organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Aza­niumyleth­yl)carbamate monohydrate

aCollege of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, People's Republic of China, and bCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdwhb@sina.com

(Received 29 July 2011; accepted 26 October 2011; online 5 November 2011)

In the crystal structure of the title compound, C3H8N2O2·H2O, the organic mol­ecule exists as zwitterion with the carboxyl group deprotonated and the amino group protonated. In the crystal, the components are linked by O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

CO2 readily reacts with amines to yied carbamates, see: Brown & Gray (1982[Brown, C. J. & Gray, L. R. (1982). Acta Cryst. B38, 2307-2308.]); Dell'Amico et al. (2003)[Dell'Amico, D. B., Calderazzo, F., Labella, L., Marchetti, F. & Pampaloni, G. (2003). Chem. Rev. 103, 3857-3898.]; Jing et al. (2007[Jing, H. M., Zhang, S. B., Jin, R. C. & Ma, Y. H. (2007). Wuh. Univ. J. Nat. Sci. 12, 1099-1102.]). For N-(2-ammonio­eth­yl)carbamate (AECM), a reactive product of ethyl­enediamine with CO2, see: Garbauskas et al. (1983[Garbauskas, M. F., Goehner, R. P. & Davis, A. M. (1983). Acta Cryst. C39, 1684-1686.]); Antsyshkina et al. (2007[Antsyshkina, A. S., Sadikov, G. G., Solonina, I. A. & Rodnikova, M. N. (2007). Russ. J. Inorg. Chem. 52, 1561-1566]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C3H8N2O2·H2O

  • Mr = 122.13

  • Monoclinic, P 21 /c

  • a = 8.0301 (6) Å

  • b = 8.7842 (7) Å

  • c = 8.1748 (6) Å

  • β = 98.889 (1)°

  • V = 569.71 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.35 × 0.34 × 0.30 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.945, Tmax = 0.966

  • 2877 measured reflections

  • 1002 independent reflections

  • 960 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.04

  • 1002 reflections

  • 82 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1 0.80 (3) 1.92 (3) 2.708 (2) 170 (3)
O3—H3B⋯O2i 0.86 (3) 1.92 (3) 2.773 (2) 171 (3)
N1—H1C⋯O3ii 0.89 1.89 2.767 (2) 167
N1—H1D⋯O2iii 0.89 1.91 2.775 (2) 163
N1—H1E⋯O1iv 0.89 1.95 2.798 (2) 158
N2—H2⋯O2v 0.86 2.43 3.278 (2) 167
C2—H2A⋯O1vi 0.97 2.56 3.499 (2) 163
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x, y, z-1; (iii) -x+2, -y+1, -z; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

It has been known for decades that CO2 readily reacts with amines to yied carbamates (Brown & Gray 1982; Dell'Amico et al. 2003; Jing et al. 2007). N-(2-ammonioethyl)carbamate (AECM), a reactive product of ethylenediamine with CO2, was reported previously (Garbauskas et al. 1983; Antsyshkina et al. 2007). Recently, AECM hydrate, (I) (Scheme 1, Table 1), is prepared from ethylenediamine as starting material in our lab, and its structure is studied hereafter.

In (I), AECM molecule exists as zwitterion, the molecule is linked with the water molecule by an O3—H3A···O1 hydrogen bond (Fig. 1, Table 2). The N1 atom is protonated, showing as the center of positive charge. The negative charge is concentrated on the O2 atom of the COO_ fragment and is somewhat delocalized: the C3—O1 and C3—N2 bonds are slightly elongated, and the N2—C2 bond is shortened compared to standard values of 1.21, 1.334 and 1.454 Å, respectively (Allen et al. 1987). The torsion angle of N1—C1—C2—N2 [46.21 (18)%] is much smaller than that observed in the one of Garbauskas' polymorphs (175.6%), and is smaller than those observed in the second polymorph (66.6% in Antsyshkina's case, 65.5% in Garbauskas' case).

There are many hydrogen bonds in the crystal (Fig. 1, Table 2), playing important role in restraining the AECM comformation, and in building the crystal.

Related literature top

CO2 readily reacts with amines to yied carbamates, see: Brown & Gray (1982); Dell'Amico et al. (2003); Jing et al. (2007). For N-(2-ammonioethyl)carbamate (AECM), a reactive product of ethylenediamine with CO2, see: Garbauskas et al. (1983); Antsyshkina et al. (2007). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Ethylenediamine (10.1 ml) was dissolved in xylenol (25.2 ml), forming clear solution with stirring, afterwards, the resulting solution was exposed in the air for two month at room temperature. With the reaction deepened, the system separated into two layers gradually. Upper layer was yellowish and pasty, and lower layer was colorless and clear. Crystals of (I) (6.9 g) were at the bottom of the lower lay. Analysis: Cald. for (I) (%): C 29.50, H 8.25, N 22.94; found: C 29.45, H 8.31, N 22.90. IR Spectrum (KBr, cm-1): 3289(s), 2964(m), 2214(w), 1673(m), 1601(s), 1492(s), 1381(s), 1332(s), 1210(w), 1146(m), 1050(w), 1029(w), 1010(w), 887(w), 861(w), 821(m), 725(m), 646(w), 555(m). 1H NMR (500 MHz, D2O) δ/p.p.m.: 3.20 (t, 2 H, J = 5.95), 2.97 (t, 2H, J = 5.95).

Refinement top

H atoms of water melecule were deduced from Fourier Maps, and incoporated in refinement freely. The others were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.86Å for acidamide N—H, 0.89Å for amonnium N—H and 0.97Å for ethylene C—H, respectively, with isotropic displacement parameters 1.2–1.5 times Ueq of the parent atoms.

Structure description top

It has been known for decades that CO2 readily reacts with amines to yied carbamates (Brown & Gray 1982; Dell'Amico et al. 2003; Jing et al. 2007). N-(2-ammonioethyl)carbamate (AECM), a reactive product of ethylenediamine with CO2, was reported previously (Garbauskas et al. 1983; Antsyshkina et al. 2007). Recently, AECM hydrate, (I) (Scheme 1, Table 1), is prepared from ethylenediamine as starting material in our lab, and its structure is studied hereafter.

In (I), AECM molecule exists as zwitterion, the molecule is linked with the water molecule by an O3—H3A···O1 hydrogen bond (Fig. 1, Table 2). The N1 atom is protonated, showing as the center of positive charge. The negative charge is concentrated on the O2 atom of the COO_ fragment and is somewhat delocalized: the C3—O1 and C3—N2 bonds are slightly elongated, and the N2—C2 bond is shortened compared to standard values of 1.21, 1.334 and 1.454 Å, respectively (Allen et al. 1987). The torsion angle of N1—C1—C2—N2 [46.21 (18)%] is much smaller than that observed in the one of Garbauskas' polymorphs (175.6%), and is smaller than those observed in the second polymorph (66.6% in Antsyshkina's case, 65.5% in Garbauskas' case).

There are many hydrogen bonds in the crystal (Fig. 1, Table 2), playing important role in restraining the AECM comformation, and in building the crystal.

CO2 readily reacts with amines to yied carbamates, see: Brown & Gray (1982); Dell'Amico et al. (2003); Jing et al. (2007). For N-(2-ammonioethyl)carbamate (AECM), a reactive product of ethylenediamine with CO2, see: Garbauskas et al. (1983); Antsyshkina et al. (2007). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of (I) with labeling and displacemant ellipsoids drawn at the 40% probability level. Intermolecular hydrogen bonding is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of (I) viewed down the b axis. Hydrogen bonds are drawn as dashed lines.
N-(2-Azaniumylethyl)carbamate monohydrate top
Crystal data top
C3H8N2O2·H2OF(000) = 264.0
Mr = 122.13Dx = 1.424 Mg m3
Monoclinic, P21/cMelting point: 358 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.0301 (6) ÅCell parameters from 1358 reflections
b = 8.7842 (7) Åθ = 2.4–18.3°
c = 8.1748 (6) ŵ = 0.12 mm1
β = 98.889 (1)°T = 293 K
V = 569.71 (7) Å3Block, colorless
Z = 40.35 × 0.34 × 0.30 mm
Data collection top
Bruker APEX area-detector
diffractometer
1002 independent reflections
Radiation source: fine-focus sealed tube960 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
φ and ω scanθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.945, Tmax = 0.966k = 1010
2877 measured reflectionsl = 96
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.1863P]
where P = (Fo2 + 2Fc2)/3
1002 reflections(Δ/σ)max < 0.001
82 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C3H8N2O2·H2OV = 569.71 (7) Å3
Mr = 122.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0301 (6) ŵ = 0.12 mm1
b = 8.7842 (7) ÅT = 293 K
c = 8.1748 (6) Å0.35 × 0.34 × 0.30 mm
β = 98.889 (1)°
Data collection top
Bruker APEX area-detector
diffractometer
1002 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
960 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.966Rint = 0.016
2877 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.21 e Å3
1002 reflectionsΔρmin = 0.27 e Å3
82 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.79493 (17)0.47441 (13)0.42240 (14)0.0480 (4)
H3A0.788 (2)0.472 (2)0.326 (3)0.050 (5)*
H3B0.844 (3)0.391 (3)0.466 (3)0.069 (6)*
O20.91742 (12)0.29983 (10)0.06003 (11)0.0324 (3)
O10.75733 (13)0.50450 (10)0.08899 (11)0.0325 (3)
N10.82463 (13)0.69023 (12)0.32825 (13)0.0270 (3)
H1D0.91100.67360.24800.041*
H1E0.82880.78550.36440.041*
H1C0.83030.62600.41140.041*
N20.76650 (14)0.40847 (12)0.16430 (13)0.0265 (3)
H20.82160.35470.22570.032*
C30.81591 (15)0.40494 (13)0.00256 (15)0.0235 (3)
C20.62537 (16)0.49851 (15)0.24347 (16)0.0280 (3)
H2A0.53400.48980.17900.034*
H2B0.58620.45600.35210.034*
C10.66425 (16)0.66607 (15)0.26316 (16)0.0288 (3)
H1A0.57290.71260.33800.035*
H1B0.67090.71610.15660.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0844 (9)0.0333 (6)0.0250 (6)0.0148 (6)0.0046 (6)0.0027 (5)
O20.0397 (5)0.0250 (5)0.0294 (5)0.0052 (4)0.0050 (4)0.0000 (4)
O10.0459 (6)0.0274 (5)0.0252 (5)0.0038 (4)0.0084 (4)0.0035 (4)
N10.0343 (6)0.0222 (5)0.0239 (5)0.0015 (4)0.0022 (4)0.0029 (4)
N20.0349 (6)0.0236 (6)0.0213 (6)0.0056 (4)0.0050 (4)0.0001 (4)
C30.0279 (6)0.0183 (6)0.0243 (6)0.0041 (5)0.0044 (5)0.0003 (5)
C20.0273 (6)0.0297 (7)0.0263 (7)0.0017 (5)0.0018 (5)0.0038 (5)
C10.0316 (7)0.0263 (7)0.0283 (7)0.0062 (5)0.0036 (5)0.0023 (5)
Geometric parameters (Å, º) top
O3—H3A0.78 (2)N2—C31.3608 (16)
O3—H3B0.88 (3)N2—C21.4499 (16)
O2—C31.2725 (15)N2—H20.8600
O1—C31.2603 (15)C2—C11.5184 (18)
N1—C11.4828 (16)C2—H2A0.9700
N1—H1D0.8900C2—H2B0.9700
N1—H1E0.8900C1—H1A0.9700
N1—H1C0.8900C1—H1B0.9700
H3A—O3—H3B110 (2)N2—C2—C1114.63 (10)
C1—N1—H1D109.5N2—C2—H2A108.6
C1—N1—H1E109.5C1—C2—H2A108.6
H1D—N1—H1E109.5N2—C2—H2B108.6
C1—N1—H1C109.5C1—C2—H2B108.6
H1D—N1—H1C109.5H2A—C2—H2B107.6
H1E—N1—H1C109.5N1—C1—C2112.39 (10)
C3—N2—C2123.13 (10)N1—C1—H1A109.1
C3—N2—H2118.4C2—C1—H1A109.1
C2—N2—H2118.4N1—C1—H1B109.1
O1—C3—O2124.74 (11)C2—C1—H1B109.1
O1—C3—N2118.03 (11)H1A—C1—H1B107.9
O2—C3—N2117.23 (11)
C2—N2—C3—O113.44 (17)C3—N2—C2—C179.98 (15)
C2—N2—C3—O2165.99 (11)N2—C2—C1—N146.09 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O10.80 (3)1.92 (3)2.708 (2)170 (3)
O3—H3B···O2i0.86 (3)1.92 (3)2.773 (2)171 (3)
N1—H1C···O3ii0.891.892.767 (2)167
N1—H1D···O2iii0.891.912.775 (2)163
N1—H1E···O1iv0.891.952.798 (2)158
N2—H2···O2v0.862.433.278 (2)167
C2—H2A···O1vi0.972.563.499 (2)163
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z1; (iii) x+2, y+1, z; (iv) x, y+3/2, z1/2; (v) x, y+1/2, z1/2; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC3H8N2O2·H2O
Mr122.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.0301 (6), 8.7842 (7), 8.1748 (6)
β (°) 98.889 (1)
V3)569.71 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.35 × 0.34 × 0.30
Data collection
DiffractometerBruker APEX area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.945, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
2877, 1002, 960
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.04
No. of reflections1002
No. of parameters82
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.27

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O10.80 (3)1.92 (3)2.708 (2)170 (3)
O3—H3B···O2i0.86 (3)1.92 (3)2.773 (2)171 (3)
N1—H1C···O3ii0.891.892.767 (2)167.1
N1—H1D···O2iii0.891.912.775 (2)162.7
N1—H1E···O1iv0.891.952.798 (2)158.2
N2—H2···O2v0.862.433.278 (2)167.2
C2—H2A···O1vi0.972.563.499 (2)163.1
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z1; (iii) x+2, y+1, z; (iv) x, y+3/2, z1/2; (v) x, y+1/2, z1/2; (vi) x+1, y+1, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAntsyshkina, A. S., Sadikov, G. G., Solonina, I. A. & Rodnikova, M. N. (2007). Russ. J. Inorg. Chem. 52, 1561–1566  Web of Science CrossRef Google Scholar
First citationBrown, C. J. & Gray, L. R. (1982). Acta Cryst. B38, 2307–2308.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDell'Amico, D. B., Calderazzo, F., Labella, L., Marchetti, F. & Pampaloni, G. (2003). Chem. Rev. 103, 3857–3898.  Web of Science PubMed Google Scholar
First citationGarbauskas, M. F., Goehner, R. P. & Davis, A. M. (1983). Acta Cryst. C39, 1684–1686.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJing, H. M., Zhang, S. B., Jin, R. C. & Ma, Y. H. (2007). Wuh. Univ. J. Nat. Sci. 12, 1099–1102.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds