metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Acetyl­acetonato-κ2O,O′)carbon­yl{di­cyclo­hex­yl[4-(di­methyl­amino)­phen­yl]phosphane-κP}rhodium(I)

aResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za

(Received 28 October 2011; accepted 24 November 2011; online 30 November 2011)

The title compound, [Rh(C5H7O2)(C20H32NP)(CO)], features an acetyl­acetonate-chelated RhI cation coordinated by one P [Rh—P = 2.2525 (7) Å], one carbonyl C [Rh—C = 1.792 (3) Å] and two O [Rh—O = 2.0582 (17) and 2.0912 (18) Å] atoms in a slightly distorted square-planar geometry. Mol­ecules are packed in positions of least steric hindrance, with the phosphane ligands positioned above and below the Rh–acetyl­acetonate backbone.

Related literature

For background to the catalytic activity of rhodium–phosphane compounds, see: Carraz et al. (2000[Carraz, C. A., Ditzel, E. J., Orpen, A. G., Ellis, D. D., Pringle, P. G. & Sunley, G. J. (2000). Chem. Commun. pp. 1277-1278.]); Moloy & Wegman (1989[Moloy, K. G. & Wegman, R. W. (1989). Organometallics, 8, 2883-2892.]); Bonati & Wilkinson (1964[Bonati, F. & Wilkinson, G. (1964). J. Chem. Soc. pp. 3156-3160.]). For related rhodium compounds, see: Brink et al. (2007[Brink, A., Roodt, A. & Visser, H. G. (2007). Acta Cryst. E63, m48-m50.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh(C5H7O2)(C20H32NP)(CO)]

  • Mr = 547.46

  • Monoclinic, P 21 /n

  • a = 12.6865 (9) Å

  • b = 14.5220 (11) Å

  • c = 14.025 (1) Å

  • β = 93.241 (4)°

  • V = 2579.7 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 6.14 mm−1

  • T = 100 K

  • 0.17 × 0.07 × 0.04 mm

Data collection
  • Bruker APEX DUO 4K-CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.422, Tmax = 0.791

  • 40437 measured reflections

  • 4303 independent reflections

  • 3693 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.076

  • S = 1.12

  • 4303 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Acetylacetonate has two O-donor atoms with equivalent σ-electron donor capabilities. The high symmetry of dicarbonyl(acetylacetonate)rhodium(I) complexes promotes easy carbonyl displacement of either carbonyl group with a variety of phosphanes, phosphites and arsines. (Bonati and Wilkinson, 1964). This work is part of an ongoing investigation aimed at determing the steric effects induced by various phosphane ligands on a rhodium(I) metal centre. Previous work illustrating the catalytic importance of the rhodium(I) square-planar moieties has been conducted on rhodium mono- and di-phosphane complexes containing the symmetrical bidentate ligand, acac (acac = acetylacetonate) (Moloy and Wegman, 1989). Symmetrical di-phosphane ligands result in the production of acetaldehyde, whereas unsymmetrical di-phosphane ligands are more stable and efficient catalysts for the carbonylation of methanol to acetic acid (Carraz et al., 2000).

In the title compound, [Rh(acac)(CO){PCy2(4-Me2NC6H4)}] (acac = acetylacetonate, Cy = cyclohexyl), the coordination around the Rh atom shows a slightly distorted square-planar arrangement, illustrated by C1—Rh1—P1 and O2—Rh1—O3 angles of 89.59 (9)° and 88.76 (7)°, respectively. The complex crystallizes in the monoclinic space group, P2(1)/n, with four molecules in the unit cell. A larger trans influence of the phosphane ligand with respect to the carbonyl ligand is indicated by the longer Rh—O2 (2.0912 (18) Å) bond compared to Rh—O3 (2.0582 (17) Å) bond which is trans to the carbonyl ligand. The steric demand of the phosphane is indicated by the smaller O3—Rh1—P1 angle, (89.36 (5)°), compared to the carbonyl ligand (O2—Rh1—C1= 92.36 (10)°).

Spectroscopic characteristics of the current compound are similar to that reported previously by Brink et al. (2007), and we refer the reader to Brink et al. (2007) for additional discussion on the spectroscopy of these types of compounds.

Related literature top

For background to the catalytic activity of rhodium–phosphane compounds, see Carraz et al. (2000); Moloy & Wegman (1989); Bonati & Wilkinson (1964). For related rhodium compounds, see: Brink et al. (2007).

Experimental top

A solution of [Rh(acac)(CO)2] (25.8 mg, 0.1 mmol) in acetone (5 cm3) was slowly added to a solution of [PCy2(4-Me2NC6H4)] (31.7 mg, 0.1 mmol) in acetone (5 cm3). Slow evaporation of the solvent afforded the title compound as yellow crystals.

Refinement top

The aromatic, methine, and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for aromatic and methine H atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively. Methyl torsion angles were refined from electron density.

One of the collected sub-sets contained non-reliable data at higher θ angles. In order to obtain reliable data the maximum angle (θmax) was cut to 65.03° using the OMIT command during refinement cycles.

Structure description top

Acetylacetonate has two O-donor atoms with equivalent σ-electron donor capabilities. The high symmetry of dicarbonyl(acetylacetonate)rhodium(I) complexes promotes easy carbonyl displacement of either carbonyl group with a variety of phosphanes, phosphites and arsines. (Bonati and Wilkinson, 1964). This work is part of an ongoing investigation aimed at determing the steric effects induced by various phosphane ligands on a rhodium(I) metal centre. Previous work illustrating the catalytic importance of the rhodium(I) square-planar moieties has been conducted on rhodium mono- and di-phosphane complexes containing the symmetrical bidentate ligand, acac (acac = acetylacetonate) (Moloy and Wegman, 1989). Symmetrical di-phosphane ligands result in the production of acetaldehyde, whereas unsymmetrical di-phosphane ligands are more stable and efficient catalysts for the carbonylation of methanol to acetic acid (Carraz et al., 2000).

In the title compound, [Rh(acac)(CO){PCy2(4-Me2NC6H4)}] (acac = acetylacetonate, Cy = cyclohexyl), the coordination around the Rh atom shows a slightly distorted square-planar arrangement, illustrated by C1—Rh1—P1 and O2—Rh1—O3 angles of 89.59 (9)° and 88.76 (7)°, respectively. The complex crystallizes in the monoclinic space group, P2(1)/n, with four molecules in the unit cell. A larger trans influence of the phosphane ligand with respect to the carbonyl ligand is indicated by the longer Rh—O2 (2.0912 (18) Å) bond compared to Rh—O3 (2.0582 (17) Å) bond which is trans to the carbonyl ligand. The steric demand of the phosphane is indicated by the smaller O3—Rh1—P1 angle, (89.36 (5)°), compared to the carbonyl ligand (O2—Rh1—C1= 92.36 (10)°).

Spectroscopic characteristics of the current compound are similar to that reported previously by Brink et al. (2007), and we refer the reader to Brink et al. (2007) for additional discussion on the spectroscopy of these types of compounds.

For background to the catalytic activity of rhodium–phosphane compounds, see Carraz et al. (2000); Moloy & Wegman (1989); Bonati & Wilkinson (1964). For related rhodium compounds, see: Brink et al. (2007).

Computing details top

Data collection: APEX2 (Bruker 2010); cell refinement: SAINT (Bruker 2008); data reduction: SAINT (Bruker 2008) and XPREP (Bruker 2008); program(s) used to solve structure: SIR97 (Altomare, et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom numbering system. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atom labels have been omitted for clarity.
(Acetylacetonato-κ2O,O')carbonyl{dicyclohexyl[4-(dimethylamino)phenyl]phosphane-κP}rhodium(I) top
Crystal data top
[Rh(C5H7O2)(C20H32NP)(CO)]F(000) = 1144
Mr = 547.46Dx = 1.410 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 9888 reflections
a = 12.6865 (9) Åθ = 4.4–66.0°
b = 14.5220 (11) ŵ = 6.14 mm1
c = 14.025 (1) ÅT = 100 K
β = 93.241 (4)°Triangular, yellow
V = 2579.7 (3) Å30.17 × 0.07 × 0.04 mm
Z = 4
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
4303 independent reflections
Radiation source: Incoatec IµS microfocus X-ray source3693 reflections with I > 2σ(I)
Incoatec Quazar Multilayer Mirror monochromatorRint = 0.061
Detector resolution: 8.4 pixels mm-1θmax = 65.0°, θmin = 4.4°
φ and ω scansh = 1413
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1616
Tmin = 0.422, Tmax = 0.791l = 1316
40437 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.630P]
where P = (Fo2 + 2Fc2)/3
4303 reflections(Δ/σ)max = 0.002
293 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Rh(C5H7O2)(C20H32NP)(CO)]V = 2579.7 (3) Å3
Mr = 547.46Z = 4
Monoclinic, P21/nCu Kα radiation
a = 12.6865 (9) ŵ = 6.14 mm1
b = 14.5220 (11) ÅT = 100 K
c = 14.025 (1) Å0.17 × 0.07 × 0.04 mm
β = 93.241 (4)°
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
4303 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3693 reflections with I > 2σ(I)
Tmin = 0.422, Tmax = 0.791Rint = 0.061
40437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.12Δρmax = 0.49 e Å3
4303 reflectionsΔρmin = 0.71 e Å3
293 parameters
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 10 s/frame. A total of 4784 frames were collected with a frame width of 1.5° covering up to θ = 65.03° with 97.9% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.908529 (14)0.744727 (13)0.325453 (13)0.01657 (9)
P10.83169 (5)0.87425 (5)0.26682 (5)0.01694 (16)
O10.72624 (15)0.71456 (15)0.44366 (14)0.0305 (5)
O31.03538 (14)0.76915 (13)0.24378 (14)0.0227 (4)
O20.97876 (13)0.62028 (12)0.36911 (13)0.0208 (4)
N10.58506 (16)1.10132 (17)0.53812 (16)0.0240 (5)
C10.7979 (2)0.72634 (19)0.3971 (2)0.0220 (6)
C70.75721 (18)0.94435 (18)0.34654 (18)0.0174 (6)
C80.67428 (18)1.00226 (18)0.31360 (19)0.0186 (6)
H30.65651.00580.24700.022*
C90.61789 (18)1.05425 (18)0.37573 (18)0.0187 (6)
H40.56181.09220.35110.022*
C100.64221 (18)1.05186 (18)0.47480 (18)0.0175 (6)
C130.6132 (2)1.0988 (2)0.63920 (19)0.0277 (7)
H6A0.60491.03590.66300.042*
H6B0.56701.14040.67270.042*
H6C0.68681.11830.65060.042*
C140.49332 (19)1.1551 (2)0.5047 (2)0.0245 (6)
H7A0.51661.21020.47140.037*
H7B0.45341.17360.55950.037*
H7C0.44821.11780.46090.037*
C110.72802 (18)0.99636 (18)0.50780 (19)0.0198 (6)
H80.74860.99510.57400.024*
C120.78251 (18)0.94380 (18)0.44461 (18)0.0189 (6)
H90.83900.90610.46890.023*
C150.93139 (18)0.95227 (19)0.21934 (18)0.0194 (6)
H100.97980.91270.18320.023*
C160.99933 (19)0.9952 (2)0.3020 (2)0.0247 (6)
H11A0.95501.03620.33950.030*
H11B1.02780.94590.34490.030*
C171.0909 (2)1.0506 (2)0.2639 (2)0.0281 (7)
H12A1.13001.08160.31790.034*
H12B1.14011.00800.23390.034*
C181.0528 (2)1.12267 (19)0.1909 (2)0.0253 (6)
H13A1.01221.17070.22300.030*
H13B1.11461.15260.16380.030*
C190.9839 (2)1.0799 (2)0.1111 (2)0.0252 (6)
H14A1.02691.03710.07430.030*
H14B0.95681.12890.06710.030*
C200.8904 (2)1.02713 (19)0.1499 (2)0.0233 (6)
H15A0.84461.07030.18330.028*
H15B0.84790.99870.09640.028*
C210.73975 (18)0.84942 (19)0.16375 (18)0.0189 (6)
H160.71360.90920.13620.023*
C260.64365 (19)0.7920 (2)0.19092 (19)0.0232 (6)
H17A0.66830.73360.22110.028*
H17B0.60360.82640.23790.028*
C250.5715 (2)0.7708 (2)0.1027 (2)0.0265 (7)
H18A0.54310.82900.07510.032*
H18B0.51120.73300.12160.032*
C240.6310 (2)0.7191 (2)0.0275 (2)0.0297 (7)
H19A0.58350.70850.02990.036*
H19B0.65450.65850.05300.036*
C230.7269 (2)0.7754 (2)0.0004 (2)0.0292 (7)
H20A0.76670.74020.04610.035*
H20B0.70250.83340.03070.035*
C220.7991 (2)0.7978 (2)0.08685 (19)0.0239 (6)
H21A0.85840.83640.06700.029*
H21B0.82900.74000.11430.029*
C41.11553 (19)0.7161 (2)0.23583 (19)0.0194 (6)
C61.1979 (2)0.75500 (19)0.1732 (2)0.0259 (7)
H23A1.17290.81370.14580.039*
H23B1.21030.71150.12160.039*
H23C1.26390.76510.21150.039*
C31.13142 (18)0.63104 (18)0.27803 (18)0.0203 (6)
H241.19290.59830.26240.024*
C21.06540 (19)0.58785 (19)0.34208 (19)0.0205 (6)
C51.0972 (2)0.4964 (2)0.3834 (2)0.0277 (7)
H26A1.09100.49770.45280.042*
H26B1.17040.48320.36930.042*
H26C1.05090.44840.35530.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01554 (13)0.01623 (14)0.01817 (13)0.00170 (7)0.00311 (9)0.00093 (8)
P10.0158 (3)0.0166 (4)0.0187 (3)0.0017 (2)0.0031 (3)0.0004 (3)
O10.0295 (10)0.0310 (12)0.0326 (12)0.0047 (9)0.0158 (9)0.0000 (10)
O30.0207 (9)0.0207 (11)0.0270 (11)0.0051 (8)0.0053 (8)0.0060 (8)
O20.0189 (8)0.0190 (11)0.0246 (10)0.0023 (7)0.0023 (8)0.0007 (8)
N10.0247 (11)0.0267 (14)0.0210 (12)0.0064 (10)0.0035 (10)0.0028 (10)
C10.0272 (15)0.0127 (15)0.0257 (16)0.0040 (11)0.0002 (13)0.0013 (12)
C70.0146 (11)0.0171 (15)0.0209 (14)0.0023 (10)0.0032 (10)0.0012 (11)
C80.0186 (12)0.0180 (15)0.0191 (14)0.0015 (10)0.0008 (11)0.0022 (11)
C90.0156 (11)0.0153 (15)0.0253 (15)0.0000 (10)0.0009 (11)0.0012 (12)
C100.0167 (11)0.0121 (14)0.0241 (15)0.0030 (10)0.0040 (11)0.0011 (11)
C130.0349 (15)0.0265 (17)0.0224 (15)0.0025 (13)0.0079 (13)0.0031 (13)
C140.0208 (12)0.0219 (16)0.0318 (16)0.0029 (11)0.0097 (12)0.0000 (13)
C110.0212 (12)0.0200 (16)0.0181 (14)0.0003 (11)0.0006 (11)0.0004 (11)
C120.0148 (11)0.0172 (15)0.0246 (15)0.0006 (10)0.0007 (10)0.0018 (12)
C150.0178 (12)0.0187 (15)0.0218 (14)0.0005 (10)0.0029 (11)0.0001 (12)
C160.0205 (12)0.0262 (17)0.0272 (15)0.0033 (11)0.0014 (11)0.0046 (13)
C170.0195 (13)0.0297 (18)0.0350 (17)0.0052 (12)0.0002 (12)0.0036 (14)
C180.0216 (13)0.0213 (16)0.0336 (16)0.0035 (11)0.0069 (12)0.0039 (13)
C190.0256 (13)0.0238 (16)0.0269 (15)0.0011 (12)0.0061 (12)0.0088 (13)
C200.0221 (13)0.0215 (16)0.0265 (15)0.0008 (11)0.0025 (11)0.0023 (13)
C210.0197 (12)0.0183 (15)0.0191 (14)0.0021 (11)0.0044 (11)0.0009 (11)
C260.0217 (13)0.0257 (17)0.0221 (15)0.0010 (12)0.0019 (11)0.0015 (12)
C250.0229 (14)0.0284 (17)0.0276 (17)0.0024 (12)0.0034 (12)0.0025 (13)
C240.0326 (15)0.0296 (18)0.0259 (16)0.0053 (13)0.0080 (13)0.0085 (14)
C230.0376 (16)0.0313 (18)0.0189 (15)0.0111 (14)0.0014 (13)0.0019 (13)
C220.0277 (14)0.0230 (17)0.0214 (15)0.0042 (12)0.0064 (12)0.0008 (13)
C40.0163 (12)0.0234 (16)0.0184 (14)0.0016 (11)0.0004 (11)0.0054 (12)
C60.0206 (14)0.0278 (18)0.0301 (17)0.0018 (11)0.0083 (13)0.0044 (13)
C30.0161 (11)0.0217 (16)0.0230 (14)0.0036 (11)0.0016 (11)0.0034 (12)
C20.0208 (12)0.0202 (16)0.0201 (14)0.0009 (11)0.0014 (11)0.0043 (12)
C50.0298 (14)0.0216 (17)0.0324 (17)0.0053 (12)0.0073 (13)0.0030 (13)
Geometric parameters (Å, º) top
Rh1—C11.792 (3)C17—H12B0.9900
Rh1—O32.0582 (17)C18—C191.515 (4)
Rh1—O22.0912 (18)C18—H13A0.9900
Rh1—P12.2525 (7)C18—H13B0.9900
P1—C71.816 (2)C19—C201.537 (3)
P1—C211.841 (3)C19—H14A0.9900
P1—C151.850 (2)C19—H14B0.9900
O1—C11.161 (3)C20—H15A0.9900
O3—C41.285 (3)C20—H15B0.9900
O2—C21.273 (3)C21—C261.543 (3)
N1—C101.379 (3)C21—C221.544 (3)
N1—C131.443 (3)C21—H161.0000
N1—C141.457 (3)C26—C251.528 (4)
C7—C121.395 (4)C26—H17A0.9900
C7—C81.405 (4)C26—H17B0.9900
C8—C91.383 (3)C25—C241.528 (4)
C8—H30.9500C25—H18A0.9900
C9—C101.407 (4)C25—H18B0.9900
C9—H40.9500C24—C231.531 (4)
C10—C111.411 (4)C24—H19A0.9900
C13—H6A0.9800C24—H19B0.9900
C13—H6B0.9800C23—C221.513 (4)
C13—H6C0.9800C23—H20A0.9900
C14—H7A0.9800C23—H20B0.9900
C14—H7B0.9800C22—H21A0.9900
C14—H7C0.9800C22—H21B0.9900
C11—C121.384 (3)C4—C31.380 (4)
C11—H80.9500C4—C61.512 (4)
C12—H90.9500C6—H23A0.9800
C15—C201.530 (4)C6—H23B0.9800
C15—C161.537 (4)C6—H23C0.9800
C15—H101.0000C3—C21.410 (4)
C16—C171.534 (3)C3—H240.9500
C16—H11A0.9900C2—C51.495 (4)
C16—H11B0.9900C5—H26A0.9800
C17—C181.523 (4)C5—H26B0.9800
C17—H12A0.9900C5—H26C0.9800
C1—Rh1—O3178.64 (10)H13A—C18—H13B108.0
C1—Rh1—O292.36 (10)C18—C19—C20111.5 (2)
O3—Rh1—O288.76 (7)C18—C19—H14A109.3
C1—Rh1—P189.59 (9)C20—C19—H14A109.3
O3—Rh1—P189.36 (5)C18—C19—H14B109.3
O2—Rh1—P1175.54 (5)C20—C19—H14B109.3
C7—P1—C21105.34 (11)H14A—C19—H14B108.0
C7—P1—C15105.57 (11)C15—C20—C19109.8 (2)
C21—P1—C15104.66 (12)C15—C20—H15A109.7
C7—P1—Rh1118.21 (9)C19—C20—H15A109.7
C21—P1—Rh1111.40 (9)C15—C20—H15B109.7
C15—P1—Rh1110.63 (9)C19—C20—H15B109.7
C4—O3—Rh1126.32 (17)H15A—C20—H15B108.2
C2—O2—Rh1126.39 (16)C26—C21—C22109.5 (2)
C10—N1—C13120.6 (2)C26—C21—P1112.73 (17)
C10—N1—C14120.8 (2)C22—C21—P1109.34 (17)
C13—N1—C14118.6 (2)C26—C21—H16108.4
O1—C1—Rh1179.9 (3)C22—C21—H16108.4
C12—C7—C8117.0 (2)P1—C21—H16108.4
C12—C7—P1120.35 (19)C25—C26—C21110.8 (2)
C8—C7—P1122.6 (2)C25—C26—H17A109.5
C9—C8—C7121.6 (2)C21—C26—H17A109.5
C9—C8—H3119.2C25—C26—H17B109.5
C7—C8—H3119.2C21—C26—H17B109.5
C8—C9—C10121.1 (2)H17A—C26—H17B108.1
C8—C9—H4119.4C26—C25—C24111.2 (2)
C10—C9—H4119.4C26—C25—H18A109.4
N1—C10—C9121.9 (2)C24—C25—H18A109.4
N1—C10—C11120.7 (2)C26—C25—H18B109.4
C9—C10—C11117.4 (2)C24—C25—H18B109.4
N1—C13—H6A109.5H18A—C25—H18B108.0
N1—C13—H6B109.5C25—C24—C23109.9 (3)
H6A—C13—H6B109.5C25—C24—H19A109.7
N1—C13—H6C109.5C23—C24—H19A109.7
H6A—C13—H6C109.5C25—C24—H19B109.7
H6B—C13—H6C109.5C23—C24—H19B109.7
N1—C14—H7A109.5H19A—C24—H19B108.2
N1—C14—H7B109.5C22—C23—C24111.7 (2)
H7A—C14—H7B109.5C22—C23—H20A109.3
N1—C14—H7C109.5C24—C23—H20A109.3
H7A—C14—H7C109.5C22—C23—H20B109.3
H7B—C14—H7C109.5C24—C23—H20B109.3
C12—C11—C10120.6 (2)H20A—C23—H20B107.9
C12—C11—H8119.7C23—C22—C21111.5 (2)
C10—C11—H8119.7C23—C22—H21A109.3
C11—C12—C7122.2 (2)C21—C22—H21A109.3
C11—C12—H9118.9C23—C22—H21B109.3
C7—C12—H9118.9C21—C22—H21B109.3
C20—C15—C16110.3 (2)H21A—C22—H21B108.0
C20—C15—P1116.72 (17)O3—C4—C3126.6 (2)
C16—C15—P1110.03 (17)O3—C4—C6113.8 (2)
C20—C15—H10106.4C3—C4—C6119.6 (2)
C16—C15—H10106.4C4—C6—H23A109.5
P1—C15—H10106.4C4—C6—H23B109.5
C17—C16—C15110.7 (2)H23A—C6—H23B109.5
C17—C16—H11A109.5C4—C6—H23C109.5
C15—C16—H11A109.5H23A—C6—H23C109.5
C17—C16—H11B109.5H23B—C6—H23C109.5
C15—C16—H11B109.5C4—C3—C2126.4 (2)
H11A—C16—H11B108.1C4—C3—H24116.8
C18—C17—C16112.2 (2)C2—C3—H24116.8
C18—C17—H12A109.2O2—C2—C3125.4 (3)
C16—C17—H12A109.2O2—C2—C5115.6 (2)
C18—C17—H12B109.2C3—C2—C5119.0 (2)
C16—C17—H12B109.2C2—C5—H26A109.5
H12A—C17—H12B107.9C2—C5—H26B109.5
C19—C18—C17111.3 (2)H26A—C5—H26B109.5
C19—C18—H13A109.4C2—C5—H26C109.5
C17—C18—H13A109.4H26A—C5—H26C109.5
C19—C18—H13B109.4H26B—C5—H26C109.5
C17—C18—H13B109.4
C1—Rh1—P1—C736.35 (13)C7—P1—C15—C1656.9 (2)
O3—Rh1—P1—C7142.79 (11)C21—P1—C15—C16167.77 (18)
C1—Rh1—P1—C2185.84 (12)Rh1—P1—C15—C1672.14 (18)
O3—Rh1—P1—C2195.02 (9)C20—C15—C16—C1756.8 (3)
C1—Rh1—P1—C15158.19 (13)P1—C15—C16—C17173.02 (18)
O3—Rh1—P1—C1520.95 (11)C15—C16—C17—C1854.4 (3)
O2—Rh1—O3—C40.2 (2)C16—C17—C18—C1953.7 (3)
P1—Rh1—O3—C4175.7 (2)C17—C18—C19—C2055.4 (3)
C1—Rh1—O2—C2179.1 (2)C16—C15—C20—C1958.4 (3)
O3—Rh1—O2—C21.7 (2)P1—C15—C20—C19175.11 (18)
C21—P1—C7—C12152.7 (2)C18—C19—C20—C1558.0 (3)
C15—P1—C7—C1296.8 (2)C7—P1—C21—C2663.5 (2)
Rh1—P1—C7—C1227.5 (2)C15—P1—C21—C26174.56 (18)
C21—P1—C7—C828.6 (2)Rh1—P1—C21—C2665.87 (19)
C15—P1—C7—C881.8 (2)C7—P1—C21—C22174.49 (18)
Rh1—P1—C7—C8153.80 (18)C15—P1—C21—C2263.4 (2)
C12—C7—C8—C92.0 (4)Rh1—P1—C21—C2256.16 (19)
P1—C7—C8—C9179.28 (19)C22—C21—C26—C2556.4 (3)
C7—C8—C9—C100.6 (4)P1—C21—C26—C25178.32 (18)
C13—N1—C10—C9178.8 (2)C21—C26—C25—C2458.0 (3)
C14—N1—C10—C92.9 (4)C26—C25—C24—C2357.0 (3)
C13—N1—C10—C111.3 (4)C25—C24—C23—C2256.4 (3)
C14—N1—C10—C11177.0 (2)C24—C23—C22—C2156.6 (3)
C8—C9—C10—N1178.2 (2)C26—C21—C22—C2355.9 (3)
C8—C9—C10—C111.7 (4)P1—C21—C22—C23179.8 (2)
N1—C10—C11—C12177.3 (2)Rh1—O3—C4—C32.1 (4)
C9—C10—C11—C122.6 (4)Rh1—O3—C4—C6177.80 (17)
C10—C11—C12—C71.3 (4)O3—C4—C3—C23.6 (5)
C8—C7—C12—C111.1 (4)C6—C4—C3—C2176.3 (3)
P1—C7—C12—C11179.8 (2)Rh1—O2—C2—C31.0 (4)
C7—P1—C15—C2069.8 (2)Rh1—O2—C2—C5179.18 (18)
C21—P1—C15—C2041.1 (2)C4—C3—C2—O21.9 (5)
Rh1—P1—C15—C20161.20 (17)C4—C3—C2—C5178.0 (3)

Experimental details

Crystal data
Chemical formula[Rh(C5H7O2)(C20H32NP)(CO)]
Mr547.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.6865 (9), 14.5220 (11), 14.025 (1)
β (°) 93.241 (4)
V3)2579.7 (3)
Z4
Radiation typeCu Kα
µ (mm1)6.14
Crystal size (mm)0.17 × 0.07 × 0.04
Data collection
DiffractometerBruker APEX DUO 4K-CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.422, 0.791
No. of measured, independent and
observed [I > 2σ(I)] reflections
40437, 4303, 3693
Rint0.061
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.12
No. of reflections4303
No. of parameters293
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.71

Computer programs: APEX2 (Bruker 2010), SAINT (Bruker 2008) and XPREP (Bruker 2008), SIR97 (Altomare, et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

 

Acknowledgements

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg, SASOL and TESP is gratefully acknowledged. H. Ogutu is acknowledged for the data collection.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBonati, F. & Wilkinson, G. (1964). J. Chem. Soc. pp. 3156–3160.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrink, A., Roodt, A. & Visser, H. G. (2007). Acta Cryst. E63, m48–m50.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarraz, C. A., Ditzel, E. J., Orpen, A. G., Ellis, D. D., Pringle, P. G. & Sunley, G. J. (2000). Chem. Commun. pp. 1277–1278.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMoloy, K. G. & Wegman, R. W. (1989). Organometallics, 8, 2883–2892.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds