organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro­anilinium perchlorate–18-crown-16 (1/1)

aOrdered Matter Science Research Center, Collenge of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jxyuchunhua@163.com

(Received 24 October 2011; accepted 16 November 2011; online 23 November 2011)

In the title compound, C6H7ClN+·ClO4·C12H24O6, the cation forms a 1:1 complex with the crown ether, viz [C6H7ClN-(18-crown-6)]+, in which the –NH3+ unit nests in the crown and inter­acts with it through bifurcated N—H⋯O hydrogen bonding. All constituents of the structure have crystallographically imposed mirror symmetry except for the H atoms of the –NH3+ group which are disordered across the mirror.

Related literature

The title compound was synthesized as part of a study aimed at finding new ferroelectric materials. For general background to ferroelectric compounds, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K., Fu, D.-W., Chan, P. W. H., Zhu, J.-S., Huang, S.-P. D. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang, Xiong et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.]); Zhang, Ye et al. (2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. D. (2010). J. Am. Chem. Soc. 132, 7300-7302.]). For background to crown ether/ammonium ion complexes, see: Fender et al. (2002[Fender, N. S., Kahwa, I. A. & Fronczek, F. R. (2002). J. Solid State Chem. 163, 286-293.]); Kryatova et al. (2004[Kryatova, O. P., Korendovych, I. V. & Rybak-Akimova, E. V. (2004). Tetrahedron, 60, 4579-4588.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7ClN+·ClO4·C12H24O6

  • Mr = 492.34

  • Orthorhombic, P n m a

  • a = 15.726 (3) Å

  • b = 11.525 (2) Å

  • c = 12.896 (3) Å

  • V = 2337.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.35 × 0.32 × 0.28 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.891, Tmax = 0.912

  • 23203 measured reflections

  • 2820 independent reflections

  • 2231 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.114

  • S = 1.08

  • 2820 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4 0.89 2.14 2.896 (3) 142
N1—H1A⋯O3i 0.89 2.21 2.9311 (17) 138
N1—H1B⋯O2i 0.89 2.14 2.8952 (18) 143
N1—H1B⋯O1 0.89 2.18 2.870 (3) 134
N1—H1C⋯O2 0.89 2.15 2.8952 (18) 140
N1—H1C⋯O3 0.89 2.20 2.9311 (17) 139
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We synthesized the title compound, (I), with the aim of finding new ferroelectric materials (Fu et al., 2009; Ye et al., 2006; Zhang, Xiong et al., 2008; Zhang, Ye et al., 2010). There is currently a significant interest in crown ethers because of their ability to form noncovalent, hydrogen bonding complexes with ammonium cations both in the solid state and in solution (Fender et al., 2002; Kryatova et al., 2004). In the crystal, the p-chloroanilium cations and 18-crown-6 molecules are associated via hydrogen bonding with the –NH3+ group forming bifurcated hydrogen bonds with all six O atoms of the crown ether molecule (Figure 1, Table 1). Despite the disorder in the –NH3+ group, it is clear that in each orientation the cation forms three bifurcated hydrogen bonds.

Related literature top

The title compound was synthesized as part of a study aimed at finding new ferroelectric materials. For general background to ferroelectric compounds, see: Fu et al. (2009); Ye et al. (2006); Zhang, Xiong et al. (2008); Zhang, Ye et al. (2010). For background to crown ether/ammonium ion complexes, see: Fender et al. (2002); Kryatova et al. (2004).

Experimental top

p-chloroaniline (1.28 g, 10 mmol) was dissolved in N,N-dimethyl formamide(DMF) (10 ml) to which an aqueous solution of perchloric acid was dropped slowly with stirring until the pH of the solution was ca 7. 18-crown-6 (2.64 g 10 mmol) was added to the solution and more DMF was added until the initial precipitate dissolved. The solution was filtered to a clean beaker and massive crystals of (I) were obtained via slow evaporation of the DMF solution at room temperature over several weeks.

Refinement top

H atoms attached to C were placed in calculated positions (C—H = 0.93 Å for Csp2 atoms and 0.97 Å for Csp3 atoms) while those attached to N were placed in positions derived from a difference map and the N—H distances adjusted to 0.89 Å. All were included as riding contributions with Uiso values tied to those of the attached atoms (Uiso = 1.2Ueq(Csp2/N) and 1.5Ueq(Csp3)).

Structure description top

We synthesized the title compound, (I), with the aim of finding new ferroelectric materials (Fu et al., 2009; Ye et al., 2006; Zhang, Xiong et al., 2008; Zhang, Ye et al., 2010). There is currently a significant interest in crown ethers because of their ability to form noncovalent, hydrogen bonding complexes with ammonium cations both in the solid state and in solution (Fender et al., 2002; Kryatova et al., 2004). In the crystal, the p-chloroanilium cations and 18-crown-6 molecules are associated via hydrogen bonding with the –NH3+ group forming bifurcated hydrogen bonds with all six O atoms of the crown ether molecule (Figure 1, Table 1). Despite the disorder in the –NH3+ group, it is clear that in each orientation the cation forms three bifurcated hydrogen bonds.

The title compound was synthesized as part of a study aimed at finding new ferroelectric materials. For general background to ferroelectric compounds, see: Fu et al. (2009); Ye et al. (2006); Zhang, Xiong et al. (2008); Zhang, Ye et al. (2010). For background to crown ether/ammonium ion complexes, see: Fender et al. (2002); Kryatova et al. (2004).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound down the b axis. Dashed lines indicate hydrogen bonds.
4-Chloroanilinium perchlorate–18-crown-16 (1/1) top
Crystal data top
C6H7ClN+·ClO4·C12H24O6F(000) = 1040
Mr = 492.34Dx = 1.399 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 2820 reflections
a = 15.726 (3) Åθ = 3.0–27.5°
b = 11.525 (2) ŵ = 0.33 mm1
c = 12.896 (3) ÅT = 293 K
V = 2337.3 (8) Å3Block, colorless
Z = 40.35 × 0.32 × 0.28 mm
Data collection top
Rigaku SCXmini
diffractometer
2820 independent reflections
Radiation source: fine-focus sealed tube2231 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 2020
Tmin = 0.891, Tmax = 0.912k = 1414
23203 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.9195P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2820 reflectionsΔρmax = 0.25 e Å3
155 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0159 (11)
Crystal data top
C6H7ClN+·ClO4·C12H24O6V = 2337.3 (8) Å3
Mr = 492.34Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 15.726 (3) ŵ = 0.33 mm1
b = 11.525 (2) ÅT = 293 K
c = 12.896 (3) Å0.35 × 0.32 × 0.28 mm
Data collection top
Rigaku SCXmini
diffractometer
2820 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2231 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.912Rint = 0.048
23203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.08Δρmax = 0.25 e Å3
2820 reflectionsΔρmin = 0.36 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.91237 (18)0.25000.5933 (2)0.0575 (8)
C20.87729 (13)0.1459 (2)0.62262 (16)0.0587 (5)
H20.90160.07630.60140.070*
C30.80513 (12)0.14605 (17)0.68421 (15)0.0500 (5)
H30.78080.07640.70520.060*
C40.76968 (15)0.25000.71422 (17)0.0378 (5)
C50.53619 (13)0.14754 (16)0.59540 (14)0.0496 (5)
H5A0.58650.14030.55240.059*
H5B0.48680.15080.55040.059*
C60.52948 (12)0.04615 (17)0.66648 (16)0.0512 (5)
H6A0.48200.05700.71350.061*
H6B0.51940.02390.62660.061*
C70.59921 (13)0.04958 (17)0.80440 (16)0.0544 (5)
H7A0.58290.12380.77510.065*
H7B0.55570.02620.85350.065*
C80.68241 (13)0.06071 (17)0.85833 (16)0.0545 (5)
H8A0.68010.12400.90790.065*
H8B0.72690.07750.80840.065*
C90.77936 (13)0.0436 (2)0.96481 (17)0.0600 (6)
H9A0.82620.04510.91580.072*
H9B0.78370.02691.00560.072*
C100.78372 (15)0.1468 (2)1.03395 (16)0.0644 (6)
H10A0.73440.14851.07910.077*
H10B0.83420.14231.07700.077*
Cl10.10405 (4)0.25000.20475 (5)0.0469 (2)
Cl21.00340 (6)0.25000.51600 (8)0.0976 (4)
N10.69437 (12)0.25000.78054 (15)0.0387 (5)
H1A0.65180.28530.74780.046*0.50
H1B0.70580.28750.83920.046*0.50
H1C0.67960.17720.79490.046*0.50
O10.78626 (12)0.25000.97279 (13)0.0544 (5)
O20.70060 (8)0.04546 (12)0.91065 (11)0.0527 (4)
O30.60630 (8)0.03499 (11)0.72394 (10)0.0478 (3)
O40.54115 (12)0.25000.65597 (13)0.0455 (4)
O50.11758 (11)0.14801 (15)0.26549 (15)0.0858 (6)
O60.01894 (12)0.25000.16435 (17)0.0607 (6)
O70.16221 (14)0.25000.11884 (19)0.0741 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0407 (14)0.090 (2)0.0422 (15)0.0000.0008 (12)0.000
C20.0585 (12)0.0672 (14)0.0505 (11)0.0166 (10)0.0025 (10)0.0023 (10)
C30.0553 (11)0.0468 (11)0.0479 (10)0.0032 (9)0.0018 (9)0.0011 (8)
C40.0391 (12)0.0444 (13)0.0300 (11)0.0000.0071 (10)0.000
C50.0565 (11)0.0473 (11)0.0449 (10)0.0017 (9)0.0074 (9)0.0085 (8)
C60.0509 (11)0.0433 (11)0.0593 (12)0.0099 (8)0.0062 (9)0.0063 (9)
C70.0625 (12)0.0391 (10)0.0615 (12)0.0065 (9)0.0045 (10)0.0074 (9)
C80.0642 (12)0.0384 (10)0.0608 (12)0.0091 (9)0.0062 (10)0.0101 (9)
C90.0535 (12)0.0660 (14)0.0605 (13)0.0097 (10)0.0093 (10)0.0190 (11)
C100.0638 (13)0.0852 (17)0.0443 (11)0.0034 (12)0.0125 (10)0.0145 (11)
Cl10.0432 (3)0.0385 (3)0.0590 (4)0.0000.0009 (3)0.000
Cl20.0602 (5)0.1460 (10)0.0868 (7)0.0000.0281 (5)0.000
N10.0406 (11)0.0353 (10)0.0402 (11)0.0000.0047 (9)0.000
O10.0623 (12)0.0639 (13)0.0371 (10)0.0000.0077 (9)0.000
O20.0505 (8)0.0460 (8)0.0615 (8)0.0089 (6)0.0078 (6)0.0064 (6)
O30.0491 (7)0.0395 (7)0.0549 (8)0.0047 (5)0.0017 (6)0.0056 (6)
O40.0579 (11)0.0386 (10)0.0402 (9)0.0000.0079 (8)0.000
O50.0794 (11)0.0744 (12)0.1034 (13)0.0009 (9)0.0148 (10)0.0373 (10)
O60.0463 (11)0.0551 (12)0.0807 (14)0.0000.0060 (10)0.000
O70.0584 (13)0.0833 (16)0.0807 (15)0.0000.0156 (12)0.000
Geometric parameters (Å, º) top
C1—C21.374 (3)C8—O21.426 (2)
C1—C2i1.374 (3)C8—H8A0.9700
C1—Cl21.744 (3)C8—H8B0.9700
C2—C31.385 (3)C9—O21.422 (2)
C2—H20.9300C9—C101.489 (3)
C3—C41.377 (2)C9—H9A0.9700
C3—H30.9300C9—H9B0.9700
C4—C3i1.377 (2)C10—O11.427 (2)
C4—N11.461 (3)C10—H10A0.9700
C5—O41.418 (2)C10—H10B0.9700
C5—C61.489 (3)Cl1—O51.4284 (16)
C5—H5A0.9700Cl1—O5i1.4284 (16)
C5—H5B0.9700Cl1—O61.436 (2)
C6—O31.423 (2)Cl1—O71.437 (2)
C6—H6A0.9700N1—H1A0.8896
C6—H6B0.9700N1—H1B0.8899
C7—O31.428 (2)N1—H1C0.8901
C7—C81.487 (3)O1—C10i1.427 (2)
C7—H7A0.9700O4—C5i1.418 (2)
C7—H7B0.9700
C2—C1—C2i121.7 (3)C7—C8—H8A109.9
C2—C1—Cl2119.15 (13)O2—C8—H8B109.9
C2i—C1—Cl2119.15 (13)C7—C8—H8B109.9
C1—C2—C3119.1 (2)H8A—C8—H8B108.3
C1—C2—H2120.5O2—C9—C10108.79 (17)
C3—C2—H2120.5O2—C9—H9A109.9
C4—C3—C2119.59 (19)C10—C9—H9A109.9
C4—C3—H3120.2O2—C9—H9B109.9
C2—C3—H3120.2C10—C9—H9B109.9
C3i—C4—C3120.9 (2)H9A—C9—H9B108.3
C3i—C4—N1119.52 (12)O1—C10—C9109.65 (16)
C3—C4—N1119.52 (12)O1—C10—H10A109.7
O4—C5—C6108.56 (15)C9—C10—H10A109.7
O4—C5—H5A110.0O1—C10—H10B109.7
C6—C5—H5A110.0C9—C10—H10B109.7
O4—C5—H5B110.0H10A—C10—H10B108.2
C6—C5—H5B110.0O5—Cl1—O5i110.74 (17)
H5A—C5—H5B108.4O5—Cl1—O6109.74 (9)
O3—C6—C5109.35 (15)O5i—Cl1—O6109.74 (9)
O3—C6—H6A109.8O5—Cl1—O7109.15 (10)
C5—C6—H6A109.8O5i—Cl1—O7109.15 (10)
O3—C6—H6B109.8O6—Cl1—O7108.27 (14)
C5—C6—H6B109.8C4—N1—H1A109.4
H6A—C6—H6B108.3C4—N1—H1B109.5
O3—C7—C8109.26 (15)H1A—N1—H1B109.5
O3—C7—H7A109.8C4—N1—H1C109.5
C8—C7—H7A109.8H1A—N1—H1C109.5
O3—C7—H7B109.8H1B—N1—H1C109.5
C8—C7—H7B109.8C10—O1—C10i112.8 (2)
H7A—C7—H7B108.3C9—O2—C8113.21 (15)
O2—C8—C7108.89 (15)C6—O3—C7111.95 (14)
O2—C8—H8A109.9C5—O4—C5i112.76 (19)
C2i—C1—C2—C30.6 (4)O2—C9—C10—O165.6 (2)
Cl2—C1—C2—C3179.84 (17)C9—C10—O1—C10i175.35 (13)
C1—C2—C3—C40.4 (3)C10—C9—O2—C8168.13 (16)
C2—C3—C4—C3i0.3 (4)C7—C8—O2—C9179.95 (16)
C2—C3—C4—N1179.03 (18)C5—C6—O3—C7171.17 (16)
O4—C5—C6—O366.0 (2)C8—C7—O3—C6177.55 (16)
O3—C7—C8—O265.9 (2)C6—C5—O4—C5i172.01 (12)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.892.142.896 (3)142
N1—H1A···O3i0.892.212.9311 (17)138
N1—H1B···O2i0.892.142.8952 (18)143
N1—H1B···O10.892.182.870 (3)134
N1—H1C···O20.892.152.8952 (18)140
N1—H1C···O30.892.202.9311 (17)139
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC6H7ClN+·ClO4·C12H24O6
Mr492.34
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)15.726 (3), 11.525 (2), 12.896 (3)
V3)2337.3 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.35 × 0.32 × 0.28
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.891, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
23203, 2820, 2231
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.114, 1.08
No. of reflections2820
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.36

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.892.142.896 (3)141.8
N1—H1A···O3i0.892.212.9311 (17)137.5
N1—H1B···O2i0.892.142.8952 (18)142.8
N1—H1B···O10.892.182.870 (3)133.9
N1—H1C···O20.892.152.8952 (18)140.2
N1—H1C···O30.892.202.9311 (17)138.7
Symmetry code: (i) x, y+1/2, z.
 

Acknowledgements

The author thanks the Ordered Matter Science Research Centre, Southeast University.

References

First citationFender, N. S., Kahwa, I. A. & Fronczek, F. R. (2002). J. Solid State Chem. 163, 286–293.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationKryatova, O. P., Korendovych, I. V. & Rybak-Akimova, E. V. (2004). Tetrahedron, 60, 4579–4588.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K., Fu, D.-W., Chan, P. W. H., Zhu, J.-S., Huang, S.-P. D. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. D. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds