1 distance is 1.33 (5) Å, similar to the same distance, of 1.39 (7) Å, observed in the compound mentioned above.

In the crystal, neighbouring chains are linked via C—H···π interactions, involving the phenyl ring (C19—C24). This results in the formation of a two-dimensional network structure lying parallel to the ab-plane (Table 1 and Fig. 3).

Footnote to Table 1: Cg1 is the centroid of ring (C19—C24).

For medical applications of tin(IV) compounds, see: Evans & Karpel (1985); Kapoor et al. (2005); Yin & Wang (2004). For literature on new organotin compounds, see: Chandrasekhar et al. (2003); Davies & Smith (1982); Zhang et al. (2006). For work in this field carried out by the authors, see: Diassé-Sarr et al. (1997); Diop et al. (2003); Diop et al. (2002); Diallo et al. (2009). For related structures, see: Molloy et al. (1981); Adair et al. (2003).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title compound, showing the numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view normal to (001) of the polymer chain of the title compound [Symmetry codes: (i) -x - 1/2, y - 1/2, z; (ii) -x - 1/2, y + 1/2, z; displacement ellipsoids are drawn at the 50% probability level].
[Figure 3] Fig. 3. A view along the c axis of the crystal packing of the title compound showing the weak C—H···π interactions [represented by the H···C dashed cyan lines; Sn violet; P yellow; O red; H grey ball; Cg1 = centroid of ring (C19—C24)].
catena-Poly[[triphenyltin(IV)]-µ-phenylphosphinato- κ2O:O'] top
Crystal data top
[Sn(C6H5)3(C6H6O2P)]F(000) = 1968
Mr = 491.07Dx = 1.539 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 10452 reflections
a = 14.0108 (6) Åθ = 1.6–26.1°
b = 11.7674 (7) ŵ = 1.30 mm1
c = 25.7068 (12) ÅT = 173 K
V = 4238.3 (4) Å3Rod, colourless
Z = 80.18 × 0.13 × 0.10 mm
Data collection top
Stoe IPDS II
diffractometer
3829 independent reflections
Radiation source: fine-focus sealed tube2467 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.117
φ and ω scansθmax = 25.3°, θmin = 1.6°
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
h = 1616
Tmin = 0.973, Tmax = 1.000k = 1414
27270 measured reflectionsl = 2830
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0275P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3829 reflectionsΔρmax = 0.47 e Å3
257 parametersΔρmin = 0.68 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00036 (5)
Crystal data top
[Sn(C6H5)3(C6H6O2P)]V = 4238.3 (4) Å3
Mr = 491.07Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.0108 (6) ŵ = 1.30 mm1
b = 11.7674 (7) ÅT = 173 K
c = 25.7068 (12) Å0.18 × 0.13 × 0.10 mm
Data collection top
Stoe IPDS II
diffractometer
3829 independent reflections
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
2467 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 1.000Rint = 0.117
27270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.47 e Å3
3829 reflectionsΔρmin = 0.68 e Å3
257 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. The PH H-atom was located in a difference Fourier map and was refined with Uiso(H) = 1.2Ueq(P). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å for CH(aromatic), with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.29327 (3)0.35558 (3)0.36284 (1)0.0260 (1)
P10.36921 (12)0.08232 (12)0.38935 (6)0.0286 (5)
O10.3855 (3)0.2003 (3)0.36764 (17)0.0295 (11)
O20.2923 (3)0.0161 (2)0.36231 (17)0.0350 (11)
C10.4806 (4)0.0060 (4)0.3878 (3)0.029 (2)
C20.5372 (5)0.0034 (5)0.3438 (3)0.047 (3)
C30.6217 (5)0.0586 (6)0.3440 (3)0.053 (3)
C40.6498 (5)0.1153 (5)0.3884 (3)0.052 (3)
C50.5930 (5)0.1151 (5)0.4317 (3)0.050 (3)
C60.5077 (5)0.0548 (5)0.4313 (3)0.040 (2)
C70.2349 (4)0.3088 (5)0.2893 (2)0.0317 (19)
C80.1608 (5)0.3689 (6)0.2669 (3)0.050 (3)
C90.1227 (6)0.3364 (7)0.2197 (3)0.065 (3)
C100.1576 (6)0.2451 (6)0.1937 (3)0.054 (3)
C110.2315 (6)0.1838 (6)0.2150 (3)0.059 (3)
C120.2705 (5)0.2148 (5)0.2623 (2)0.041 (2)
C130.2300 (4)0.3139 (4)0.4356 (2)0.0260 (18)
C140.2518 (5)0.3764 (4)0.4803 (2)0.0323 (17)
C150.2086 (5)0.3528 (5)0.5273 (2)0.0400 (17)
C160.1414 (5)0.2654 (5)0.5310 (3)0.042 (3)
C170.1206 (5)0.2024 (5)0.4872 (2)0.039 (2)
C180.1629 (4)0.2252 (5)0.4404 (2)0.0327 (19)
C190.4177 (4)0.4597 (4)0.3655 (3)0.0273 (16)
C200.4303 (5)0.5480 (5)0.3302 (3)0.038 (2)
C210.5101 (5)0.6171 (5)0.3344 (3)0.047 (3)
C220.5766 (5)0.5986 (5)0.3719 (3)0.050 (3)
C230.5660 (5)0.5107 (6)0.4068 (3)0.048 (3)
C240.4866 (4)0.4413 (5)0.4031 (2)0.034 (2)
H10.351 (4)0.089 (4)0.440 (2)0.0340*
H20.518500.043800.313500.0570*
H30.660100.061800.313600.0640*
H40.709000.154700.388900.0620*
H50.611700.156000.461900.0590*
H60.467900.055300.461200.0480*
H80.135700.433600.284300.0600*
H90.071400.378600.205100.0770*
H100.131200.223500.161200.0650*
H110.256000.119700.197000.0710*
H120.321800.172000.276500.0500*
H140.297200.436200.478200.0390*
H150.224600.396000.557300.0480*
H160.110600.249700.563100.0510*
H170.075900.142000.489600.0460*
H180.147000.180700.410700.0390*
H200.384800.560800.303500.0450*
H210.518200.678400.310800.0570*
H220.631000.646700.374000.0600*
H230.612400.498000.433100.0570*
H240.479300.379900.426700.0410*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0255 (2)0.0192 (2)0.0334 (2)0.0004 (2)0.0006 (2)0.0008 (2)
P10.0288 (9)0.0191 (7)0.0380 (9)0.0004 (7)0.0023 (8)0.0018 (7)
O10.031 (2)0.0156 (16)0.042 (2)0.0002 (15)0.002 (2)0.0021 (18)
O20.029 (2)0.0209 (16)0.055 (2)0.0052 (18)0.002 (3)0.0016 (19)
C10.027 (4)0.014 (3)0.047 (4)0.002 (3)0.002 (3)0.003 (3)
C20.041 (5)0.037 (3)0.064 (5)0.006 (3)0.010 (4)0.012 (3)
C30.042 (5)0.041 (4)0.076 (5)0.008 (3)0.018 (4)0.003 (4)
C40.033 (4)0.026 (4)0.096 (6)0.004 (3)0.007 (4)0.003 (3)
C50.044 (5)0.041 (4)0.064 (5)0.006 (3)0.015 (4)0.001 (3)
C60.041 (4)0.031 (3)0.048 (4)0.006 (3)0.006 (3)0.002 (3)
C70.036 (4)0.025 (3)0.034 (3)0.003 (3)0.001 (3)0.001 (3)
C80.061 (5)0.041 (4)0.048 (4)0.005 (4)0.013 (4)0.003 (3)
C90.076 (6)0.065 (5)0.053 (5)0.001 (5)0.030 (4)0.001 (4)
C100.070 (6)0.063 (5)0.030 (4)0.022 (4)0.010 (4)0.000 (4)
C110.086 (7)0.052 (4)0.040 (4)0.009 (4)0.005 (4)0.007 (3)
C120.053 (5)0.036 (3)0.035 (4)0.003 (3)0.006 (3)0.006 (3)
C130.027 (4)0.017 (2)0.034 (3)0.005 (2)0.004 (3)0.001 (2)
C140.035 (3)0.019 (3)0.043 (3)0.001 (2)0.006 (3)0.003 (2)
C150.043 (3)0.045 (3)0.032 (3)0.001 (4)0.002 (3)0.007 (3)
C160.045 (5)0.045 (4)0.037 (4)0.004 (3)0.006 (3)0.000 (3)
C170.044 (4)0.031 (3)0.041 (4)0.010 (3)0.008 (3)0.004 (3)
C180.036 (4)0.031 (3)0.031 (3)0.003 (3)0.004 (3)0.005 (3)
C190.030 (3)0.015 (2)0.037 (3)0.001 (2)0.010 (4)0.001 (3)
C200.035 (4)0.030 (3)0.048 (4)0.000 (3)0.003 (3)0.008 (3)
C210.051 (5)0.026 (4)0.064 (5)0.007 (3)0.012 (4)0.012 (3)
C220.041 (4)0.034 (3)0.075 (6)0.014 (3)0.005 (4)0.009 (4)
C230.040 (5)0.045 (4)0.059 (5)0.013 (3)0.005 (4)0.002 (4)
C240.031 (4)0.030 (3)0.042 (4)0.006 (3)0.002 (3)0.006 (3)
Geometric parameters (Å, º) top
Sn1—O12.241 (4)C19—C241.383 (9)
Sn1—C72.132 (5)C19—C201.391 (9)
Sn1—C132.127 (5)C20—C211.387 (9)
Sn1—C192.132 (5)C21—C221.358 (10)
Sn1—O2i2.237 (3)C22—C231.377 (10)
P1—O11.514 (4)C23—C241.383 (9)
P1—O21.501 (4)C2—H20.9500
P1—C11.801 (6)C3—H30.9500
P1—H11.33 (5)C4—H40.9500
C1—C21.382 (10)C5—H50.9500
C1—C61.381 (10)C6—H60.9500
C2—C31.391 (10)C8—H80.9500
C3—C41.380 (10)C9—H90.9500
C4—C51.368 (11)C10—H100.9500
C5—C61.390 (10)C11—H110.9500
C7—C121.398 (8)C12—H120.9500
C7—C81.382 (9)C14—H140.9500
C8—C91.380 (11)C15—H150.9500
C9—C101.357 (11)C16—H160.9500
C10—C111.376 (11)C17—H170.9500
C11—C121.382 (10)C18—H180.9500
C13—C141.398 (7)C20—H200.9500
C13—C181.410 (8)C21—H210.9500
C14—C151.380 (8)C22—H220.9500
C15—C161.398 (9)C23—H230.9500
C16—C171.379 (9)C24—H240.9500
C17—C181.368 (8)
O1—Sn1—C793.41 (19)C19—C20—C21119.3 (7)
O1—Sn1—C1390.22 (17)C20—C21—C22121.0 (6)
O1—Sn1—C1989.73 (17)C21—C22—C23120.6 (6)
O1—Sn1—O2i175.99 (15)C22—C23—C24119.0 (6)
C7—Sn1—C13124.1 (2)C19—C24—C23121.1 (6)
C7—Sn1—C19119.4 (3)C1—C2—H2120.00
O2i—Sn1—C790.41 (19)C3—C2—H2120.00
C13—Sn1—C19116.4 (3)C2—C3—H3120.00
O2i—Sn1—C1388.66 (17)C4—C3—H3120.00
O2i—Sn1—C1987.32 (17)C3—C4—H4120.00
O1—P1—O2114.4 (2)C5—C4—H4120.00
O1—P1—C1108.6 (3)C4—C5—H5120.00
O2—P1—C1110.7 (2)C6—C5—H5120.00
O1—P1—H1110 (2)C1—C6—H6120.00
O2—P1—H1110 (2)C5—C6—H6120.00
C1—P1—H1103 (2)C7—C8—H8119.00
Sn1—O1—P1132.9 (3)C9—C8—H8120.00
Sn1ii—O2—P1145.1 (2)C8—C9—H9120.00
P1—C1—C2121.8 (5)C10—C9—H9119.00
C2—C1—C6119.6 (6)C9—C10—H10120.00
P1—C1—C6118.6 (5)C11—C10—H10120.00
C1—C2—C3119.8 (7)C10—C11—H11120.00
C2—C3—C4120.0 (7)C12—C11—H11120.00
C3—C4—C5120.4 (6)C7—C12—H12120.00
C4—C5—C6119.7 (7)C11—C12—H12120.00
C1—C6—C5120.5 (7)C13—C14—H14119.00
Sn1—C7—C8121.7 (5)C15—C14—H14120.00
Sn1—C7—C12120.5 (4)C14—C15—H15120.00
C8—C7—C12117.8 (5)C16—C15—H15120.00
C7—C8—C9121.0 (7)C15—C16—H16121.00
C8—C9—C10120.9 (7)C17—C16—H16121.00
C9—C10—C11119.4 (7)C16—C17—H17119.00
C10—C11—C12120.6 (7)C18—C17—H17119.00
C7—C12—C11120.3 (6)C13—C18—H18120.00
Sn1—C13—C14120.7 (4)C17—C18—H18120.00
C14—C13—C18117.6 (5)C19—C20—H20120.00
Sn1—C13—C18121.7 (4)C21—C20—H20120.00
C13—C14—C15121.2 (5)C20—C21—H21119.00
C14—C15—C16120.2 (6)C22—C21—H21120.00
C15—C16—C17118.8 (6)C21—C22—H22120.00
C16—C17—C18121.4 (6)C23—C22—H22120.00
C13—C18—C17120.7 (5)C22—C23—H23121.00
Sn1—C19—C20120.8 (5)C24—C23—H23120.00
Sn1—C19—C24120.2 (4)C19—C24—H24119.00
C20—C19—C24119.0 (5)C23—C24—H24119.00
C7—Sn1—O1—P189.4 (4)O1—P1—C1—C6134.2 (5)
C13—Sn1—O1—P134.8 (4)O2—P1—C1—C278.1 (5)
C19—Sn1—O1—P1151.2 (4)O2—P1—C1—C699.4 (5)
O1—Sn1—C7—C8172.5 (5)P1—C1—C2—C3178.7 (5)
O1—Sn1—C7—C127.0 (5)C6—C1—C2—C31.2 (9)
C13—Sn1—C7—C879.9 (6)P1—C1—C6—C5179.9 (5)
C13—Sn1—C7—C1299.6 (5)C2—C1—C6—C52.3 (9)
C19—Sn1—C7—C895.9 (5)C1—C2—C3—C41.4 (10)
C19—Sn1—C7—C1284.6 (5)C2—C3—C4—C52.8 (10)
O2i—Sn1—C7—C88.7 (5)C3—C4—C5—C61.7 (10)
O2i—Sn1—C7—C12171.8 (5)C4—C5—C6—C10.9 (10)
O1—Sn1—C13—C14107.3 (5)Sn1—C7—C8—C9178.9 (6)
O1—Sn1—C13—C1874.6 (4)C12—C7—C8—C90.6 (10)
C7—Sn1—C13—C14158.4 (4)Sn1—C7—C12—C11179.1 (5)
C7—Sn1—C13—C1819.7 (5)C8—C7—C12—C110.5 (9)
C19—Sn1—C13—C1417.5 (5)C7—C8—C9—C100.7 (12)
C19—Sn1—C13—C18164.4 (4)C8—C9—C10—C110.5 (12)
O2i—Sn1—C13—C1468.9 (5)C9—C10—C11—C120.3 (12)
O2i—Sn1—C13—C18109.3 (4)C10—C11—C12—C70.3 (11)
O1—Sn1—C19—C20132.0 (5)Sn1—C13—C14—C15177.6 (5)
O1—Sn1—C19—C2449.1 (5)C18—C13—C14—C150.6 (9)
C7—Sn1—C19—C2038.2 (6)Sn1—C13—C18—C17177.7 (5)
C7—Sn1—C19—C24142.8 (5)C14—C13—C18—C170.5 (8)
C13—Sn1—C19—C20137.9 (5)C13—C14—C15—C160.2 (10)
C13—Sn1—C19—C2441.0 (5)C14—C15—C16—C171.1 (10)
O2i—Sn1—C19—C2050.8 (5)C15—C16—C17—C181.3 (10)
O2i—Sn1—C19—C24128.2 (5)C16—C17—C18—C130.5 (9)
C7—Sn1—O2i—P1i117.5 (5)Sn1—C19—C20—C21177.3 (5)
C13—Sn1—O2i—P1i6.6 (4)C24—C19—C20—C211.7 (10)
C19—Sn1—O2i—P1i123.2 (5)Sn1—C19—C24—C23177.4 (5)
O2—P1—O1—Sn163.4 (4)C20—C19—C24—C231.6 (9)
C1—P1—O1—Sn1172.4 (4)C19—C20—C21—C221.0 (10)
O1—P1—O2—Sn1ii174.3 (4)C20—C21—C22—C230.2 (11)
C1—P1—O2—Sn1ii62.6 (5)C21—C22—C23—C240.1 (11)
O1—P1—C1—C248.3 (6)C22—C23—C24—C190.8 (10)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg1iii0.952.793.656 (9)151
C18—H18···Cg1ii0.952.913.714 (6)143
Symmetry codes: (ii) x1/2, y+1/2, z; (iii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3(C6H6O2P)]
Mr491.07
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)14.0108 (6), 11.7674 (7), 25.7068 (12)
V3)4238.3 (4)
Z8
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.18 × 0.13 × 0.10
Data collection
DiffractometerStoe IPDS II
Absorption correctionMulti-scan
(MULscanABS in PLATON; Spek, 2009)
Tmin, Tmax0.973, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
27270, 3829, 2467
Rint0.117
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.079, 1.00
No. of reflections3829
No. of parameters257
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.68

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED32 (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg1i0.952.793.656 (9)151
C18—H18···Cg1ii0.952.913.714 (6)143
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x1/2, y+1/2, z.
 

Acknowledgements

HSE thanks the staff of the X-ray Diffraction Application Laboratory, CSEM, Neuchâtel, for access to the X-ray diffraction equipment.

References

First citationAdair, B. A., Neeraj, S. & Cheetham, A. K. (2003). Chem. Mater. 15, 1518–1529.  Web of Science CSD CrossRef CAS Google Scholar
First citationChandrasekhar, V., Boomishankar, R., Steiner, A. & Bickley, J. F. (2003). Organometallics, 22, 3342–3344.  Web of Science CSD CrossRef CAS Google Scholar
First citationDavies, A. G. & Smith, P. J. (1982). Organometallic Chemistry, edited by G. Wilkinson, F. G. A. Stone & E. A. Abel, p. 610. Oxford: Pergamon Press.  Google Scholar
First citationDiallo, W., Diassé-Sarr, A., Diop, L., Mahieu, B., Biesemans, M., Willem, R., Kociok-Köhn, G. & Molloy, K. C. (2009). Sci. Study Res. 3, 207–212.  Google Scholar
First citationDiassé-Sarr, A., Diop, L. & Molloy, K. C. (1997). J. Organomet. Chem. 689, 223–229.  Google Scholar
First citationDiop, C. A. K., Diop, L. & Toscano, A. R. (2002). Main Group Met. Chem. 25, 327–328.  CAS Google Scholar
First citationDiop, L., Mahieu, B., Mahon, M. F., Molloy, K. C. & Okio, K. Y. A. (2003). Appl. Organomet. Chem. 17, 881–882.  Web of Science CSD CrossRef CAS Google Scholar
First citationEvans, J. C. & Karpel, S. (1985). Organotin Compounds in Modern Technology, Journal of Organometallic Chemistry Library, Vol. 16. Amsterdam: Elsevier.  Google Scholar
First citationKapoor, R. N., Guillory, P., Schulte, L., Cervantes-Lee, F., Haiduc, I., Parkanyi, L. & Pannell, K. H. (2005). Appl. Organomet. Chem. 19, 510–517.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMolloy, K. C., Hossain, M. B., Van de Helm, D., Cunningham, D. & Zukerman, J. J. (1981). Inorg. Chem. 20, 2402–2406.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, H.-D. & Wang, C.-H. (2004). Appl. Organomet. Chem. 18, 411–412.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, W.-L., Ma, J.-F. & Jiang, H. (2006). Acta Cryst. E62, m460–m461.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds