organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R*,5S*)-8-(2-Fluoro-4-nitro­phen­yl)-8-aza­bi­cyclo­[3.2.1]octan-3-one

aState Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China, and bDepartment of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
*Correspondence e-mail: luo_youfu@scu.edu.cn

(Received 2 August 2011; accepted 9 November 2011; online 12 November 2011)

In the title compound, C13H13FN2O3, the fused piperidine ring is in a chair conformation. The fused pyrrolidine ring shows an envelope conformation with the N atom displaced by 0.661 (3) Å out of the plane formed by the four C atoms of the pyrrolidine ring. The dihedral angle between this plane and the plane formed by the four attached C atoms of the piperidine ring (not including the carbonyl C atom) is 67.63 (10)°. The F atom is disordered and was refined using a split model with an occupancy ratio of 0.910 (3): 0.080 (3).

Related literature

For a related structure, see Yang et al. (2008[Yang, L.-M., Zhu, L., Niu, Y.-Y., Chen, H.-Z. & Lu, Y. (2008). Acta Cryst. E64, o2331.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13FN2O3

  • Mr = 264.25

  • Monoclinic, P 21 /c

  • a = 7.2030 (3) Å

  • b = 11.3097 (4) Å

  • c = 14.8372 (6) Å

  • β = 97.391 (4)°

  • V = 1198.65 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.38 × 0.35 × 0.30 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.997, Tmax = 1.0

  • 4706 measured reflections

  • 2109 independent reflections

  • 1482 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.113

  • S = 1.02

  • 2109 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The title compound is one important synthetic intermediates in our efforts to synthesize oxazolidinone derivatives. To identify< this compound its single crystal structure was determined by single crystal X-ray diffraction.

The dihedral angle between the benzene ring and the plane built up of C7, C8, C10 and C11 of the piperidine ring is 86.59 (9)° while the angle between the plane defined by this four C atoms and the plane formed by the four C atoms of the pyrrolidine ring is 67.63 (10)°. The fused piperidine ring is in a chair conformation with the N atom and one C atom displaced by 0.8433 (26) Å and -0.3798 (33) Å out of the mean plane defined by the other four atoms. The fused pyrrolidine ring adopts an envelope conformation with the N atom deviating by 0.661 (3) Å.

Related literature top

For a related structure, see Yang et al. (2008).

Experimental top

A solution of 1,2-difluoro-4-nitrobenzene (2.5 g, 15.7 mmol), nortropinone hydrochloride (3.8 g, 23.6 mmol) and anhydrous potassium carbonate (4.3 g,31.4 mmol) in DMF (75 mL) was stirred at 100°C for 2 h. Water (300 ml) was added and precipitation was formed. (1R, 5S)-8-(2-fluoro-4-nitrophenyl)-8- azabicyclo[3.2.1]octan-3-one was collected by filtration and recrystallized from ethylacetate.Crystals suitable for X-ray analysis were obtained by slow evaporation from a solution of the title compound in acetone.

Refinement top

All H atoms were positioned with idealized geometry (C—H = 0.93-0.98 Å). and were refined using a riding model, with Uĩso(H) = 1.2Ueq(C). The fluoro atom is disordered in two orientations and was refined using a split model and sof of 0.910:0.099 (3).

Structure description top

The title compound is one important synthetic intermediates in our efforts to synthesize oxazolidinone derivatives. To identify< this compound its single crystal structure was determined by single crystal X-ray diffraction.

The dihedral angle between the benzene ring and the plane built up of C7, C8, C10 and C11 of the piperidine ring is 86.59 (9)° while the angle between the plane defined by this four C atoms and the plane formed by the four C atoms of the pyrrolidine ring is 67.63 (10)°. The fused piperidine ring is in a chair conformation with the N atom and one C atom displaced by 0.8433 (26) Å and -0.3798 (33) Å out of the mean plane defined by the other four atoms. The fused pyrrolidine ring adopts an envelope conformation with the N atom deviating by 0.661 (3) Å.

For a related structure, see Yang et al. (2008).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with labeling and displacement ellipsoids drawn at the 30% probability level. The disorder is shown as full and open bonds.
(1R*,5S*)-8-(2-Fluoro-4-nitrophenyl)-8-azabicyclo[3.2.1]octan-3- one top
Crystal data top
C13H13FN2O3F(000) = 552
Mr = 264.25Dx = 1.464 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 1673 reflections
a = 7.2030 (3) Åθ = 3.0–28.9°
b = 11.3097 (4) ŵ = 0.12 mm1
c = 14.8372 (6) ÅT = 293 K
β = 97.391 (4)°Block, yellow
V = 1198.65 (8) Å30.38 × 0.35 × 0.30 mm
Z = 4
Data collection top
Agilent Xcalibur Eos
diffractometer
2109 independent reflections
Radiation source: fine-focus sealed tube1482 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 16.0874 pixels mm-1θmax = 25.0°, θmin = 3.3°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 813
Tmin = 0.997, Tmax = 1.0l = 1714
4706 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.1579P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2109 reflectionsΔρmax = 0.14 e Å3
183 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0037 (11)
Crystal data top
C13H13FN2O3V = 1198.65 (8) Å3
Mr = 264.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2030 (3) ŵ = 0.12 mm1
b = 11.3097 (4) ÅT = 293 K
c = 14.8372 (6) Å0.38 × 0.35 × 0.30 mm
β = 97.391 (4)°
Data collection top
Agilent Xcalibur Eos
diffractometer
2109 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1482 reflections with I > 2σ(I)
Tmin = 0.997, Tmax = 1.0Rint = 0.016
4706 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.02Δρmax = 0.14 e Å3
2109 reflectionsΔρmin = 0.12 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.6635 (2)0.70834 (11)0.61012 (10)0.0924 (6)0.910 (3)
F1'0.716 (2)0.2944 (9)0.6621 (9)0.080 (6)0.090 (3)
O11.1163 (2)0.57062 (17)0.92502 (11)0.0972 (6)
O20.7844 (3)0.54056 (17)0.32301 (12)0.0929 (6)
O30.8052 (3)0.35184 (18)0.34414 (12)0.1019 (6)
N10.6650 (2)0.51844 (13)0.73584 (11)0.0530 (4)
N20.7860 (2)0.4527 (2)0.37182 (13)0.0706 (6)
C10.7027 (3)0.59691 (16)0.58549 (15)0.0568 (5)
H10.68150.67330.60510.068*0.090 (3)
C20.7289 (3)0.58145 (18)0.49751 (15)0.0592 (6)
H20.72530.64590.45840.071*
C30.7608 (3)0.46959 (18)0.46658 (14)0.0534 (5)
C40.7681 (3)0.37456 (18)0.52508 (14)0.0583 (6)
H40.79010.29880.50440.070*
C50.7427 (3)0.39274 (16)0.61379 (14)0.0537 (5)
H50.75040.32800.65280.064*0.910 (3)
C60.7055 (2)0.50442 (15)0.64893 (13)0.0469 (5)
C70.6776 (3)0.63004 (17)0.78822 (14)0.0608 (6)
H70.61620.69510.75230.073*
C80.8836 (3)0.65642 (18)0.81689 (15)0.0659 (6)
H8A0.94320.67340.76330.079*
H8B0.89480.72620.85520.079*
C90.9831 (3)0.5552 (2)0.86761 (14)0.0648 (6)
C100.9161 (3)0.43248 (18)0.84129 (14)0.0627 (6)
H10B0.94230.38080.89360.075*
H10A0.98570.40310.79420.075*
C110.7064 (3)0.42723 (17)0.80686 (13)0.0568 (5)
H110.67030.34850.78320.068*
C120.5736 (3)0.5997 (2)0.86856 (17)0.0799 (7)
H12B0.63250.63760.92360.096*
H12A0.44430.62540.85710.096*
C130.5847 (3)0.4658 (2)0.87766 (16)0.0720 (7)
H13B0.64100.44320.93810.086*
H13A0.46120.43060.86580.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1396 (15)0.0391 (8)0.1023 (11)0.0162 (8)0.0297 (10)0.0065 (7)
F1'0.137 (14)0.028 (7)0.074 (9)0.001 (7)0.017 (8)0.013 (6)
O10.0642 (11)0.1378 (16)0.0858 (12)0.0305 (10)0.0049 (9)0.0118 (11)
O20.0934 (14)0.1075 (14)0.0781 (11)0.0261 (11)0.0124 (9)0.0127 (10)
O30.1195 (17)0.0967 (14)0.0929 (13)0.0086 (12)0.0269 (11)0.0254 (11)
N10.0507 (10)0.0397 (9)0.0676 (11)0.0017 (7)0.0040 (8)0.0014 (8)
N20.0501 (11)0.0876 (16)0.0732 (14)0.0159 (11)0.0048 (9)0.0051 (12)
C10.0535 (13)0.0351 (11)0.0812 (15)0.0038 (9)0.0066 (11)0.0018 (10)
C20.0477 (12)0.0523 (13)0.0765 (15)0.0031 (10)0.0037 (10)0.0138 (11)
C30.0349 (11)0.0593 (13)0.0644 (13)0.0056 (9)0.0004 (9)0.0025 (10)
C40.0481 (12)0.0488 (12)0.0749 (15)0.0017 (9)0.0036 (10)0.0074 (11)
C50.0478 (12)0.0424 (11)0.0676 (13)0.0024 (9)0.0050 (10)0.0017 (10)
C60.0330 (10)0.0399 (11)0.0657 (13)0.0002 (8)0.0019 (9)0.0013 (9)
C70.0551 (13)0.0461 (12)0.0833 (15)0.0002 (10)0.0166 (11)0.0080 (10)
C80.0647 (15)0.0551 (13)0.0810 (15)0.0168 (11)0.0210 (11)0.0181 (11)
C90.0432 (12)0.0883 (17)0.0649 (14)0.0143 (12)0.0142 (10)0.0139 (12)
C100.0553 (13)0.0660 (14)0.0661 (13)0.0060 (11)0.0048 (10)0.0038 (10)
C110.0557 (13)0.0466 (11)0.0664 (13)0.0072 (10)0.0019 (10)0.0023 (10)
C120.0624 (15)0.0776 (17)0.1054 (19)0.0054 (13)0.0326 (13)0.0145 (14)
C130.0540 (14)0.0802 (17)0.0827 (16)0.0116 (12)0.0121 (11)0.0040 (13)
Geometric parameters (Å, º) top
F1—C11.352 (2)C5—C61.405 (3)
F1'—C51.350 (11)C7—H70.9800
O1—C91.211 (2)C7—C81.519 (3)
O2—N21.229 (2)C7—C121.526 (3)
O3—N21.226 (2)C8—H8A0.9700
N1—C61.368 (2)C8—H8B0.9700
N1—C71.479 (2)C8—C91.501 (3)
N1—C111.477 (2)C9—C101.504 (3)
N2—C31.453 (3)C10—H10B0.9700
C1—H10.9300C10—H10A0.9700
C1—C21.354 (3)C10—C111.532 (3)
C1—C61.405 (3)C11—H110.9800
C2—H20.9300C11—C131.516 (3)
C2—C31.375 (3)C12—H12B0.9700
C3—C41.378 (3)C12—H12A0.9700
C4—H40.9300C12—C131.522 (3)
C4—C51.368 (3)C13—H13B0.9700
C5—H50.9300C13—H13A0.9700
F1—C1—C2116.15 (18)C6—C1—H1118.1
F1—C1—C6119.9 (2)C6—C5—H5118.4
F1'—C5—C4115.6 (6)C7—C8—H8A109.2
F1'—C5—H512.4C7—C8—H8B109.2
F1'—C5—C6119.7 (6)C7—C12—H12B110.6
O1—C9—C8121.8 (2)C7—C12—H12A110.6
O1—C9—C10120.9 (2)C8—C7—H7111.2
O2—N2—C3118.1 (2)C8—C7—C12112.66 (19)
O3—N2—O2123.2 (2)C8—C9—C10117.21 (18)
O3—N2—C3118.7 (2)H8A—C8—H8B107.9
N1—C6—C1123.97 (17)C9—C8—C7112.12 (18)
N1—C6—C5121.87 (17)C9—C8—H8A109.2
N1—C7—H7111.2C9—C8—H8B109.2
N1—C7—C8107.84 (16)C9—C10—H10B109.0
N1—C7—C12102.44 (17)C9—C10—H10A109.0
N1—C11—C10108.09 (16)C9—C10—C11113.06 (17)
N1—C11—H11111.1C10—C11—H11111.1
N1—C11—C13102.23 (16)H10B—C10—H10A107.8
C1—C2—H2120.3C11—N1—C7103.18 (15)
C1—C2—C3119.37 (19)C11—C10—H10B109.0
C2—C1—H1118.1C11—C10—H10A109.0
C2—C1—C6123.89 (18)C11—C13—C12104.67 (18)
C2—C3—N2119.4 (2)C11—C13—H13B110.8
C2—C3—C4120.1 (2)C11—C13—H13A110.8
C3—C2—H2120.3C12—C7—H7111.2
C3—C4—H4120.3C12—C13—H13B110.8
C4—C3—N2120.5 (2)C12—C13—H13A110.8
C4—C5—H5118.4H12B—C12—H12A108.8
C4—C5—C6123.22 (19)C13—C11—C10113.00 (17)
C5—C4—C3119.33 (19)C13—C11—H11111.1
C5—C4—H4120.3C13—C12—C7105.51 (18)
C5—C6—C1114.05 (19)C13—C12—H12B110.6
C6—N1—C7126.04 (16)C13—C12—H12A110.6
C6—N1—C11122.93 (16)H13B—C13—H13A108.9
F1—C1—C2—C3177.08 (17)C6—N1—C7—C874.0 (2)
F1—C1—C6—N12.1 (3)C6—N1—C7—C12167.00 (18)
F1—C1—C6—C5178.26 (17)C6—N1—C11—C1077.6 (2)
F1'—C5—C6—N18.4 (8)C6—N1—C11—C13162.92 (17)
F1'—C5—C6—C1167.9 (8)C6—C1—C2—C30.1 (3)
O1—C9—C10—C11152.0 (2)C7—N1—C6—C123.0 (3)
O2—N2—C3—C22.6 (3)C7—N1—C6—C5161.09 (17)
O2—N2—C3—C4177.66 (18)C7—N1—C11—C1073.0 (2)
O3—N2—C3—C2176.46 (19)C7—N1—C11—C1346.42 (19)
O3—N2—C3—C43.3 (3)C7—C8—C9—O1150.3 (2)
N1—C7—C8—C954.7 (2)C7—C8—C9—C1032.5 (3)
N1—C7—C12—C1323.7 (2)C7—C12—C13—C114.1 (2)
N1—C11—C13—C1230.4 (2)C8—C7—C12—C1391.9 (2)
N2—C3—C4—C5179.57 (16)C8—C9—C10—C1130.7 (3)
C1—C2—C3—N2179.04 (17)C9—C10—C11—N150.9 (2)
C1—C2—C3—C40.7 (3)C9—C10—C11—C1361.5 (2)
C2—C1—C6—N1174.79 (18)C10—C11—C13—C1285.5 (2)
C2—C1—C6—C51.4 (3)C11—N1—C6—C1166.83 (16)
C2—C3—C4—C50.2 (3)C11—N1—C6—C517.3 (3)
C3—C4—C5—F1'167.7 (8)C11—N1—C7—C875.5 (2)
C3—C4—C5—C61.2 (3)C11—N1—C7—C1243.6 (2)
C4—C5—C6—N1174.33 (17)C12—C7—C8—C957.6 (2)
C4—C5—C6—C12.0 (3)

Experimental details

Crystal data
Chemical formulaC13H13FN2O3
Mr264.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.2030 (3), 11.3097 (4), 14.8372 (6)
β (°) 97.391 (4)
V3)1198.65 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.38 × 0.35 × 0.30
Data collection
DiffractometerAgilent Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.997, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
4706, 2109, 1482
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.113, 1.02
No. of reflections2109
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.12

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L.-M., Zhu, L., Niu, Y.-Y., Chen, H.-Z. & Lu, Y. (2008). Acta Cryst. E64, o2331.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds