metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-acetato-κ4O:O-bis­­{(acetato-κ2O,O′)bis­­[3-(1H-imidazol-1-yl-κN3)-1-phenyl­propan-1-one]cadmium} tetra­hydrate

aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: guojianhua1998@163.com

(Received 10 November 2011; accepted 22 November 2011; online 30 November 2011)

In the mol­ecular structure of the title neutral binuclear complex, [Cd2(C2H3O2)4(C12H12N2O)4]·4H2O, each CdII atom is six-coordinated and exhibits a distorted octa­hedral geometry. Three O atoms from two acetate ions and one monodentate 3-(1H-imidazol-1-yl-κN3)-1-phenyl­propan-1-one (L) ligand form the equatorial plane, while the bridging-O atom forming the longer Cd—O distance,and the N atom of the second L ligand, forming the longer Cd—N distance, occupy axial positions with an N—Cd—O angle of 170.77 (7)°. Inter­molecular O—H⋯O hydrogen bonds exist between the lattice water mol­ecules and the acetate ions of adjacent mol­ecules, resulting in a two-dimensional supra­molecular structure.

Related literature

For reviews on the generation of supra­molecular structures based on coordination complexes, see: Barnett & Champness (2003[Barnett, S. A. & Champness, N. R. (2003). Coord. Chem. Rev. 246, 145-168.]); Roesky & Andruh (2003[Roesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91-119.]); Zaworotko (2001[Zaworotko, M. J. (2001). Chem. Commun. pp. 1-9.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C2H3O2)4(C12H12N2O)4]·4H2O

  • Mr = 1333.98

  • Monoclinic, P 21 /c

  • a = 18.818 (3) Å

  • b = 10.6490 (17) Å

  • c = 15.864 (3) Å

  • β = 112.036 (2)°

  • V = 2946.8 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 296 K

  • 0.28 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.808, Tmax = 0.857

  • 17422 measured reflections

  • 6806 independent reflections

  • 4666 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.077

  • S = 1.00

  • 6806 reflections

  • 372 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O5i 2.2331 (18)
Cd1—N1 2.238 (2)
Cd1—N3 2.349 (2)
Cd1—O3 2.354 (2)
Cd1—O4 2.446 (2)
Cd1—O5 2.5855 (18)
Symmetry code: (i) -x+1, -y+2, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O3ii 0.85 2.11 2.949 (3) 169
O7—H7B⋯O4iii 0.85 1.99 2.829 (3) 171
O8—H8B⋯O6iii 0.85 2.03 2.838 (3) 159
O8—H8A⋯O7iv 0.85 1.97 2.818 (3) 174
Symmetry codes: (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y, z-1; (iv) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Neutral organic ligands containing rigid or flexible spacers, such as 4,4'-bipyridine, 1,2-bis(4'-pyridyl)ethane, 1,2-bis(4-pyridyl)propane and many others, have been used to generate a rich variety of metal-organic architectures with different metal ions by various reaction procedures (Barnett & Champness, 2003; Zaworotko, 2001; Roesky & Andruh, 2003). In our recent research, we have initiated a synthetic approach employing the ligand 3-(1H-imidazol-1-yl)-1-phenylpropan-1-one (L), which consists of a propanone unit substituted with an imidazole and a phenyl group, in reaction with different metal ions to construct new functional frameworks. To explore this series, we synthesized the title compound, (I), a new CdII complex based on L. In the molecular structure of (I) (Fig. 1) each CdII atom is six-coordinated and exhibits a distorted octahedral geometry. Three O atoms from two acetate ions and one monodentate L ligand form the equatorial plane while one O atom from one acetate ion and the other monodentate L ligand occupy axial positions with an N3—Cd1—O5 angle of 170.77 (7)°. Atoms O5 and O5A of one pair of acetate ions serve to bridge the CdII centers in the centrosymmetric binuclear units. The mean planes of the imidazole and phenyl rings in the two unique ligands are nearly perpendicular to one another with the angles between these planes being 78.6 (1)° and 76.2 (1)°, respectively. Analysis of the crystal packing indicates that intermolecular O—H···O hydrogen bonds involving the lattice water molecules and both types of actate ions extend the binuclear units to produce a 2-D supramolecular framework structure, as shown in Fig. 2.

Related literature top

For reviews on the generation of supramolecular structures based on coordination complexes, see: Barnett & Champness (2003); Roesky & Andruh (2003); Zaworotko (2001).

Experimental top

Cd(OAc)2.2H2O (26.7 mg, 0.1 mmol) and 3-(1H-imidazol-1-yl)-1-phenylpropan-1-one (22.2 mg, 0.1 mmol) were mixed in a CH3CN/H2O (20 ml, 1:1 v/v) solution with vigorous stirring for ca 30 min. The resulting solution was filtered and left to stand at room temperature. Colorless block crystals of (I) suitable for X-ray analysis were obtained in 75% yield by slow evaporation of the solvent over a period of 1 week. Analysis, calculated for CdC28H34N4O8: C 50.42, H 5.14, N 8.40; found: C 50.45, H 5.03, N 8.32.

Refinement top

Although all H atoms were visible in difference maps, they were placed in geometrically calculated positions, with C—H and O—H distances in the range 0.93–0.97Å and 0.85 Å, respectively, and included in the final refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C) for aromatic and methylene H atoms. and Uiso(H) = 1.5Ueq(C or O) for methyl and H2O H atoms

Structure description top

Neutral organic ligands containing rigid or flexible spacers, such as 4,4'-bipyridine, 1,2-bis(4'-pyridyl)ethane, 1,2-bis(4-pyridyl)propane and many others, have been used to generate a rich variety of metal-organic architectures with different metal ions by various reaction procedures (Barnett & Champness, 2003; Zaworotko, 2001; Roesky & Andruh, 2003). In our recent research, we have initiated a synthetic approach employing the ligand 3-(1H-imidazol-1-yl)-1-phenylpropan-1-one (L), which consists of a propanone unit substituted with an imidazole and a phenyl group, in reaction with different metal ions to construct new functional frameworks. To explore this series, we synthesized the title compound, (I), a new CdII complex based on L. In the molecular structure of (I) (Fig. 1) each CdII atom is six-coordinated and exhibits a distorted octahedral geometry. Three O atoms from two acetate ions and one monodentate L ligand form the equatorial plane while one O atom from one acetate ion and the other monodentate L ligand occupy axial positions with an N3—Cd1—O5 angle of 170.77 (7)°. Atoms O5 and O5A of one pair of acetate ions serve to bridge the CdII centers in the centrosymmetric binuclear units. The mean planes of the imidazole and phenyl rings in the two unique ligands are nearly perpendicular to one another with the angles between these planes being 78.6 (1)° and 76.2 (1)°, respectively. Analysis of the crystal packing indicates that intermolecular O—H···O hydrogen bonds involving the lattice water molecules and both types of actate ions extend the binuclear units to produce a 2-D supramolecular framework structure, as shown in Fig. 2.

For reviews on the generation of supramolecular structures based on coordination complexes, see: Barnett & Champness (2003); Roesky & Andruh (2003); Zaworotko (2001).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT Bruker, (2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) using 30% probability ellipsoids (Symmetry transformation used to generate equivalent atoms: -x+1,-y+2,-z+2).
[Figure 2] Fig. 2. The 2-D supramolecular framework structure of compound, showing O—H···O hydrogen bonds as red dashed lines (the L ligands have been removed for clarity).
Di-µ-acetato-κ4O:O-bis{(acetato- κ2O,O')bis[3-(1H-imidazol-1-yl- κN3)-1-phenylpropan-1-one]cadmium} tetrahydrate top
Crystal data top
[Cd2(C2H3O2)4(C12H12N2O)4]·4H2OF(000) = 1368
Mr = 1333.98Dx = 1.503 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4777 reflections
a = 18.818 (3) Åθ = 2.6–25.4°
b = 10.6490 (17) ŵ = 0.80 mm1
c = 15.864 (3) ÅT = 296 K
β = 112.036 (2)°Block, colorless
V = 2946.8 (8) Å30.28 × 0.22 × 0.20 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6806 independent reflections
Radiation source: fine-focus sealed tube4666 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
phi and ω scansθmax = 27.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2424
Tmin = 0.808, Tmax = 0.857k = 137
17422 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0307P)2 + 1.0868P]
where P = (Fo2 + 2Fc2)/3
6806 reflections(Δ/σ)max = 0.004
372 parametersΔρmax = 0.53 e Å3
1 restraintΔρmin = 0.46 e Å3
Crystal data top
[Cd2(C2H3O2)4(C12H12N2O)4]·4H2OV = 2946.8 (8) Å3
Mr = 1333.98Z = 2
Monoclinic, P21/cMo Kα radiation
a = 18.818 (3) ŵ = 0.80 mm1
b = 10.6490 (17) ÅT = 296 K
c = 15.864 (3) Å0.28 × 0.22 × 0.20 mm
β = 112.036 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6806 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4666 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.857Rint = 0.027
17422 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0311 restraint
wR(F2) = 0.077H-atom parameters constrained
S = 1.00Δρmax = 0.53 e Å3
6806 reflectionsΔρmin = 0.46 e Å3
372 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.421249 (10)0.990415 (18)1.052021 (12)0.03958 (7)
O10.08650 (12)0.52281 (17)0.69389 (16)0.0617 (6)
O20.09479 (14)1.4665 (2)1.14769 (16)0.0664 (6)
O30.50729 (12)0.9464 (2)1.20070 (14)0.0602 (5)
O40.41427 (12)0.80882 (18)1.14306 (14)0.0577 (5)
O50.51810 (10)0.86982 (17)1.00202 (13)0.0477 (5)
O60.62749 (11)0.76847 (17)1.04134 (15)0.0548 (5)
O70.37028 (13)0.5542 (2)0.13904 (16)0.0776 (7)
H7A0.40130.51500.18470.116*
H7B0.37850.63230.13630.116*
O80.69937 (13)0.5343 (2)0.04085 (17)0.0788 (7)
H8A0.67930.50190.01180.118*
H8B0.67530.59550.05220.118*
N10.33866 (12)0.9077 (2)0.92267 (14)0.0397 (5)
N20.25575 (12)0.7856 (2)0.82184 (15)0.0411 (5)
N30.33891 (13)1.0771 (2)1.11710 (16)0.0458 (5)
N40.26263 (13)1.2047 (2)1.15386 (16)0.0478 (6)
C10.07134 (16)0.5507 (3)0.6383 (2)0.0521 (7)
H10.05250.47360.62850.062*
C20.14918 (18)0.5682 (3)0.6113 (2)0.0621 (9)
H20.18250.50290.58330.075*
C30.17788 (17)0.6812 (3)0.6253 (2)0.0575 (8)
H30.23050.69250.60700.069*
C40.12871 (17)0.7779 (3)0.6664 (2)0.0585 (8)
H40.14820.85480.67540.070*
C50.05019 (16)0.7610 (3)0.6943 (2)0.0506 (7)
H50.01710.82640.72280.061*
C60.02075 (15)0.6472 (2)0.68013 (18)0.0404 (6)
C70.06321 (15)0.6234 (2)0.70880 (18)0.0412 (6)
C80.11922 (14)0.7264 (2)0.75563 (18)0.0421 (6)
H8A'0.11060.75330.80940.051*
H8B'0.11040.79790.71510.051*
C90.20162 (15)0.6829 (2)0.7829 (2)0.0460 (7)
H9A0.21160.61570.82710.055*
H9B0.20920.64990.72990.055*
C100.27050 (18)0.8835 (3)0.77606 (19)0.0588 (8)
H100.24920.89690.71360.071*
C110.32162 (17)0.9573 (3)0.8380 (2)0.0535 (8)
H110.34231.03080.82530.064*
C120.29864 (15)0.8039 (3)0.91023 (18)0.0435 (6)
H120.29980.74970.95670.052*
C130.2737 (2)1.1008 (3)1.2069 (3)0.0884 (14)
H130.25321.08611.25110.106*
C140.3193 (2)1.0238 (3)1.1839 (3)0.0791 (12)
H140.33550.94521.20950.095*
C150.30280 (15)1.1856 (3)1.10107 (19)0.0456 (7)
H150.30501.24281.05780.055*
C160.21135 (17)1.3088 (3)1.1499 (2)0.0533 (7)
H16A0.22351.37931.11890.064*
H16B0.21891.33521.21120.064*
C170.12822 (16)1.2713 (3)1.1001 (2)0.0529 (7)
H17A0.11931.25711.03660.063*
H17B0.11881.19281.12520.063*
C180.07216 (17)1.3690 (3)1.10664 (19)0.0496 (7)
C190.01133 (18)1.3416 (3)1.0617 (2)0.0528 (8)
C200.03927 (19)1.2307 (4)1.0159 (2)0.0643 (9)
H200.00521.16941.01270.077*
C210.1179 (2)1.2100 (4)0.9745 (2)0.0803 (11)
H210.13631.13490.94420.096*
C220.1684 (2)1.3016 (6)0.9789 (3)0.0948 (15)
H220.22091.28870.95080.114*
C230.1412 (3)1.4115 (5)1.0246 (3)0.0941 (15)
H230.17551.47251.02780.113*
C240.0635 (2)1.4325 (4)1.0659 (2)0.0701 (10)
H240.04561.50741.09670.084*
C250.4710 (2)0.8497 (3)1.2087 (2)0.0580 (8)
C260.4947 (2)0.7839 (4)1.2998 (2)0.0951 (13)
H26A0.45050.77161.31520.143*
H26B0.53160.83441.34560.143*
H26C0.51700.70401.29620.143*
C270.55988 (16)0.7733 (2)1.03291 (19)0.0414 (6)
C280.5239 (2)0.6615 (3)1.0586 (3)0.0913 (14)
H28A0.53950.58641.03680.137*
H28B0.46910.66901.03190.137*
H28C0.54020.65741.12360.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03298 (11)0.04915 (12)0.03321 (10)0.00241 (9)0.00850 (8)0.00217 (9)
O10.0458 (12)0.0424 (11)0.0913 (17)0.0026 (9)0.0192 (12)0.0128 (11)
O20.0781 (16)0.0553 (13)0.0701 (15)0.0154 (11)0.0328 (13)0.0027 (12)
O30.0589 (14)0.0645 (13)0.0470 (10)0.0096 (11)0.0079 (9)0.0076 (10)
O40.0689 (15)0.0505 (12)0.0467 (12)0.0119 (10)0.0136 (11)0.0053 (10)
O50.0434 (12)0.0385 (10)0.0631 (13)0.0043 (8)0.0221 (10)0.0011 (9)
O60.0438 (12)0.0479 (11)0.0779 (15)0.0059 (9)0.0289 (11)0.0033 (10)
O70.0796 (17)0.0774 (15)0.0695 (16)0.0069 (13)0.0209 (13)0.0040 (13)
O80.0659 (16)0.0728 (15)0.0851 (18)0.0276 (12)0.0138 (13)0.0040 (13)
N10.0307 (12)0.0490 (13)0.0354 (12)0.0030 (10)0.0078 (10)0.0028 (10)
N20.0321 (12)0.0442 (12)0.0399 (12)0.0049 (9)0.0055 (10)0.0018 (10)
N30.0411 (14)0.0507 (13)0.0474 (14)0.0069 (11)0.0187 (11)0.0059 (11)
N40.0452 (14)0.0506 (13)0.0537 (14)0.0103 (11)0.0254 (12)0.0086 (12)
C10.0436 (17)0.0450 (15)0.063 (2)0.0082 (13)0.0152 (15)0.0032 (14)
C20.0427 (19)0.069 (2)0.069 (2)0.0175 (16)0.0144 (16)0.0054 (18)
C30.0347 (17)0.082 (2)0.0534 (19)0.0001 (16)0.0144 (14)0.0067 (17)
C40.0493 (19)0.0628 (19)0.061 (2)0.0084 (15)0.0184 (16)0.0030 (16)
C50.0412 (17)0.0498 (16)0.0554 (18)0.0030 (13)0.0118 (14)0.0066 (14)
C60.0377 (15)0.0437 (14)0.0388 (15)0.0051 (12)0.0131 (12)0.0006 (12)
C70.0401 (16)0.0377 (14)0.0431 (15)0.0042 (11)0.0126 (13)0.0014 (12)
C80.0372 (15)0.0396 (14)0.0453 (16)0.0041 (11)0.0106 (13)0.0029 (12)
C90.0390 (16)0.0398 (14)0.0528 (17)0.0060 (12)0.0101 (13)0.0069 (13)
C100.069 (2)0.0658 (19)0.0327 (15)0.0226 (16)0.0082 (15)0.0039 (14)
C110.0566 (19)0.0522 (17)0.0440 (16)0.0187 (14)0.0101 (14)0.0048 (14)
C120.0349 (15)0.0516 (16)0.0396 (15)0.0042 (12)0.0091 (12)0.0055 (12)
C130.105 (3)0.082 (3)0.117 (3)0.042 (2)0.087 (3)0.050 (2)
C140.092 (3)0.067 (2)0.109 (3)0.033 (2)0.072 (3)0.041 (2)
C150.0405 (16)0.0544 (17)0.0425 (16)0.0034 (13)0.0164 (13)0.0082 (13)
C160.056 (2)0.0467 (16)0.062 (2)0.0089 (14)0.0275 (16)0.0016 (14)
C170.0543 (19)0.0532 (17)0.0546 (18)0.0115 (14)0.0244 (15)0.0007 (14)
C180.058 (2)0.0533 (17)0.0430 (16)0.0172 (15)0.0255 (15)0.0116 (14)
C190.0548 (19)0.068 (2)0.0425 (17)0.0206 (16)0.0257 (15)0.0180 (15)
C200.051 (2)0.095 (3)0.0479 (19)0.0126 (19)0.0204 (16)0.0090 (18)
C210.060 (2)0.129 (3)0.050 (2)0.001 (2)0.0185 (18)0.009 (2)
C220.053 (2)0.179 (5)0.055 (2)0.022 (3)0.023 (2)0.046 (3)
C230.073 (3)0.147 (4)0.077 (3)0.060 (3)0.046 (3)0.057 (3)
C240.069 (3)0.087 (2)0.067 (2)0.0357 (19)0.040 (2)0.0285 (19)
C250.066 (2)0.0524 (19)0.0524 (19)0.0215 (16)0.0184 (18)0.0097 (15)
C260.116 (3)0.083 (3)0.058 (2)0.007 (2)0.001 (2)0.029 (2)
C270.0458 (17)0.0341 (13)0.0492 (16)0.0003 (12)0.0233 (14)0.0051 (12)
C280.097 (3)0.0394 (18)0.172 (4)0.0031 (18)0.090 (3)0.010 (2)
Geometric parameters (Å, º) top
Cd1—O5i2.2331 (18)C7—C81.509 (3)
Cd1—N12.238 (2)C8—C91.518 (3)
Cd1—N32.349 (2)C8—H8A'0.9700
Cd1—O32.354 (2)C8—H8B'0.9700
Cd1—O42.446 (2)C9—H9A0.9700
Cd1—O52.5855 (18)C9—H9B0.9700
Cd1—C252.749 (3)C10—C111.342 (4)
O1—C71.214 (3)C10—H100.9300
O2—C181.215 (3)C11—H110.9300
O3—C251.268 (4)C12—H120.9300
O4—C251.257 (4)C13—C141.334 (4)
O5—C271.275 (3)C13—H130.9300
O5—Cd1i2.2331 (18)C14—H140.9300
O6—C271.229 (3)C15—H150.9300
O7—H7A0.8500C16—C171.517 (4)
O7—H7B0.8499C16—H16A0.9700
O8—H8A0.8500C16—H16B0.9700
O8—H8B0.8500C17—C181.512 (4)
N1—C121.311 (3)C17—H17A0.9700
N1—C111.364 (3)C17—H17B0.9700
N2—C121.344 (3)C18—C191.490 (4)
N2—C101.358 (3)C19—C201.382 (5)
N2—C91.464 (3)C19—C241.398 (4)
N3—C151.316 (3)C20—C211.393 (4)
N3—C141.369 (4)C20—H200.9300
N4—C151.338 (3)C21—C221.382 (6)
N4—C131.359 (4)C21—H210.9300
N4—C161.455 (3)C22—C231.371 (6)
C1—C21.376 (4)C22—H220.9300
C1—C61.388 (4)C23—C241.379 (5)
C1—H10.9300C23—H230.9300
C2—C31.371 (4)C24—H240.9300
C2—H20.9300C25—C261.514 (4)
C3—C41.374 (4)C26—H26A0.9600
C3—H30.9300C26—H26B0.9600
C4—C51.386 (4)C26—H26C0.9600
C4—H40.9300C27—C281.499 (4)
C5—C61.386 (4)C28—H28A0.9600
C5—H50.9300C28—H28B0.9600
C6—C71.492 (4)C28—H28C0.9600
O5i—Cd1—N1100.91 (7)C11—C10—N2107.0 (2)
O5i—Cd1—N3115.03 (7)C11—C10—H10126.5
N1—Cd1—N3102.24 (8)N2—C10—H10126.5
O5i—Cd1—O3105.01 (8)C10—C11—N1109.5 (2)
N1—Cd1—O3145.14 (8)C10—C11—H11125.2
N3—Cd1—O387.54 (8)N1—C11—H11125.2
O5i—Cd1—O4154.40 (7)N1—C12—N2111.5 (2)
N1—Cd1—O493.31 (8)N1—C12—H12124.3
N3—Cd1—O482.00 (7)N2—C12—H12124.3
O3—Cd1—O454.55 (8)C14—C13—N4107.2 (3)
O5i—Cd1—O572.10 (7)C14—C13—H13126.4
N1—Cd1—O581.39 (7)N4—C13—H13126.4
N3—Cd1—O5170.77 (7)C13—C14—N3110.2 (3)
O3—Cd1—O584.80 (7)C13—C14—H14124.9
O4—Cd1—O589.35 (6)N3—C14—H14124.9
O5i—Cd1—C25131.37 (9)N3—C15—N4112.6 (2)
N1—Cd1—C25119.91 (10)N3—C15—H15123.7
N3—Cd1—C2582.74 (8)N4—C15—H15123.7
O3—Cd1—C2527.40 (9)N4—C16—C17111.1 (2)
O4—Cd1—C2527.21 (8)N4—C16—H16A109.4
O5—Cd1—C2588.09 (8)C17—C16—H16A109.4
C25—O3—Cd193.93 (19)N4—C16—H16B109.4
C25—O4—Cd189.92 (19)C17—C16—H16B109.4
C27—O5—Cd1i110.77 (16)H16A—C16—H16B108.0
C27—O5—Cd1133.36 (17)C18—C17—C16113.1 (3)
Cd1i—O5—Cd1107.90 (7)C18—C17—H17A109.0
H7A—O7—H7B116.4C16—C17—H17A109.0
H8A—O8—H8B116.3C18—C17—H17B109.0
C12—N1—C11105.6 (2)C16—C17—H17B109.0
C12—N1—Cd1129.21 (18)H17A—C17—H17B107.8
C11—N1—Cd1125.20 (18)O2—C18—C19121.2 (3)
C12—N2—C10106.5 (2)O2—C18—C17120.7 (3)
C12—N2—C9126.8 (2)C19—C18—C17118.0 (3)
C10—N2—C9126.7 (2)C20—C19—C24118.8 (3)
C15—N3—C14104.1 (2)C20—C19—C18122.9 (3)
C15—N3—Cd1129.63 (18)C24—C19—C18118.3 (3)
C14—N3—Cd1126.21 (19)C19—C20—C21120.7 (3)
C15—N4—C13105.9 (2)C19—C20—H20119.7
C15—N4—C16127.6 (2)C21—C20—H20119.7
C13—N4—C16126.3 (2)C22—C21—C20119.5 (4)
C2—C1—C6120.5 (3)C22—C21—H21120.3
C2—C1—H1119.7C20—C21—H21120.3
C6—C1—H1119.7C23—C22—C21120.2 (4)
C3—C2—C1120.4 (3)C23—C22—H22119.9
C3—C2—H2119.8C21—C22—H22119.9
C1—C2—H2119.8C22—C23—C24120.5 (4)
C2—C3—C4119.9 (3)C22—C23—H23119.7
C2—C3—H3120.1C24—C23—H23119.7
C4—C3—H3120.1C23—C24—C19120.3 (4)
C3—C4—C5120.2 (3)C23—C24—H24119.9
C3—C4—H4119.9C19—C24—H24119.9
C5—C4—H4119.9O4—C25—O3121.3 (3)
C4—C5—C6120.3 (3)O4—C25—C26119.0 (3)
C4—C5—H5119.9O3—C25—C26119.7 (3)
C6—C5—H5119.9O4—C25—Cd162.87 (16)
C5—C6—C1118.7 (3)O3—C25—Cd158.67 (15)
C5—C6—C7122.7 (2)C26—C25—Cd1173.5 (2)
C1—C6—C7118.5 (2)C25—C26—H26A109.5
O1—C7—C6120.6 (2)C25—C26—H26B109.5
O1—C7—C8120.0 (2)H26A—C26—H26B109.5
C6—C7—C8119.4 (2)C25—C26—H26C109.5
C7—C8—C9111.6 (2)H26A—C26—H26C109.5
C7—C8—H8A'109.3H26B—C26—H26C109.5
C9—C8—H8A'109.3O6—C27—O5122.6 (2)
C7—C8—H8B'109.3O6—C27—C28119.4 (3)
C9—C8—H8B'109.3O5—C27—C28118.0 (3)
H8A'—C8—H8B'108.0C27—C28—H28A109.5
N2—C9—C8111.5 (2)C27—C28—H28B109.5
N2—C9—H9A109.3H28A—C28—H28B109.5
C8—C9—H9A109.3C27—C28—H28C109.5
N2—C9—H9B109.3H28A—C28—H28C109.5
C8—C9—H9B109.3H28B—C28—H28C109.5
H9A—C9—H9B108.0
O5i—Cd1—O3—C25165.80 (17)C10—N2—C9—C873.3 (4)
N1—Cd1—O3—C2529.1 (2)C7—C8—C9—N2175.6 (2)
N3—Cd1—O3—C2578.93 (18)C12—N2—C10—C110.1 (3)
O4—Cd1—O3—C253.00 (17)C9—N2—C10—C11178.0 (3)
O5—Cd1—O3—C2595.91 (18)N2—C10—C11—N10.7 (4)
O5i—Cd1—O4—C2544.4 (3)C12—N1—C11—C101.1 (3)
N1—Cd1—O4—C25168.43 (18)Cd1—N1—C11—C10179.5 (2)
N3—Cd1—O4—C2589.67 (18)C11—N1—C12—N21.1 (3)
O3—Cd1—O4—C253.02 (17)Cd1—N1—C12—N2179.42 (16)
O5—Cd1—O4—C2587.10 (18)C10—N2—C12—N10.6 (3)
O5i—Cd1—O5—C27144.8 (3)C9—N2—C12—N1177.3 (2)
N1—Cd1—O5—C27110.7 (2)C15—N4—C13—C140.3 (4)
N3—Cd1—O5—C273.1 (6)C16—N4—C13—C14174.2 (3)
O3—Cd1—O5—C2737.2 (2)N4—C13—C14—N30.7 (5)
O4—Cd1—O5—C2717.2 (2)C15—N3—C14—C130.9 (4)
C25—Cd1—O5—C2710.0 (2)Cd1—N3—C14—C13177.8 (3)
O5i—Cd1—O5—Cd1i0.0C14—N3—C15—N40.7 (4)
N1—Cd1—O5—Cd1i104.48 (9)Cd1—N3—C15—N4177.87 (18)
N3—Cd1—O5—Cd1i141.7 (4)C13—N4—C15—N30.3 (4)
O3—Cd1—O5—Cd1i107.62 (9)C16—N4—C15—N3174.7 (3)
O4—Cd1—O5—Cd1i162.07 (8)C15—N4—C16—C17100.1 (3)
C25—Cd1—O5—Cd1i134.88 (10)C13—N4—C16—C1773.3 (4)
O5i—Cd1—N1—C12164.3 (2)N4—C16—C17—C18171.1 (2)
N3—Cd1—N1—C1276.8 (2)C16—C17—C18—O20.8 (4)
O3—Cd1—N1—C1226.7 (3)C16—C17—C18—C19178.9 (2)
O4—Cd1—N1—C125.7 (2)O2—C18—C19—C20178.7 (3)
O5—Cd1—N1—C1294.5 (2)C17—C18—C19—C201.0 (4)
C25—Cd1—N1—C1211.8 (3)O2—C18—C19—C241.5 (4)
O5i—Cd1—N1—C1113.7 (2)C17—C18—C19—C24178.7 (3)
N3—Cd1—N1—C11105.1 (2)C24—C19—C20—C210.1 (5)
O3—Cd1—N1—C11151.3 (2)C18—C19—C20—C21179.6 (3)
O4—Cd1—N1—C11172.4 (2)C19—C20—C21—C220.4 (5)
O5—Cd1—N1—C1183.5 (2)C20—C21—C22—C230.8 (6)
C25—Cd1—N1—C11166.3 (2)C21—C22—C23—C240.7 (6)
O5i—Cd1—N3—C1525.8 (3)C22—C23—C24—C190.1 (5)
N1—Cd1—N3—C1582.6 (2)C20—C19—C24—C230.3 (5)
O3—Cd1—N3—C15131.2 (2)C18—C19—C24—C23179.5 (3)
O4—Cd1—N3—C15174.2 (3)Cd1—O4—C25—O35.3 (3)
O5—Cd1—N3—C15165.2 (3)Cd1—O4—C25—C26172.9 (3)
C25—Cd1—N3—C15158.3 (3)Cd1—O3—C25—O45.6 (3)
O5i—Cd1—N3—C14152.5 (3)Cd1—O3—C25—C26172.7 (3)
N1—Cd1—N3—C1499.1 (3)O5i—Cd1—C25—O4156.24 (15)
O3—Cd1—N3—C1447.1 (3)N1—Cd1—C25—O413.4 (2)
O4—Cd1—N3—C147.5 (3)N3—Cd1—C25—O486.62 (18)
O5—Cd1—N3—C1413.1 (6)O3—Cd1—C25—O4174.6 (3)
C25—Cd1—N3—C1420.0 (3)O5—Cd1—C25—O492.28 (17)
C6—C1—C2—C30.0 (5)O5i—Cd1—C25—O318.4 (2)
C1—C2—C3—C40.2 (5)N1—Cd1—C25—O3161.30 (16)
C2—C3—C4—C50.5 (5)N3—Cd1—C25—O398.73 (18)
C3—C4—C5—C60.8 (5)O4—Cd1—C25—O3174.6 (3)
C4—C5—C6—C10.6 (4)O5—Cd1—C25—O382.37 (17)
C4—C5—C6—C7179.9 (3)O5i—Cd1—C25—C2695 (2)
C2—C1—C6—C50.2 (4)N1—Cd1—C25—C26122 (2)
C2—C1—C6—C7179.6 (3)N3—Cd1—C25—C2622 (2)
C5—C6—C7—O1179.0 (3)O3—Cd1—C25—C2677 (2)
C1—C6—C7—O11.7 (4)O4—Cd1—C25—C26108 (2)
C5—C6—C7—C80.2 (4)O5—Cd1—C25—C26159 (2)
C1—C6—C7—C8179.1 (3)Cd1i—O5—C27—O68.6 (3)
O1—C7—C8—C93.1 (4)Cd1—O5—C27—O6135.5 (2)
C6—C7—C8—C9177.7 (2)Cd1i—O5—C27—C28170.7 (2)
C12—N2—C9—C8104.2 (3)Cd1—O5—C27—C2845.2 (4)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O3ii0.852.112.949 (3)169
O7—H7B···O4iii0.851.992.829 (3)171
O8—H8B···O6iii0.852.032.838 (3)159
O8—H8A···O7iv0.851.972.818 (3)174
Symmetry codes: (ii) x+1, y1/2, z+3/2; (iii) x, y, z1; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd2(C2H3O2)4(C12H12N2O)4]·4H2O
Mr1333.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)18.818 (3), 10.6490 (17), 15.864 (3)
β (°) 112.036 (2)
V3)2946.8 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.28 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.808, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
17422, 6806, 4666
Rint0.027
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.077, 1.00
No. of reflections6806
No. of parameters372
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.46

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SAINT Bruker, (2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O5i2.2331 (18)Cd1—O32.354 (2)
Cd1—N12.238 (2)Cd1—O42.446 (2)
Cd1—N32.349 (2)Cd1—O52.5855 (18)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O3ii0.852.112.949 (3)169
O7—H7B···O4iii0.851.992.829 (3)171
O8—H8B···O6iii0.852.032.838 (3)159
O8—H8A···O7iv0.851.972.818 (3)174
Symmetry codes: (ii) x+1, y1/2, z+3/2; (iii) x, y, z1; (iv) x+1, y+1, z.
 

References

First citationBarnett, S. A. & Champness, N. R. (2003). Coord. Chem. Rev. 246, 145–168.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRoesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91–119.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaworotko, M. J. (2001). Chem. Commun. pp. 1–9.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds