metal-organic compounds
(Acetylacetonato-κ2O,O′)carbonyl{dicyclohexyl[4-(dimethylamino)phenyl]phosphane-κP}rhodium(I)
aResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za
The title compound, [Rh(C5H7O2)(C20H32NP)(CO)], features an acetylacetonate-chelated RhI cation coordinated by one P [Rh—P = 2.2525 (7) Å], one carbonyl C [Rh—C = 1.792 (3) Å] and two O [Rh—O = 2.0582 (17) and 2.0912 (18) Å] atoms in a slightly distorted square-planar geometry. Molecules are packed in positions of least with the phosphane ligands positioned above and below the Rh–acetylacetonate backbone.
Related literature
For background to the et al. (2000); Moloy & Wegman (1989); Bonati & Wilkinson (1964). For related rhodium compounds, see: Brink et al. (2007).
of rhodium–phosphane compounds, see: CarrazExperimental
Crystal data
|
Data collection: APEX2 (Bruker, 2010); cell SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536811050483/mw2037sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811050483/mw2037Isup2.hkl
A solution of [Rh(acac)(CO)2] (25.8 mg, 0.1 mmol) in acetone (5 cm3) was slowly added to a solution of [PCy2(4-Me2NC6H4)] (31.7 mg, 0.1 mmol) in acetone (5 cm3). Slow evaporation of the solvent afforded the title compound as yellow crystals.
The aromatic, methine, and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for aromatic and methine H atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively. Methyl torsion angles were refined from electron density.
One of the collected sub-sets contained non-reliable data at higher θ angles. In order to obtain reliable data the maximum angle (θmax) was cut to 65.03° using the OMIT command during cycles.
Acetylacetonate has two O-donor atoms with equivalent σ-electron donor capabilities. The high symmetry of dicarbonyl(acetylacetonate)rhodium(I) complexes promotes easy carbonyl displacement of either carbonyl group with a variety of phosphites and (Bonati and Wilkinson, 1964). This work is part of an ongoing investigation aimed at determing the steric effects induced by various phosphane ligands on a rhodium(I) metal centre. Previous work illustrating the catalytic importance of the rhodium(I) square-planar moieties has been conducted on rhodium mono- and di-phosphane complexes containing the symmetrical bidentate ligand, acac (acac = acetylacetonate) (Moloy and Wegman, 1989). Symmetrical di-phosphane ligands result in the production of acetaldehyde, whereas unsymmetrical di-phosphane ligands are more stable and efficient catalysts for the carbonylation of methanol to acetic acid (Carraz et al., 2000).
In the title compound, [Rh(acac)(CO){PCy2(4-Me2NC6H4)}] (acac = acetylacetonate, Cy = cyclohexyl), the coordination around the Rh atom shows a slightly distorted square-planar arrangement, illustrated by C1—Rh1—P1 and O2—Rh1—O3 angles of 89.59 (9)° and 88.76 (7)°, respectively. The complex crystallizes in the monoclinic
P2(1)/n, with four molecules in the A larger trans influence of the phosphane ligand with respect to the carbonyl ligand is indicated by the longer Rh—O2 (2.0912 (18) Å) bond compared to Rh—O3 (2.0582 (17) Å) bond which is trans to the carbonyl ligand. The steric demand of the phosphane is indicated by the smaller O3—Rh1—P1 angle, (89.36 (5)°), compared to the carbonyl ligand (O2—Rh1—C1= 92.36 (10)°).Spectroscopic characteristics of the current compound are similar to that reported previously by Brink et al. (2007), and we refer the reader to Brink et al. (2007) for additional discussion on the spectroscopy of these types of compounds.
For background to the
of rhodium–phosphane compounds, see Carraz et al. (2000); Moloy & Wegman (1989); Bonati & Wilkinson (1964). For related rhodium compounds, see: Brink et al. (2007).Data collection: APEX2 (Bruker 2010); cell
SAINT (Bruker 2008); data reduction: SAINT (Bruker 2008) and XPREP (Bruker 2008); program(s) used to solve structure: SIR97 (Altomare, et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).[Rh(C5H7O2)(C20H32NP)(CO)] | F(000) = 1144 |
Mr = 547.46 | Dx = 1.410 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2yn | Cell parameters from 9888 reflections |
a = 12.6865 (9) Å | θ = 4.4–66.0° |
b = 14.5220 (11) Å | µ = 6.14 mm−1 |
c = 14.025 (1) Å | T = 100 K |
β = 93.241 (4)° | Triangular, yellow |
V = 2579.7 (3) Å3 | 0.17 × 0.07 × 0.04 mm |
Z = 4 |
Bruker APEX DUO 4K-CCD diffractometer | 4303 independent reflections |
Radiation source: Incoatec IµS microfocus X-ray source | 3693 reflections with I > 2σ(I) |
Incoatec Quazar Multilayer Mirror monochromator | Rint = 0.061 |
Detector resolution: 8.4 pixels mm-1 | θmax = 65.0°, θmin = 4.4° |
φ and ω scans | h = −14→13 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | k = −16→16 |
Tmin = 0.422, Tmax = 0.791 | l = −13→16 |
40437 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0408P)2 + 0.630P] where P = (Fo2 + 2Fc2)/3 |
4303 reflections | (Δ/σ)max = 0.002 |
293 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.71 e Å−3 |
[Rh(C5H7O2)(C20H32NP)(CO)] | V = 2579.7 (3) Å3 |
Mr = 547.46 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 12.6865 (9) Å | µ = 6.14 mm−1 |
b = 14.5220 (11) Å | T = 100 K |
c = 14.025 (1) Å | 0.17 × 0.07 × 0.04 mm |
β = 93.241 (4)° |
Bruker APEX DUO 4K-CCD diffractometer | 4303 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 3693 reflections with I > 2σ(I) |
Tmin = 0.422, Tmax = 0.791 | Rint = 0.061 |
40437 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 1.12 | Δρmax = 0.49 e Å−3 |
4303 reflections | Δρmin = −0.71 e Å−3 |
293 parameters |
Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 10 s/frame. A total of 4784 frames were collected with a frame width of 1.5° covering up to θ = 65.03° with 97.9% completeness accomplished. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Rh1 | 0.908529 (14) | 0.744727 (13) | 0.325453 (13) | 0.01657 (9) | |
P1 | 0.83169 (5) | 0.87425 (5) | 0.26682 (5) | 0.01694 (16) | |
O1 | 0.72624 (15) | 0.71456 (15) | 0.44366 (14) | 0.0305 (5) | |
O3 | 1.03538 (14) | 0.76915 (13) | 0.24378 (14) | 0.0227 (4) | |
O2 | 0.97876 (13) | 0.62028 (12) | 0.36911 (13) | 0.0208 (4) | |
N1 | 0.58506 (16) | 1.10132 (17) | 0.53812 (16) | 0.0240 (5) | |
C1 | 0.7979 (2) | 0.72634 (19) | 0.3971 (2) | 0.0220 (6) | |
C7 | 0.75721 (18) | 0.94435 (18) | 0.34654 (18) | 0.0174 (6) | |
C8 | 0.67428 (18) | 1.00226 (18) | 0.31360 (19) | 0.0186 (6) | |
H3 | 0.6565 | 1.0058 | 0.2470 | 0.022* | |
C9 | 0.61789 (18) | 1.05425 (18) | 0.37573 (18) | 0.0187 (6) | |
H4 | 0.5618 | 1.0922 | 0.3511 | 0.022* | |
C10 | 0.64221 (18) | 1.05186 (18) | 0.47480 (18) | 0.0175 (6) | |
C13 | 0.6132 (2) | 1.0988 (2) | 0.63920 (19) | 0.0277 (7) | |
H6A | 0.6049 | 1.0359 | 0.6630 | 0.042* | |
H6B | 0.5670 | 1.1404 | 0.6727 | 0.042* | |
H6C | 0.6868 | 1.1183 | 0.6506 | 0.042* | |
C14 | 0.49332 (19) | 1.1551 (2) | 0.5047 (2) | 0.0245 (6) | |
H7A | 0.5166 | 1.2102 | 0.4714 | 0.037* | |
H7B | 0.4534 | 1.1736 | 0.5595 | 0.037* | |
H7C | 0.4482 | 1.1178 | 0.4609 | 0.037* | |
C11 | 0.72802 (18) | 0.99636 (18) | 0.50780 (19) | 0.0198 (6) | |
H8 | 0.7486 | 0.9951 | 0.5740 | 0.024* | |
C12 | 0.78251 (18) | 0.94380 (18) | 0.44461 (18) | 0.0189 (6) | |
H9 | 0.8390 | 0.9061 | 0.4689 | 0.023* | |
C15 | 0.93139 (18) | 0.95227 (19) | 0.21934 (18) | 0.0194 (6) | |
H10 | 0.9798 | 0.9127 | 0.1832 | 0.023* | |
C16 | 0.99933 (19) | 0.9952 (2) | 0.3020 (2) | 0.0247 (6) | |
H11A | 0.9550 | 1.0362 | 0.3395 | 0.030* | |
H11B | 1.0278 | 0.9459 | 0.3449 | 0.030* | |
C17 | 1.0909 (2) | 1.0506 (2) | 0.2639 (2) | 0.0281 (7) | |
H12A | 1.1300 | 1.0816 | 0.3179 | 0.034* | |
H12B | 1.1401 | 1.0080 | 0.2339 | 0.034* | |
C18 | 1.0528 (2) | 1.12267 (19) | 0.1909 (2) | 0.0253 (6) | |
H13A | 1.0122 | 1.1707 | 0.2230 | 0.030* | |
H13B | 1.1146 | 1.1526 | 0.1638 | 0.030* | |
C19 | 0.9839 (2) | 1.0799 (2) | 0.1111 (2) | 0.0252 (6) | |
H14A | 1.0269 | 1.0371 | 0.0743 | 0.030* | |
H14B | 0.9568 | 1.1289 | 0.0671 | 0.030* | |
C20 | 0.8904 (2) | 1.02713 (19) | 0.1499 (2) | 0.0233 (6) | |
H15A | 0.8446 | 1.0703 | 0.1833 | 0.028* | |
H15B | 0.8479 | 0.9987 | 0.0964 | 0.028* | |
C21 | 0.73975 (18) | 0.84942 (19) | 0.16375 (18) | 0.0189 (6) | |
H16 | 0.7136 | 0.9092 | 0.1362 | 0.023* | |
C26 | 0.64365 (19) | 0.7920 (2) | 0.19092 (19) | 0.0232 (6) | |
H17A | 0.6683 | 0.7336 | 0.2211 | 0.028* | |
H17B | 0.6036 | 0.8264 | 0.2379 | 0.028* | |
C25 | 0.5715 (2) | 0.7708 (2) | 0.1027 (2) | 0.0265 (7) | |
H18A | 0.5431 | 0.8290 | 0.0751 | 0.032* | |
H18B | 0.5112 | 0.7330 | 0.1216 | 0.032* | |
C24 | 0.6310 (2) | 0.7191 (2) | 0.0275 (2) | 0.0297 (7) | |
H19A | 0.5835 | 0.7085 | −0.0299 | 0.036* | |
H19B | 0.6545 | 0.6585 | 0.0530 | 0.036* | |
C23 | 0.7269 (2) | 0.7754 (2) | 0.0004 (2) | 0.0292 (7) | |
H20A | 0.7667 | 0.7402 | −0.0461 | 0.035* | |
H20B | 0.7025 | 0.8334 | −0.0307 | 0.035* | |
C22 | 0.7991 (2) | 0.7978 (2) | 0.08685 (19) | 0.0239 (6) | |
H21A | 0.8584 | 0.8364 | 0.0670 | 0.029* | |
H21B | 0.8290 | 0.7400 | 0.1143 | 0.029* | |
C4 | 1.11553 (19) | 0.7161 (2) | 0.23583 (19) | 0.0194 (6) | |
C6 | 1.1979 (2) | 0.75500 (19) | 0.1732 (2) | 0.0259 (7) | |
H23A | 1.1729 | 0.8137 | 0.1458 | 0.039* | |
H23B | 1.2103 | 0.7115 | 0.1216 | 0.039* | |
H23C | 1.2639 | 0.7651 | 0.2115 | 0.039* | |
C3 | 1.13142 (18) | 0.63104 (18) | 0.27803 (18) | 0.0203 (6) | |
H24 | 1.1929 | 0.5983 | 0.2624 | 0.024* | |
C2 | 1.06540 (19) | 0.58785 (19) | 0.34208 (19) | 0.0205 (6) | |
C5 | 1.0972 (2) | 0.4964 (2) | 0.3834 (2) | 0.0277 (7) | |
H26A | 1.0910 | 0.4977 | 0.4528 | 0.042* | |
H26B | 1.1704 | 0.4832 | 0.3693 | 0.042* | |
H26C | 1.0509 | 0.4484 | 0.3553 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rh1 | 0.01554 (13) | 0.01623 (14) | 0.01817 (13) | 0.00170 (7) | 0.00311 (9) | 0.00093 (8) |
P1 | 0.0158 (3) | 0.0166 (4) | 0.0187 (3) | 0.0017 (2) | 0.0031 (3) | 0.0004 (3) |
O1 | 0.0295 (10) | 0.0310 (12) | 0.0326 (12) | −0.0047 (9) | 0.0158 (9) | 0.0000 (10) |
O3 | 0.0207 (9) | 0.0207 (11) | 0.0270 (11) | 0.0051 (8) | 0.0053 (8) | 0.0060 (8) |
O2 | 0.0189 (8) | 0.0190 (11) | 0.0246 (10) | 0.0023 (7) | 0.0023 (8) | 0.0007 (8) |
N1 | 0.0247 (11) | 0.0267 (14) | 0.0210 (12) | 0.0064 (10) | 0.0035 (10) | −0.0028 (10) |
C1 | 0.0272 (15) | 0.0127 (15) | 0.0257 (16) | 0.0040 (11) | −0.0002 (13) | 0.0013 (12) |
C7 | 0.0146 (11) | 0.0171 (15) | 0.0209 (14) | −0.0023 (10) | 0.0032 (10) | −0.0012 (11) |
C8 | 0.0186 (12) | 0.0180 (15) | 0.0191 (14) | −0.0015 (10) | 0.0008 (11) | 0.0022 (11) |
C9 | 0.0156 (11) | 0.0153 (15) | 0.0253 (15) | 0.0000 (10) | 0.0009 (11) | 0.0012 (12) |
C10 | 0.0167 (11) | 0.0121 (14) | 0.0241 (15) | −0.0030 (10) | 0.0040 (11) | −0.0011 (11) |
C13 | 0.0349 (15) | 0.0265 (17) | 0.0224 (15) | 0.0025 (13) | 0.0079 (13) | −0.0031 (13) |
C14 | 0.0208 (12) | 0.0219 (16) | 0.0318 (16) | 0.0029 (11) | 0.0097 (12) | 0.0000 (13) |
C11 | 0.0212 (12) | 0.0200 (16) | 0.0181 (14) | 0.0003 (11) | −0.0006 (11) | −0.0004 (11) |
C12 | 0.0148 (11) | 0.0172 (15) | 0.0246 (15) | 0.0006 (10) | 0.0007 (10) | 0.0018 (12) |
C15 | 0.0178 (12) | 0.0187 (15) | 0.0218 (14) | 0.0005 (10) | 0.0029 (11) | −0.0001 (12) |
C16 | 0.0205 (12) | 0.0262 (17) | 0.0272 (15) | −0.0033 (11) | −0.0014 (11) | 0.0046 (13) |
C17 | 0.0195 (13) | 0.0297 (18) | 0.0350 (17) | −0.0052 (12) | 0.0002 (12) | 0.0036 (14) |
C18 | 0.0216 (13) | 0.0213 (16) | 0.0336 (16) | −0.0035 (11) | 0.0069 (12) | 0.0039 (13) |
C19 | 0.0256 (13) | 0.0238 (16) | 0.0269 (15) | 0.0011 (12) | 0.0061 (12) | 0.0088 (13) |
C20 | 0.0221 (13) | 0.0215 (16) | 0.0265 (15) | −0.0008 (11) | 0.0025 (11) | 0.0023 (13) |
C21 | 0.0197 (12) | 0.0183 (15) | 0.0191 (14) | 0.0021 (11) | 0.0044 (11) | −0.0009 (11) |
C26 | 0.0217 (13) | 0.0257 (17) | 0.0221 (15) | −0.0010 (12) | 0.0019 (11) | −0.0015 (12) |
C25 | 0.0229 (14) | 0.0284 (17) | 0.0276 (17) | 0.0024 (12) | −0.0034 (12) | −0.0025 (13) |
C24 | 0.0326 (15) | 0.0296 (18) | 0.0259 (16) | 0.0053 (13) | −0.0080 (13) | −0.0085 (14) |
C23 | 0.0376 (16) | 0.0313 (18) | 0.0189 (15) | 0.0111 (14) | 0.0014 (13) | −0.0019 (13) |
C22 | 0.0277 (14) | 0.0230 (17) | 0.0214 (15) | 0.0042 (12) | 0.0064 (12) | −0.0008 (13) |
C4 | 0.0163 (12) | 0.0234 (16) | 0.0184 (14) | 0.0016 (11) | 0.0004 (11) | −0.0054 (12) |
C6 | 0.0206 (14) | 0.0278 (18) | 0.0301 (17) | 0.0018 (11) | 0.0083 (13) | 0.0044 (13) |
C3 | 0.0161 (11) | 0.0217 (16) | 0.0230 (14) | 0.0036 (11) | 0.0016 (11) | −0.0034 (12) |
C2 | 0.0208 (12) | 0.0202 (16) | 0.0201 (14) | 0.0009 (11) | −0.0014 (11) | −0.0043 (12) |
C5 | 0.0298 (14) | 0.0216 (17) | 0.0324 (17) | 0.0053 (12) | 0.0073 (13) | 0.0030 (13) |
Rh1—C1 | 1.792 (3) | C17—H12B | 0.9900 |
Rh1—O3 | 2.0582 (17) | C18—C19 | 1.515 (4) |
Rh1—O2 | 2.0912 (18) | C18—H13A | 0.9900 |
Rh1—P1 | 2.2525 (7) | C18—H13B | 0.9900 |
P1—C7 | 1.816 (2) | C19—C20 | 1.537 (3) |
P1—C21 | 1.841 (3) | C19—H14A | 0.9900 |
P1—C15 | 1.850 (2) | C19—H14B | 0.9900 |
O1—C1 | 1.161 (3) | C20—H15A | 0.9900 |
O3—C4 | 1.285 (3) | C20—H15B | 0.9900 |
O2—C2 | 1.273 (3) | C21—C26 | 1.543 (3) |
N1—C10 | 1.379 (3) | C21—C22 | 1.544 (3) |
N1—C13 | 1.443 (3) | C21—H16 | 1.0000 |
N1—C14 | 1.457 (3) | C26—C25 | 1.528 (4) |
C7—C12 | 1.395 (4) | C26—H17A | 0.9900 |
C7—C8 | 1.405 (4) | C26—H17B | 0.9900 |
C8—C9 | 1.383 (3) | C25—C24 | 1.528 (4) |
C8—H3 | 0.9500 | C25—H18A | 0.9900 |
C9—C10 | 1.407 (4) | C25—H18B | 0.9900 |
C9—H4 | 0.9500 | C24—C23 | 1.531 (4) |
C10—C11 | 1.411 (4) | C24—H19A | 0.9900 |
C13—H6A | 0.9800 | C24—H19B | 0.9900 |
C13—H6B | 0.9800 | C23—C22 | 1.513 (4) |
C13—H6C | 0.9800 | C23—H20A | 0.9900 |
C14—H7A | 0.9800 | C23—H20B | 0.9900 |
C14—H7B | 0.9800 | C22—H21A | 0.9900 |
C14—H7C | 0.9800 | C22—H21B | 0.9900 |
C11—C12 | 1.384 (3) | C4—C3 | 1.380 (4) |
C11—H8 | 0.9500 | C4—C6 | 1.512 (4) |
C12—H9 | 0.9500 | C6—H23A | 0.9800 |
C15—C20 | 1.530 (4) | C6—H23B | 0.9800 |
C15—C16 | 1.537 (4) | C6—H23C | 0.9800 |
C15—H10 | 1.0000 | C3—C2 | 1.410 (4) |
C16—C17 | 1.534 (3) | C3—H24 | 0.9500 |
C16—H11A | 0.9900 | C2—C5 | 1.495 (4) |
C16—H11B | 0.9900 | C5—H26A | 0.9800 |
C17—C18 | 1.523 (4) | C5—H26B | 0.9800 |
C17—H12A | 0.9900 | C5—H26C | 0.9800 |
C1—Rh1—O3 | 178.64 (10) | H13A—C18—H13B | 108.0 |
C1—Rh1—O2 | 92.36 (10) | C18—C19—C20 | 111.5 (2) |
O3—Rh1—O2 | 88.76 (7) | C18—C19—H14A | 109.3 |
C1—Rh1—P1 | 89.59 (9) | C20—C19—H14A | 109.3 |
O3—Rh1—P1 | 89.36 (5) | C18—C19—H14B | 109.3 |
O2—Rh1—P1 | 175.54 (5) | C20—C19—H14B | 109.3 |
C7—P1—C21 | 105.34 (11) | H14A—C19—H14B | 108.0 |
C7—P1—C15 | 105.57 (11) | C15—C20—C19 | 109.8 (2) |
C21—P1—C15 | 104.66 (12) | C15—C20—H15A | 109.7 |
C7—P1—Rh1 | 118.21 (9) | C19—C20—H15A | 109.7 |
C21—P1—Rh1 | 111.40 (9) | C15—C20—H15B | 109.7 |
C15—P1—Rh1 | 110.63 (9) | C19—C20—H15B | 109.7 |
C4—O3—Rh1 | 126.32 (17) | H15A—C20—H15B | 108.2 |
C2—O2—Rh1 | 126.39 (16) | C26—C21—C22 | 109.5 (2) |
C10—N1—C13 | 120.6 (2) | C26—C21—P1 | 112.73 (17) |
C10—N1—C14 | 120.8 (2) | C22—C21—P1 | 109.34 (17) |
C13—N1—C14 | 118.6 (2) | C26—C21—H16 | 108.4 |
O1—C1—Rh1 | 179.9 (3) | C22—C21—H16 | 108.4 |
C12—C7—C8 | 117.0 (2) | P1—C21—H16 | 108.4 |
C12—C7—P1 | 120.35 (19) | C25—C26—C21 | 110.8 (2) |
C8—C7—P1 | 122.6 (2) | C25—C26—H17A | 109.5 |
C9—C8—C7 | 121.6 (2) | C21—C26—H17A | 109.5 |
C9—C8—H3 | 119.2 | C25—C26—H17B | 109.5 |
C7—C8—H3 | 119.2 | C21—C26—H17B | 109.5 |
C8—C9—C10 | 121.1 (2) | H17A—C26—H17B | 108.1 |
C8—C9—H4 | 119.4 | C26—C25—C24 | 111.2 (2) |
C10—C9—H4 | 119.4 | C26—C25—H18A | 109.4 |
N1—C10—C9 | 121.9 (2) | C24—C25—H18A | 109.4 |
N1—C10—C11 | 120.7 (2) | C26—C25—H18B | 109.4 |
C9—C10—C11 | 117.4 (2) | C24—C25—H18B | 109.4 |
N1—C13—H6A | 109.5 | H18A—C25—H18B | 108.0 |
N1—C13—H6B | 109.5 | C25—C24—C23 | 109.9 (3) |
H6A—C13—H6B | 109.5 | C25—C24—H19A | 109.7 |
N1—C13—H6C | 109.5 | C23—C24—H19A | 109.7 |
H6A—C13—H6C | 109.5 | C25—C24—H19B | 109.7 |
H6B—C13—H6C | 109.5 | C23—C24—H19B | 109.7 |
N1—C14—H7A | 109.5 | H19A—C24—H19B | 108.2 |
N1—C14—H7B | 109.5 | C22—C23—C24 | 111.7 (2) |
H7A—C14—H7B | 109.5 | C22—C23—H20A | 109.3 |
N1—C14—H7C | 109.5 | C24—C23—H20A | 109.3 |
H7A—C14—H7C | 109.5 | C22—C23—H20B | 109.3 |
H7B—C14—H7C | 109.5 | C24—C23—H20B | 109.3 |
C12—C11—C10 | 120.6 (2) | H20A—C23—H20B | 107.9 |
C12—C11—H8 | 119.7 | C23—C22—C21 | 111.5 (2) |
C10—C11—H8 | 119.7 | C23—C22—H21A | 109.3 |
C11—C12—C7 | 122.2 (2) | C21—C22—H21A | 109.3 |
C11—C12—H9 | 118.9 | C23—C22—H21B | 109.3 |
C7—C12—H9 | 118.9 | C21—C22—H21B | 109.3 |
C20—C15—C16 | 110.3 (2) | H21A—C22—H21B | 108.0 |
C20—C15—P1 | 116.72 (17) | O3—C4—C3 | 126.6 (2) |
C16—C15—P1 | 110.03 (17) | O3—C4—C6 | 113.8 (2) |
C20—C15—H10 | 106.4 | C3—C4—C6 | 119.6 (2) |
C16—C15—H10 | 106.4 | C4—C6—H23A | 109.5 |
P1—C15—H10 | 106.4 | C4—C6—H23B | 109.5 |
C17—C16—C15 | 110.7 (2) | H23A—C6—H23B | 109.5 |
C17—C16—H11A | 109.5 | C4—C6—H23C | 109.5 |
C15—C16—H11A | 109.5 | H23A—C6—H23C | 109.5 |
C17—C16—H11B | 109.5 | H23B—C6—H23C | 109.5 |
C15—C16—H11B | 109.5 | C4—C3—C2 | 126.4 (2) |
H11A—C16—H11B | 108.1 | C4—C3—H24 | 116.8 |
C18—C17—C16 | 112.2 (2) | C2—C3—H24 | 116.8 |
C18—C17—H12A | 109.2 | O2—C2—C3 | 125.4 (3) |
C16—C17—H12A | 109.2 | O2—C2—C5 | 115.6 (2) |
C18—C17—H12B | 109.2 | C3—C2—C5 | 119.0 (2) |
C16—C17—H12B | 109.2 | C2—C5—H26A | 109.5 |
H12A—C17—H12B | 107.9 | C2—C5—H26B | 109.5 |
C19—C18—C17 | 111.3 (2) | H26A—C5—H26B | 109.5 |
C19—C18—H13A | 109.4 | C2—C5—H26C | 109.5 |
C17—C18—H13A | 109.4 | H26A—C5—H26C | 109.5 |
C19—C18—H13B | 109.4 | H26B—C5—H26C | 109.5 |
C17—C18—H13B | 109.4 | ||
C1—Rh1—P1—C7 | 36.35 (13) | C7—P1—C15—C16 | 56.9 (2) |
O3—Rh1—P1—C7 | −142.79 (11) | C21—P1—C15—C16 | 167.77 (18) |
C1—Rh1—P1—C21 | −85.84 (12) | Rh1—P1—C15—C16 | −72.14 (18) |
O3—Rh1—P1—C21 | 95.02 (9) | C20—C15—C16—C17 | −56.8 (3) |
C1—Rh1—P1—C15 | 158.19 (13) | P1—C15—C16—C17 | 173.02 (18) |
O3—Rh1—P1—C15 | −20.95 (11) | C15—C16—C17—C18 | 54.4 (3) |
O2—Rh1—O3—C4 | 0.2 (2) | C16—C17—C18—C19 | −53.7 (3) |
P1—Rh1—O3—C4 | −175.7 (2) | C17—C18—C19—C20 | 55.4 (3) |
C1—Rh1—O2—C2 | 179.1 (2) | C16—C15—C20—C19 | 58.4 (3) |
O3—Rh1—O2—C2 | −1.7 (2) | P1—C15—C20—C19 | −175.11 (18) |
C21—P1—C7—C12 | 152.7 (2) | C18—C19—C20—C15 | −58.0 (3) |
C15—P1—C7—C12 | −96.8 (2) | C7—P1—C21—C26 | −63.5 (2) |
Rh1—P1—C7—C12 | 27.5 (2) | C15—P1—C21—C26 | −174.56 (18) |
C21—P1—C7—C8 | −28.6 (2) | Rh1—P1—C21—C26 | 65.87 (19) |
C15—P1—C7—C8 | 81.8 (2) | C7—P1—C21—C22 | 174.49 (18) |
Rh1—P1—C7—C8 | −153.80 (18) | C15—P1—C21—C22 | 63.4 (2) |
C12—C7—C8—C9 | −2.0 (4) | Rh1—P1—C21—C22 | −56.16 (19) |
P1—C7—C8—C9 | 179.28 (19) | C22—C21—C26—C25 | −56.4 (3) |
C7—C8—C9—C10 | 0.6 (4) | P1—C21—C26—C25 | −178.32 (18) |
C13—N1—C10—C9 | −178.8 (2) | C21—C26—C25—C24 | 58.0 (3) |
C14—N1—C10—C9 | 2.9 (4) | C26—C25—C24—C23 | −57.0 (3) |
C13—N1—C10—C11 | 1.3 (4) | C25—C24—C23—C22 | 56.4 (3) |
C14—N1—C10—C11 | −177.0 (2) | C24—C23—C22—C21 | −56.6 (3) |
C8—C9—C10—N1 | −178.2 (2) | C26—C21—C22—C23 | 55.9 (3) |
C8—C9—C10—C11 | 1.7 (4) | P1—C21—C22—C23 | 179.8 (2) |
N1—C10—C11—C12 | 177.3 (2) | Rh1—O3—C4—C3 | 2.1 (4) |
C9—C10—C11—C12 | −2.6 (4) | Rh1—O3—C4—C6 | −177.80 (17) |
C10—C11—C12—C7 | 1.3 (4) | O3—C4—C3—C2 | −3.6 (5) |
C8—C7—C12—C11 | 1.1 (4) | C6—C4—C3—C2 | 176.3 (3) |
P1—C7—C12—C11 | 179.8 (2) | Rh1—O2—C2—C3 | 1.0 (4) |
C7—P1—C15—C20 | −69.8 (2) | Rh1—O2—C2—C5 | −179.18 (18) |
C21—P1—C15—C20 | 41.1 (2) | C4—C3—C2—O2 | 1.9 (5) |
Rh1—P1—C15—C20 | 161.20 (17) | C4—C3—C2—C5 | −178.0 (3) |
Experimental details
Crystal data | |
Chemical formula | [Rh(C5H7O2)(C20H32NP)(CO)] |
Mr | 547.46 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 12.6865 (9), 14.5220 (11), 14.025 (1) |
β (°) | 93.241 (4) |
V (Å3) | 2579.7 (3) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 6.14 |
Crystal size (mm) | 0.17 × 0.07 × 0.04 |
Data collection | |
Diffractometer | Bruker APEX DUO 4K-CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.422, 0.791 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 40437, 4303, 3693 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.588 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.076, 1.12 |
No. of reflections | 4303 |
No. of parameters | 293 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.49, −0.71 |
Computer programs: APEX2 (Bruker 2010), SAINT (Bruker 2008) and XPREP (Bruker 2008), SIR97 (Altomare, et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).
Acknowledgements
Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg, SASOL and TESP is gratefully acknowledged. H. Ogutu is acknowledged for the data collection.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bonati, F. & Wilkinson, G. (1964). J. Chem. Soc. pp. 3156–3160. CrossRef Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brink, A., Roodt, A. & Visser, H. G. (2007). Acta Cryst. E63, m48–m50. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carraz, C. A., Ditzel, E. J., Orpen, A. G., Ellis, D. D., Pringle, P. G. & Sunley, G. J. (2000). Chem. Commun. pp. 1277–1278. Web of Science CSD CrossRef Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Moloy, K. G. & Wegman, R. W. (1989). Organometallics, 8, 2883–2892. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Acetylacetonate has two O-donor atoms with equivalent σ-electron donor capabilities. The high symmetry of dicarbonyl(acetylacetonate)rhodium(I) complexes promotes easy carbonyl displacement of either carbonyl group with a variety of phosphanes, phosphites and arsines. (Bonati and Wilkinson, 1964). This work is part of an ongoing investigation aimed at determing the steric effects induced by various phosphane ligands on a rhodium(I) metal centre. Previous work illustrating the catalytic importance of the rhodium(I) square-planar moieties has been conducted on rhodium mono- and di-phosphane complexes containing the symmetrical bidentate ligand, acac (acac = acetylacetonate) (Moloy and Wegman, 1989). Symmetrical di-phosphane ligands result in the production of acetaldehyde, whereas unsymmetrical di-phosphane ligands are more stable and efficient catalysts for the carbonylation of methanol to acetic acid (Carraz et al., 2000).
In the title compound, [Rh(acac)(CO){PCy2(4-Me2NC6H4)}] (acac = acetylacetonate, Cy = cyclohexyl), the coordination around the Rh atom shows a slightly distorted square-planar arrangement, illustrated by C1—Rh1—P1 and O2—Rh1—O3 angles of 89.59 (9)° and 88.76 (7)°, respectively. The complex crystallizes in the monoclinic space group, P2(1)/n, with four molecules in the unit cell. A larger trans influence of the phosphane ligand with respect to the carbonyl ligand is indicated by the longer Rh—O2 (2.0912 (18) Å) bond compared to Rh—O3 (2.0582 (17) Å) bond which is trans to the carbonyl ligand. The steric demand of the phosphane is indicated by the smaller O3—Rh1—P1 angle, (89.36 (5)°), compared to the carbonyl ligand (O2—Rh1—C1= 92.36 (10)°).
Spectroscopic characteristics of the current compound are similar to that reported previously by Brink et al. (2007), and we refer the reader to Brink et al. (2007) for additional discussion on the spectroscopy of these types of compounds.