organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-N′-(2-oxoindolin-3-yl­­idene)benzene-1-sulfono­hydrazide

aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96201-900, Rio Grande-RS, Brazil, bDepartamento de Química, Universidade Federal de Santa Maria, Av. Roraima, Campus, 97105-900, Santa Maria-RS, Brazil, and cDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000, São Cristóvão-SE, Brazil
*Correspondence e-mail: adriano@daad-alumni.de

(Received 27 October 2011; accepted 4 November 2011; online 12 November 2011)

In the title compound, C15H13N3O3S, the C—S—N(H)—N linkage is non-planar, the torsion angle being −65.12 (13)° and the S atom showing a tetra­hedral environment. The compound has two almost planar fragments linked to the S atom: the isatin-derivative fragment [(C8H5NO)N—N(H)–] and the tolyl fragment [C7H7–] have maximum deviations from the mean plane through the non-H atoms of 0.0813 (13) and 0.0094 (16) Å, respectively, and make an inter­planar angle of 80.48 (3)°. In the crystal, mol­ecules are connected into inversion dimers via pairs of N—H⋯O hydrogen bonds. Additionally, the mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond.

Related literature

For the synthesis of isatin-3-tosyl­hydrazone, see: Cava et al. (1958[Cava, M. P., Litle, R. L. & Napier, D. R. (1958). J. Am. Chem. Soc. 80, 2257-2263.]). For the anti­fungal and anti­bacterial properties of isatin derivatives, including the title compound, see: Chohan et al. (2004[Chohan, Z. H., Pervez, H., Rauf, A., Khan, K. M. & Supuran, C. T. (2004). J. Enzym. Inhib. Med. Chem. 19, 417-423.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O3S

  • Mr = 315.35

  • Monoclinic, P 21 /c

  • a = 14.9050 (3) Å

  • b = 5.7849 (1) Å

  • c = 17.8112 (3) Å

  • β = 110.427 (1)°

  • V = 1439.18 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.56 × 0.16 × 0.10 mm

Data collection
  • Bruker X8 APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.877, Tmax = 0.976

  • 15630 measured reflections

  • 4204 independent reflections

  • 3146 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.113

  • S = 1.05

  • 4204 reflections

  • 208 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H6⋯O1 0.83 (2) 2.08 (2) 2.7539 (17) 138.3 (19)
N1—H1⋯O1i 0.86 (2) 2.04 (2) 2.9029 (16) 172.9 (18)
Symmetry code: (i) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Isatin derivatives have a wide range of biological properties. For example, isatin-based hydrazones show pharmacological activity against bacteria and fungi (Chohan et al., 2004). As part of our study of isatin derivatives, we report herein the crystal structure of isatin-3-tosylhydrazone. In the title compound (Fig. 1) the C—S—N(H)—N linkage is non-planar with the torsion angle being 65.12 (13)° and a tetrahedral environment suggests a sp3 hybridization for the S atom. The title structure contains additionally two planar fragments. The mean deviations from the least squares planes for the isatin-derivative fragment C1/C2/C3/C4/C5/C6/C7/C8/N1/N2/N3/O1 and for the tolyl fragment C9/C10/C11/C12/C13/C14/C15 amount to 0.0813 (13)° for C2 and 0.0094 (16)° for C11 atoms, respectively, with a dihedral angle of 80.48 (3)°. The crystal packing is stabilized by intermolecular N—H···O (Table 1; N1—H1···O1i) and also by intramolecular N—H···O bonds (Table 1; N3—H6···O1) leading the isatin-3-tosylhydrazone dimers (Fig. 2). Symmetry code: (i)-x, -y + 2, -z.

Related literature top

For the synthesis of isatin-3-tosylhydrazone, see: Cava et al. (1958). For the antifungal and antibacterial properties of isatin derivatives, including the title compound, see: Chohan et al. (2004).

Experimental top

Starting materials were commercially available and were used without further purification. The synthesis was adapted from a procedure reported previously (Cava et al., 1958). The glacial acetic acid catalyzed reaction of isatin (5 mmol) and p-toluenesulfonylhydrazine (5 mmol) in methanol (60 ml) was refluxed for 5 h. After cooling and filtering, crystals suitable for X-ray diffraction were obtained.

Refinement top

H atoms attached to C atoms were positioned with idealized geometry and were refined isotropic with Ueq(H) set to 1.2 times of the Ueq(C) for the aromatic and 1.5 times of the Ueq(C) for methyl H atoms using a riding model with C—H = 0.93 Å and C—H = 0.96 Å, respectively. H atoms attached to N atoms were located in difference Fourier maps and included in the subsequent refinement using restraints (N1—H1 = 0.86 (2) Å and N3—H6 = 0.83 (2) Å) with Uiso(H) = 1.2 times of the Ueq(N). In the last stage of refinement, they were treated as riding on their parent N atoms.

Structure description top

Isatin derivatives have a wide range of biological properties. For example, isatin-based hydrazones show pharmacological activity against bacteria and fungi (Chohan et al., 2004). As part of our study of isatin derivatives, we report herein the crystal structure of isatin-3-tosylhydrazone. In the title compound (Fig. 1) the C—S—N(H)—N linkage is non-planar with the torsion angle being 65.12 (13)° and a tetrahedral environment suggests a sp3 hybridization for the S atom. The title structure contains additionally two planar fragments. The mean deviations from the least squares planes for the isatin-derivative fragment C1/C2/C3/C4/C5/C6/C7/C8/N1/N2/N3/O1 and for the tolyl fragment C9/C10/C11/C12/C13/C14/C15 amount to 0.0813 (13)° for C2 and 0.0094 (16)° for C11 atoms, respectively, with a dihedral angle of 80.48 (3)°. The crystal packing is stabilized by intermolecular N—H···O (Table 1; N1—H1···O1i) and also by intramolecular N—H···O bonds (Table 1; N3—H6···O1) leading the isatin-3-tosylhydrazone dimers (Fig. 2). Symmetry code: (i)-x, -y + 2, -z.

For the synthesis of isatin-3-tosylhydrazone, see: Cava et al. (1958). For the antifungal and antibacterial properties of isatin derivatives, including the title compound, see: Chohan et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. : Crystal structure of the title compound showing the dimers. Intermolecular hydrogen bonding is indicated as dashed lines. Symmetry code: (i)-x, -y + 2, -z.
4-Methyl-N'-(2-oxoindolin-3-ylidene)benzene-1-sulfonohydrazide top
Crystal data top
C15H13N3O3SF(000) = 656
Mr = 315.35Dx = 1.455 Mg m3
Monoclinic, P21/cMelting point: 476 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.9050 (3) ÅCell parameters from 4508 reflections
b = 5.7849 (1) Åθ = 2.9–26.0°
c = 17.8112 (3) ŵ = 0.24 mm1
β = 110.427 (1)°T = 293 K
V = 1439.18 (5) Å3Block, yellow
Z = 40.56 × 0.16 × 0.10 mm
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
4204 independent reflections
Radiation source: fine-focus sealed tube, Bruker X8 APEXII3146 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 30.1°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2021
Tmin = 0.877, Tmax = 0.976k = 85
15630 measured reflectionsl = 2523
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.4436P]
where P = (Fo2 + 2Fc2)/3
4204 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C15H13N3O3SV = 1439.18 (5) Å3
Mr = 315.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.9050 (3) ŵ = 0.24 mm1
b = 5.7849 (1) ÅT = 293 K
c = 17.8112 (3) Å0.56 × 0.16 × 0.10 mm
β = 110.427 (1)°
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
4204 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3146 reflections with I > 2σ(I)
Tmin = 0.877, Tmax = 0.976Rint = 0.026
15630 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.28 e Å3
4204 reflectionsΔρmin = 0.44 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.11277 (11)1.0172 (3)0.32467 (9)0.0394 (4)
H30.10571.11880.36270.047*
C110.53807 (13)0.3670 (4)0.17689 (12)0.0566 (5)
H80.59080.31190.21870.068*
C120.54616 (13)0.5683 (4)0.13898 (12)0.0527 (5)
C100.45279 (12)0.2441 (3)0.15401 (11)0.0490 (4)
H70.44820.10860.18050.059*
C130.46719 (15)0.6454 (4)0.07640 (14)0.0606 (5)
H90.47170.78150.05010.073*
C140.38184 (13)0.5253 (3)0.05197 (12)0.0540 (5)
H100.32960.57860.00940.065*
C150.63816 (15)0.7038 (5)0.16498 (16)0.0760 (7)
H110.62980.84490.19010.114*
H120.65530.73910.11910.114*
H130.68810.61380.20230.114*
H60.1551 (15)0.431 (4)0.0260 (12)0.059 (6)*
H10.0168 (14)1.043 (4)0.0776 (12)0.055 (6)*
S10.26748 (3)0.16782 (7)0.06008 (2)0.03535 (12)
N30.18364 (9)0.3472 (2)0.06478 (8)0.0352 (3)
N20.19062 (8)0.4241 (2)0.13897 (7)0.0320 (3)
C80.08200 (10)0.7533 (3)0.07301 (8)0.0305 (3)
O10.06596 (8)0.71841 (19)0.00121 (6)0.0382 (3)
C90.37519 (11)0.3244 (3)0.09182 (9)0.0347 (3)
N10.05136 (9)0.9330 (2)0.10573 (7)0.0329 (3)
C70.14177 (10)0.6049 (2)0.14176 (8)0.0292 (3)
C10.08633 (10)0.9203 (2)0.19011 (8)0.0295 (3)
O30.23997 (9)0.1214 (2)0.02344 (7)0.0511 (3)
C50.17706 (11)0.6607 (3)0.29508 (9)0.0353 (3)
H50.21150.52470.31210.042*
C20.07358 (11)1.0743 (3)0.24401 (9)0.0351 (3)
H20.04001.21150.22720.042*
C60.13941 (10)0.7169 (2)0.21428 (8)0.0298 (3)
C40.16212 (11)0.8120 (3)0.34970 (9)0.0398 (4)
H40.18550.77550.40400.048*
O20.27543 (8)0.0145 (2)0.11553 (8)0.0481 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0415 (8)0.0398 (9)0.0366 (8)0.0005 (7)0.0132 (7)0.0057 (7)
C110.0392 (9)0.0670 (13)0.0552 (11)0.0021 (9)0.0060 (8)0.0073 (10)
C120.0403 (9)0.0587 (12)0.0630 (12)0.0114 (8)0.0231 (8)0.0226 (10)
C100.0454 (9)0.0506 (10)0.0469 (10)0.0021 (8)0.0109 (8)0.0040 (8)
C130.0556 (12)0.0479 (11)0.0792 (15)0.0130 (9)0.0247 (10)0.0044 (10)
C140.0423 (9)0.0485 (10)0.0646 (12)0.0034 (8)0.0105 (8)0.0089 (9)
C150.0501 (12)0.0853 (17)0.0963 (18)0.0272 (12)0.0300 (12)0.0305 (14)
S10.0344 (2)0.0308 (2)0.0424 (2)0.00097 (15)0.01533 (16)0.00615 (15)
N30.0354 (7)0.0364 (7)0.0338 (7)0.0062 (5)0.0122 (5)0.0009 (6)
N20.0333 (6)0.0304 (6)0.0335 (6)0.0027 (5)0.0133 (5)0.0016 (5)
C80.0282 (6)0.0315 (7)0.0314 (7)0.0007 (6)0.0101 (5)0.0068 (6)
O10.0424 (6)0.0417 (6)0.0294 (5)0.0047 (5)0.0111 (4)0.0051 (5)
C90.0322 (7)0.0333 (8)0.0411 (8)0.0007 (6)0.0158 (6)0.0063 (6)
N10.0360 (6)0.0308 (6)0.0313 (6)0.0080 (5)0.0109 (5)0.0087 (5)
C70.0283 (6)0.0292 (7)0.0303 (7)0.0008 (5)0.0103 (5)0.0059 (6)
C10.0287 (6)0.0283 (7)0.0317 (7)0.0007 (5)0.0107 (5)0.0053 (6)
O30.0516 (7)0.0557 (8)0.0466 (7)0.0074 (6)0.0177 (6)0.0220 (6)
C50.0342 (7)0.0371 (8)0.0319 (7)0.0068 (6)0.0081 (6)0.0063 (6)
C20.0364 (7)0.0288 (7)0.0400 (8)0.0040 (6)0.0134 (6)0.0024 (6)
C60.0288 (6)0.0295 (7)0.0315 (7)0.0033 (5)0.0109 (5)0.0036 (6)
C40.0397 (8)0.0460 (9)0.0293 (7)0.0023 (7)0.0066 (6)0.0014 (7)
O20.0449 (6)0.0336 (6)0.0689 (8)0.0029 (5)0.0239 (6)0.0083 (6)
Geometric parameters (Å, º) top
C3—C41.385 (2)S1—N31.6488 (13)
C3—C21.389 (2)S1—C91.7560 (15)
C3—H30.9300N3—N21.3636 (17)
C11—C121.372 (3)N3—H60.83 (2)
C11—C101.388 (3)N2—C71.2853 (18)
C11—H80.9300C8—O11.2329 (17)
C12—C131.383 (3)C8—O11.2329 (17)
C12—C151.505 (3)C8—N11.3471 (19)
C10—C91.373 (2)C8—C71.5060 (19)
C10—H70.9300N1—C11.4103 (18)
C13—C141.380 (3)N1—H10.86 (2)
C13—H90.9300C7—C61.456 (2)
C14—C91.383 (2)C1—C21.371 (2)
C14—H100.9300C1—C61.3991 (19)
C15—H110.9600C5—C41.383 (2)
C15—H120.9600C5—C61.3886 (19)
C15—H130.9600C5—H50.9300
S1—O21.4212 (12)C2—H20.9300
S1—O31.4239 (12)C4—H40.9300
C4—C3—C2121.40 (15)S1—N3—H6120.1 (14)
C4—C3—H3119.3C7—N2—N3116.77 (12)
C2—C3—H3119.3O1—C8—N1127.08 (13)
C12—C11—C10121.27 (18)O1—C8—N1127.08 (13)
C12—C11—H8119.4O1—C8—C7126.55 (14)
C10—C11—H8119.4O1—C8—C7126.55 (14)
C11—C12—C13118.32 (17)N1—C8—C7106.37 (12)
C11—C12—C15121.2 (2)C10—C9—C14120.46 (16)
C13—C12—C15120.5 (2)C10—C9—S1120.21 (13)
C9—C10—C11119.39 (18)C14—C9—S1119.30 (13)
C9—C10—H7120.3C8—N1—C1111.45 (12)
C11—C10—H7120.3C8—N1—H1122.9 (13)
C14—C13—C12121.56 (19)C1—N1—H1125.6 (13)
C14—C13—H9119.2N2—C7—C6125.84 (13)
C12—C13—H9119.2N2—C7—C8127.94 (13)
C13—C14—C9118.99 (18)C6—C7—C8106.08 (12)
C13—C14—H10120.5C2—C1—C6122.19 (13)
C9—C14—H10120.5C2—C1—N1128.49 (13)
C12—C15—H11109.5C6—C1—N1109.32 (12)
C12—C15—H12109.5C4—C5—C6118.32 (14)
H11—C15—H12109.5C4—C5—H5120.8
C12—C15—H13109.5C6—C5—H5120.8
H11—C15—H13109.5C1—C2—C3117.32 (14)
H12—C15—H13109.5C1—C2—H2121.3
O2—S1—O3120.64 (8)C3—C2—H2121.3
O2—S1—N3108.22 (7)C5—C6—C1119.77 (13)
O3—S1—N3102.99 (7)C5—C6—C7133.54 (13)
O2—S1—C9108.30 (7)C1—C6—C7106.69 (12)
O3—S1—C9109.34 (8)C5—C4—C3120.90 (14)
N3—S1—C9106.44 (7)C5—C4—H4119.5
N2—N3—S1116.86 (10)C3—C4—H4119.5
N2—N3—H6117.5 (14)
C10—C11—C12—C130.7 (3)N3—N2—C7—C6179.42 (13)
C10—C11—C12—C15178.77 (19)N3—N2—C7—C84.3 (2)
C12—C11—C10—C90.5 (3)O1—C8—C7—N24.0 (2)
C11—C12—C13—C140.1 (3)O1—C8—C7—N24.0 (2)
C15—C12—C13—C14179.4 (2)N1—C8—C7—N2174.84 (14)
C12—C13—C14—C90.7 (3)O1—C8—C7—C6179.91 (14)
O2—S1—N3—N251.10 (13)O1—C8—C7—C6179.91 (14)
O3—S1—N3—N2179.90 (11)N1—C8—C7—C61.06 (15)
C9—S1—N3—N265.12 (13)C8—N1—C1—C2177.47 (14)
S1—N3—N2—C7162.65 (11)C8—N1—C1—C62.60 (16)
N1—C8—O1—O10.00 (10)C6—C1—C2—C32.3 (2)
C7—C8—O1—O10.00 (14)N1—C1—C2—C3177.61 (14)
C11—C10—C9—C140.3 (3)C4—C3—C2—C10.5 (2)
C11—C10—C9—S1178.32 (14)C4—C5—C6—C11.2 (2)
C13—C14—C9—C100.9 (3)C4—C5—C6—C7178.95 (15)
C13—C14—C9—S1178.95 (16)C2—C1—C6—C53.2 (2)
O2—S1—C9—C108.34 (16)N1—C1—C6—C5176.70 (13)
O3—S1—C9—C10124.90 (15)C2—C1—C6—C7176.92 (13)
N3—S1—C9—C10124.50 (14)N1—C1—C6—C73.15 (15)
O2—S1—C9—C14173.62 (14)N2—C7—C6—C56.7 (3)
O3—S1—C9—C1453.14 (16)C8—C7—C6—C5177.26 (16)
N3—S1—C9—C1457.46 (15)N2—C7—C6—C1173.44 (14)
O1—C8—N1—C1177.97 (14)C8—C7—C6—C12.56 (15)
O1—C8—N1—C1177.97 (14)C6—C5—C4—C31.5 (2)
C7—C8—N1—C10.88 (16)C2—C3—C4—C52.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H6···O10.83 (2)2.08 (2)2.7539 (17)138.3 (19)
N1—H1···O1i0.86 (2)2.04 (2)2.9029 (16)172.9 (18)
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC15H13N3O3S
Mr315.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.9050 (3), 5.7849 (1), 17.8112 (3)
β (°) 110.427 (1)
V3)1439.18 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.56 × 0.16 × 0.10
Data collection
DiffractometerBruker X8 APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.877, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
15630, 4204, 3146
Rint0.026
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.113, 1.05
No. of reflections4204
No. of parameters208
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.44

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H6···O10.83 (2)2.08 (2)2.7539 (17)138.3 (19)
N1—H1···O1i0.86 (2)2.04 (2)2.9029 (16)172.9 (18)
Symmetry code: (i) x, y+2, z.
 

Acknowledgements

We gratefully acknowledge Professor Dr Manfredo Hörner (Department of Chemistry, Federal University of Santa Maria, Brazil) for his help and support with the X-ray measurements, and CNPq/FAPERGS for financial support.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCava, M. P., Litle, R. L. & Napier, D. R. (1958). J. Am. Chem. Soc. 80, 2257–2263.  CrossRef CAS Web of Science Google Scholar
First citationChohan, Z. H., Pervez, H., Rauf, A., Khan, K. M. & Supuran, C. T. (2004). J. Enzym. Inhib. Med. Chem. 19, 417–423.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds