organic compounds
Prop-2-yn-1-yl 4,6-di-O-acetyl-2,3-dideoxy-α-D-erythro-hex-2-enopyranoside
aResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: hhkinfe@uj.ac.za, mullera@uj.ac.za
The 13H16O6, was determined. The pyranosyl ring adopting an The acetyl groups are located in equatorial positions. The features weak C—H⋯O interactions.
of the title compound, CRelated literature
For details of the Ferrier arrangement, see: Ferrier & Prasad (1969) and for the synthesis of pseudoglycals utilizing the Ferrier arrangement, see: López et al. (1995); Yadav et al. (2001). For background to the synthetic methodology of see: Kinfe et al. (2011); Breton (1997). For ring puckering analysis, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2011); cell SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536811047246/nc2253sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811047246/nc2253Isup2.hkl
To a solution of a tri-O-acetyl-D-glucal (100 mg, 0.36 mmol) and propargyl alcohol (0.042 ml, 0.72 mmol) in CH3CN (1 ml) NaHSO4-SiO2 (2.5 mg, 3.0 mmol NaHSO4/g) was added (see Breton, 1997). The resulting mixture was stirred at 80 °C for 5 min. After adding silica gel to the reaction mixture at room temperature, the solvent was evaporated in vacuo without heating until a free-flowing solid was obtained. The resulting solid was column chromatographed using 1:9 ethyl acetate:hexane α:β (6:1) mixture of 2,3-unsaturated in 90% yield as a white solid. Recrystalization from a mixture of DCM and hexane afforded the title compound in 50% yield as colorless crystals.
to affordAll hydrogen atoms were positioned in geometrically idealized positions with C—H = 1.00 Å (methine), 0.99 Å (methylene), 0.98 Å (methyl) and 0.95 Å (aromatic and acetylenic). All hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq, except for the methyl where Uiso(H) = 1.5Ueq was utilized. The initial positions of methyl hydrogen atoms were located from a Fourier difference map and refined as fixed rotor. The D
was determined on the basis of 872 Friedel pairs with the final refined to -0.05 (14). The highest residual electron density of 0.10 e.Å-3 is 0.63 Å from H6A representing no physical meaning.Treatment of 3,4,6-tri-O-acetyl-D-glucal with a
catalyst in the presence of and other C and S nucleophiles results to allylic rearrangement of the glucal and the reaction is called Ferrier rearrangement (Ferrier & Prasad, 1969; López et al., 1995; Yadav et al., 2001; Kinfe et al., 2011). Recently, we reported the synthesis of the title compound by treating a glucal with NaHSO4 supported on silica gel in the presence of propargyl alcohol (Kinfe et al., 2011). Herein, we report the of the pure diastereomer obtained by crystallization from the mixture of products.In the φ2 = 324.1 (2)° (see Cremer & Pople, 1975). Several weak C—H···O interactions are noted and listed in Table 1.
of the title compound the acetyl groups are in equatorial positions (see Fig. 1). The pyran ring adopts an with ring puckering parameters of q2 = 0.4180 (14) Å, q3 = 0.3070 (14) Å, Q = 0.5186 (13) Å andFor details of the Ferrier arrangement, see: Ferrier & Prasad (1969) and for the synthesis of pseudoglycals utilizing the Ferrier arrangement, see: López et al. (1995); Yadav et al. (2001). For background to the synthetic methodology of
see: Kinfe et al. (2011); Breton (1997). For ring puckering analysis, see: Cremer & Pople (1975).Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. : Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. |
C13H16O6 | F(000) = 568 |
Mr = 268.26 | Dx = 1.346 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 7170 reflections |
a = 5.2277 (2) Å | θ = 6.0–64.2° |
b = 14.8549 (5) Å | µ = 0.91 mm−1 |
c = 17.0509 (5) Å | T = 100 K |
V = 1324.12 (8) Å3 | Needle, colourless |
Z = 4 | 0.28 × 0.06 × 0.06 mm |
Bruker APEX DUO 4K CCD diffractometer | 2184 independent reflections |
Radiation source: Incoatec IµS microfocus X-ray source | 2113 reflections with I > 2σ(I) |
Incoatec Quazar Multilayer Mirror monochromator | Rint = 0.039 |
Detector resolution: 8.4 pixels mm-1 | θmax = 64.6°, θmin = 6.0° |
φ and ω scans | h = −6→5 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | k = −17→17 |
Tmin = 0.785, Tmax = 0.948 | l = −19→17 |
12479 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.023 | H-atom parameters constrained |
wR(F2) = 0.058 | w = 1/[σ2(Fo2) + (0.0281P)2 + 0.1772P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2184 reflections | Δρmax = 0.1 e Å−3 |
174 parameters | Δρmin = −0.12 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 872 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.05 (14) |
C13H16O6 | V = 1324.12 (8) Å3 |
Mr = 268.26 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 5.2277 (2) Å | µ = 0.91 mm−1 |
b = 14.8549 (5) Å | T = 100 K |
c = 17.0509 (5) Å | 0.28 × 0.06 × 0.06 mm |
Bruker APEX DUO 4K CCD diffractometer | 2184 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2113 reflections with I > 2σ(I) |
Tmin = 0.785, Tmax = 0.948 | Rint = 0.039 |
12479 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | H-atom parameters constrained |
wR(F2) = 0.058 | Δρmax = 0.1 e Å−3 |
S = 1.06 | Δρmin = −0.12 e Å−3 |
2184 reflections | Absolute structure: Flack (1983), 872 Friedel pairs |
174 parameters | Absolute structure parameter: −0.05 (14) |
0 restraints |
Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 5 s/frame. A total of 2276 frames were collected with a frame width of 1° covering up to θ = 64.63° with 98.1% completeness accomplished. Analytical data: 1H NMR (CDCl3, 300 MHz): δ 5.90 (d, J = 10.4 Hz, 1H), 5.82 (td, J = 2.4 and 10.0 Hz, 1H), 5.32 (dd, J = 1.2 and 9.6 Hz, 1H), 5.21 (s, 1H), 4.40–4.03 (m, 5H), 2.44 (t, J = 2.4 Hz, 1H), 2.08 (s, 3H), 2.07 (s, 3H); 13C NMR (CDCl3, 75 MHz): δ 170.8, 170.2, 129.8, 127.2, 92.8, 79.0, 74.8, 67.2, 65.1, 62.7, 55.0, 20.9, 20.8 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.1501 (2) | 0.08128 (8) | 0.42326 (7) | 0.0220 (3) | |
H1 | −0.2982 | 0.0577 | 0.3924 | 0.026* | |
C2 | −0.2436 (3) | 0.15417 (9) | 0.47693 (8) | 0.0249 (3) | |
H2 | −0.3473 | 0.201 | 0.4562 | 0.03* | |
C3 | −0.1854 (3) | 0.15485 (9) | 0.55205 (8) | 0.0255 (3) | |
H3 | −0.2594 | 0.1994 | 0.585 | 0.031* | |
C4 | −0.0052 (2) | 0.08713 (9) | 0.58703 (7) | 0.0229 (3) | |
H4 | −0.1016 | 0.0424 | 0.6194 | 0.028* | |
C5 | 0.1419 (3) | 0.03970 (8) | 0.52242 (7) | 0.0204 (3) | |
H5 | 0.2635 | 0.083 | 0.4974 | 0.024* | |
C6 | 0.1114 (3) | 0.05767 (9) | 0.31257 (7) | 0.0268 (3) | |
H6A | −0.0353 | 0.0393 | 0.2795 | 0.032* | |
H6B | 0.1814 | 0.0032 | 0.3383 | 0.032* | |
C7 | 0.3070 (3) | 0.09936 (8) | 0.26419 (7) | 0.0256 (3) | |
C8 | 0.4705 (3) | 0.12937 (9) | 0.22357 (8) | 0.0312 (3) | |
H8 | 0.6014 | 0.1534 | 0.1911 | 0.037* | |
C9 | 0.2870 (3) | −0.04105 (9) | 0.55155 (7) | 0.0229 (3) | |
H9A | 0.4102 | −0.0229 | 0.5927 | 0.028* | |
H9B | 0.1674 | −0.0857 | 0.5742 | 0.028* | |
C10 | 0.6141 (2) | −0.13598 (8) | 0.50283 (7) | 0.0201 (3) | |
C11 | 0.7222 (3) | −0.17820 (9) | 0.43096 (8) | 0.0269 (3) | |
H11A | 0.9074 | −0.1854 | 0.4371 | 0.04* | |
H11B | 0.6871 | −0.1397 | 0.3856 | 0.04* | |
H11C | 0.6432 | −0.2373 | 0.4229 | 0.04* | |
C12 | 0.1406 (3) | 0.13903 (8) | 0.71258 (7) | 0.0235 (3) | |
C13 | 0.3572 (3) | 0.18527 (9) | 0.75213 (8) | 0.0292 (3) | |
H13A | 0.3149 | 0.195 | 0.8075 | 0.044* | |
H13B | 0.3885 | 0.2434 | 0.7267 | 0.044* | |
H13C | 0.5111 | 0.1479 | 0.7483 | 0.044* | |
O1 | −0.03843 (18) | 0.00939 (5) | 0.46538 (5) | 0.0208 (2) | |
O2 | 0.02791 (19) | 0.12087 (6) | 0.37098 (5) | 0.0234 (2) | |
O3 | 0.42076 (17) | −0.07942 (6) | 0.48563 (5) | 0.0217 (2) | |
O4 | 0.68222 (18) | −0.15169 (6) | 0.56925 (5) | 0.0254 (2) | |
O5 | 0.18437 (19) | 0.13295 (6) | 0.63443 (5) | 0.0272 (2) | |
O6 | −0.0477 (2) | 0.10886 (6) | 0.74305 (5) | 0.0322 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0193 (7) | 0.0225 (6) | 0.0240 (6) | 0.0010 (6) | −0.0010 (5) | 0.0055 (5) |
C2 | 0.0188 (7) | 0.0219 (6) | 0.0339 (7) | 0.0009 (5) | 0.0051 (6) | 0.0042 (6) |
C3 | 0.0203 (7) | 0.0245 (7) | 0.0318 (7) | −0.0026 (6) | 0.0075 (6) | −0.0021 (5) |
C4 | 0.0200 (7) | 0.0265 (7) | 0.0223 (6) | −0.0051 (6) | 0.0034 (5) | −0.0019 (5) |
C5 | 0.0194 (7) | 0.0227 (6) | 0.0191 (6) | −0.0035 (5) | 0.0003 (5) | 0.0003 (5) |
C6 | 0.0343 (8) | 0.0235 (7) | 0.0226 (6) | −0.0009 (6) | 0.0030 (6) | −0.0016 (5) |
C7 | 0.0319 (8) | 0.0258 (7) | 0.0191 (6) | 0.0024 (6) | −0.0035 (6) | −0.0030 (5) |
C8 | 0.0379 (9) | 0.0341 (7) | 0.0217 (6) | −0.0062 (7) | 0.0024 (6) | −0.0026 (6) |
C9 | 0.0220 (7) | 0.0276 (7) | 0.0192 (6) | −0.0005 (5) | 0.0015 (5) | 0.0016 (5) |
C10 | 0.0183 (7) | 0.0172 (6) | 0.0248 (7) | −0.0032 (5) | −0.0028 (5) | 0.0028 (5) |
C11 | 0.0307 (8) | 0.0226 (6) | 0.0273 (7) | 0.0037 (6) | −0.0025 (6) | −0.0012 (5) |
C12 | 0.0249 (8) | 0.0231 (6) | 0.0225 (6) | 0.0075 (5) | 0.0029 (6) | −0.0013 (5) |
C13 | 0.0300 (9) | 0.0310 (7) | 0.0266 (7) | 0.0057 (6) | −0.0026 (6) | −0.0050 (5) |
O1 | 0.0210 (5) | 0.0191 (4) | 0.0223 (4) | −0.0017 (4) | −0.0029 (4) | 0.0018 (3) |
O2 | 0.0266 (5) | 0.0209 (4) | 0.0227 (4) | 0.0002 (4) | 0.0046 (4) | 0.0021 (3) |
O3 | 0.0220 (5) | 0.0246 (4) | 0.0184 (4) | 0.0029 (4) | −0.0016 (4) | 0.0003 (3) |
O4 | 0.0262 (5) | 0.0279 (5) | 0.0221 (5) | 0.0007 (4) | −0.0051 (4) | 0.0053 (4) |
O5 | 0.0267 (5) | 0.0342 (5) | 0.0207 (4) | −0.0084 (4) | 0.0034 (4) | −0.0048 (4) |
O6 | 0.0293 (6) | 0.0422 (6) | 0.0252 (5) | 0.0008 (5) | 0.0070 (4) | −0.0011 (4) |
C1—O1 | 1.4130 (14) | C7—C8 | 1.187 (2) |
C1—O2 | 1.4165 (15) | C8—H8 | 0.95 |
C1—C2 | 1.4996 (18) | C9—O3 | 1.4412 (15) |
C1—H1 | 1 | C9—H9A | 0.99 |
C2—C3 | 1.3164 (19) | C9—H9B | 0.99 |
C2—H2 | 0.95 | C10—O4 | 1.2100 (15) |
C3—C4 | 1.5018 (18) | C10—O3 | 1.3465 (15) |
C3—H3 | 0.95 | C10—C11 | 1.4881 (18) |
C4—O5 | 1.4487 (15) | C11—H11A | 0.98 |
C4—C5 | 1.5170 (17) | C11—H11B | 0.98 |
C4—H4 | 1 | C11—H11C | 0.98 |
C5—O1 | 1.4272 (15) | C12—O6 | 1.1999 (17) |
C5—C9 | 1.5038 (18) | C12—O5 | 1.3550 (15) |
C5—H5 | 1 | C12—C13 | 1.486 (2) |
C6—O2 | 1.4366 (15) | C13—H13A | 0.98 |
C6—C7 | 1.453 (2) | C13—H13B | 0.98 |
C6—H6A | 0.99 | C13—H13C | 0.98 |
C6—H6B | 0.99 | ||
O1—C1—O2 | 111.24 (10) | C8—C7—C6 | 176.82 (14) |
O1—C1—C2 | 111.73 (10) | C7—C8—H8 | 180 |
O2—C1—C2 | 107.36 (10) | O3—C9—C5 | 107.62 (10) |
O1—C1—H1 | 108.8 | O3—C9—H9A | 110.2 |
O2—C1—H1 | 108.8 | C5—C9—H9A | 110.2 |
C2—C1—H1 | 108.8 | O3—C9—H9B | 110.2 |
C3—C2—C1 | 121.60 (12) | C5—C9—H9B | 110.2 |
C3—C2—H2 | 119.2 | H9A—C9—H9B | 108.5 |
C1—C2—H2 | 119.2 | O4—C10—O3 | 123.03 (11) |
C2—C3—C4 | 121.74 (12) | O4—C10—C11 | 125.29 (12) |
C2—C3—H3 | 119.1 | O3—C10—C11 | 111.64 (10) |
C4—C3—H3 | 119.1 | C10—C11—H11A | 109.5 |
O5—C4—C3 | 109.64 (10) | C10—C11—H11B | 109.5 |
O5—C4—C5 | 106.06 (10) | H11A—C11—H11B | 109.5 |
C3—C4—C5 | 109.91 (10) | C10—C11—H11C | 109.5 |
O5—C4—H4 | 110.4 | H11A—C11—H11C | 109.5 |
C3—C4—H4 | 110.4 | H11B—C11—H11C | 109.5 |
C5—C4—H4 | 110.4 | O6—C12—O5 | 122.65 (12) |
O1—C5—C9 | 107.86 (10) | O6—C12—C13 | 126.95 (12) |
O1—C5—C4 | 107.87 (10) | O5—C12—C13 | 110.39 (12) |
C9—C5—C4 | 112.72 (10) | C12—C13—H13A | 109.5 |
O1—C5—H5 | 109.4 | C12—C13—H13B | 109.5 |
C9—C5—H5 | 109.4 | H13A—C13—H13B | 109.5 |
C4—C5—H5 | 109.4 | C12—C13—H13C | 109.5 |
O2—C6—C7 | 109.20 (11) | H13A—C13—H13C | 109.5 |
O2—C6—H6A | 109.8 | H13B—C13—H13C | 109.5 |
C7—C6—H6A | 109.8 | C1—O1—C5 | 112.37 (9) |
O2—C6—H6B | 109.8 | C1—O2—C6 | 111.37 (10) |
C7—C6—H6B | 109.8 | C10—O3—C9 | 116.18 (9) |
H6A—C6—H6B | 108.3 | C12—O5—C4 | 117.67 (10) |
O1—C1—C2—C3 | 10.49 (18) | C9—C5—O1—C1 | −168.46 (10) |
O2—C1—C2—C3 | −111.74 (14) | C4—C5—O1—C1 | 69.51 (12) |
C1—C2—C3—C4 | 5.0 (2) | O1—C1—O2—C6 | 62.63 (13) |
C2—C3—C4—O5 | 131.20 (13) | C2—C1—O2—C6 | −174.84 (10) |
C2—C3—C4—C5 | 14.99 (17) | C7—C6—O2—C1 | −175.81 (11) |
O5—C4—C5—O1 | −168.20 (9) | O4—C10—O3—C9 | −3.13 (16) |
C3—C4—C5—O1 | −49.76 (13) | C11—C10—O3—C9 | 174.60 (11) |
O5—C4—C5—C9 | 72.84 (13) | C5—C9—O3—C10 | 162.29 (10) |
C3—C4—C5—C9 | −168.72 (11) | O6—C12—O5—C4 | −0.61 (17) |
O1—C5—C9—O3 | 61.81 (13) | C13—C12—O5—C4 | 178.21 (10) |
C4—C5—C9—O3 | −179.22 (10) | C3—C4—O5—C12 | 95.77 (13) |
O2—C1—O1—C5 | 71.48 (13) | C5—C4—O5—C12 | −145.60 (10) |
C2—C1—O1—C5 | −48.49 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O4i | 0.95 | 2.37 | 3.2139 (17) | 149 |
C11—H11B···O6ii | 0.98 | 2.58 | 3.4869 (16) | 154 |
C13—H13C···O6iii | 0.98 | 2.38 | 3.3152 (19) | 159 |
Symmetry codes: (i) −x+3/2, −y, z−1/2; (ii) −x+1/2, −y, z−1/2; (iii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C13H16O6 |
Mr | 268.26 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 5.2277 (2), 14.8549 (5), 17.0509 (5) |
V (Å3) | 1324.12 (8) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.91 |
Crystal size (mm) | 0.28 × 0.06 × 0.06 |
Data collection | |
Diffractometer | Bruker APEX DUO 4K CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.785, 0.948 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12479, 2184, 2113 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.586 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.058, 1.06 |
No. of reflections | 2184 |
No. of parameters | 174 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.1, −0.12 |
Absolute structure | Flack (1983), 872 Friedel pairs |
Absolute structure parameter | −0.05 (14) |
Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O4i | 0.95 | 2.37 | 3.2139 (17) | 148.5 |
C11—H11B···O6ii | 0.98 | 2.58 | 3.4869 (16) | 154.3 |
C13—H13C···O6iii | 0.98 | 2.38 | 3.3152 (19) | 159.4 |
Symmetry codes: (i) −x+3/2, −y, z−1/2; (ii) −x+1/2, −y, z−1/2; (iii) x+1, y, z. |
Acknowledgements
Research funds of the University of Johannesburg and the Research Center for Synthesis and Catalysis are gratefully acknowledged.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Breton, G. W. (1997). J. Org. Chem. 62, 8952–8954. CrossRef CAS Web of Science Google Scholar
Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Ferrier, R. J. & Prasad, N. J. (1969). J. Chem. Soc. pp. 570–575. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kinfe, H. H., Mebrahtu, F. M. & Sithole, K. (2011). Carbohydr. Res. 346, 2528–2532. Web of Science CrossRef CAS PubMed Google Scholar
López, J. C., Gómez, A. M., Valverde, S. & Fraser-Reid, B. (1995). J. Org. Chem. 60, 3851–3858. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yadav, J. S., Reddy, B. V. S. & Chand, P. K. (2001). Tetrahedron Lett. 42, 4057–4059. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Treatment of 3,4,6-tri-O-acetyl-D-glucal with a Lewis acid catalyst in the presence of alcohols and other C and S nucleophiles results to allylic rearrangement of the glucal and the reaction is called Ferrier rearrangement (Ferrier & Prasad, 1969; López et al., 1995; Yadav et al., 2001; Kinfe et al., 2011). Recently, we reported the synthesis of the title compound by treating a glucal with NaHSO4 supported on silica gel in the presence of propargyl alcohol (Kinfe et al., 2011). Herein, we report the crystal structure of the pure diastereomer obtained by crystallization from the mixture of products.
In the crystal structure of the title compound the acetyl groups are in equatorial positions (see Fig. 1). The pyran ring adopts an envelope conformation with ring puckering parameters of q2 = 0.4180 (14) Å, q3 = 0.3070 (14) Å, Q = 0.5186 (13) Å and φ2 = 324.1 (2)° (see Cremer & Pople, 1975). Several weak C—H···O interactions are noted and listed in Table 1.