organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-4-{(E)-[1-Cyano-1-cyclo­hexyl-2-(1H-indol-3-yl)eth­yl]imino­meth­yl}benzo­nitrile

aUniversity Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
*Correspondence e-mail: opatz@uni-mainz.de

(Received 14 November 2011; accepted 21 November 2011; online 25 November 2011)

A phosphine-catalysed addition of gramine to an alkyl­idene­amino­nitrile gives the title compound, C25H24N4, in good yield. In the crystal, pairs of mol­ecules are connected via N—H⋯N hydrogen bonds into inversion dimers. The mol­ecules are characterized by a planar indole moiety [maximum deviation = 0.012 (1) Å], a chair conformation of the cyclo­hexane ring and an anti­periplanar conformation of the H atom on the cyclo­hexane and the adjacent cyano group.

Related literature

For related structures, see: Son et al. (2008[Son, Y.-A., Matsumoto, S., Han, E.-M., Wang, S. & Kim, S.-H. (2008). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 492, 46-52.]); Tacheva et al. (2010[Tacheva, D., Ivanova, B. B., Mayer-Figge, H., Sheldrick, W. S. & Spiteller, M. (2010). Spectrochim. Acta Part A, 77, 588-593.]); Bergner et al. (2009[Bergner, I., Wiebe, C., Meyer, N. & Opatz, T. (2009). J. Org. Chem. 74, 8243-8253.]); Patel et al. (2011[Patel, B., Carlisle, J., Bottle, S. E., Hanson, G. R., Kariuki, B. M., Male, L., McMurtrie, J. C., Spencer, N. & Grainger, R. S. (2011). Org. Biomol. Chem. 9, 2336-2344.])). For background to this work see: Dassonneville et al. (2011[Dassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. 15, 2836-2844.]); Nissen & Detert (2011[Nissen, F. & Detert, H. (2011). Eur. J. Org. Chem. 15, 2845-2853.]). For the synthesis, see: Somei et al. (1980[Somei, M., Karasawa, Y. & Kaneko, C. (1980). Chem. Lett. pp. 813-816.]). For synthetic applications of deprotonated aminonitriles, see: Opatz (2009[Opatz, T. (2009). Synthesis, pp. 1941-1959.]); Meyer et al. (2005[Meyer, N., Werner, F. & Opatz, T. (2005). Synthesis, pp. 945-956.]); in polysubstituted pyrroles, see: Bergner & Opatz (2007[Bergner, I. & Opatz, T. (2007). J. Org. Chem. 72, 7083-7090.]); in tetra­hydro­isoquinolines, see: Werner et al. (2007[Werner, F., Blank, N. & Opatz, T. (2007). Eur. J. Org. Chem. pp. 3911-3915.]); Ferenc & Opatz (2008[Ferenc, D. & Opatz, T. (2008). Synthesis, pp. 3941-3944.]); Romek & Opatz (2010[Romek, A. & Opatz, T. (2010). Eur. J. Org. Chem. pp. 5841-5849.]).

[Scheme 1]

Experimental

Crystal data
  • C25H24N4

  • Mr = 380.48

  • Triclinic, [P \overline 1]

  • a = 9.0755 (6) Å

  • b = 10.4546 (8) Å

  • c = 11.8246 (8) Å

  • α = 92.958 (6)°

  • β = 105.995 (5)°

  • γ = 99.505 (6)°

  • V = 1058.09 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 193 K

  • 0.34 × 0.17 × 0.13 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • 11005 measured reflections

  • 5089 independent reflections

  • 3183 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 0.99

  • 5089 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N13i 0.88 2.17 2.9801 (18) 152
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound was prepared as an intermediate in a new access to β-carbolines. A tributylphosphine catalyzed addition of gramine on alkylideneaminonitrile (Somei et al. (1980)) leads to the title compound (Fig. 1). The indole moiety is essentially planar (max. deviation at N1 0.012 (1) Å) and the cyclohexane ring adopts a chair conformation (Fig. 1). The hydrogen on C14 of the cyclohexane and the adjacent cyano group C12—N13 are in an anti-periplanar conformation (C12—C11—C14—H14: 178 °). Pairs of molecules form centrosymmetrical dimers (Fig. 2) connected via N1—H1···N13 hydrogen bridges (N1···N13 2.980 (2) Å) (Tab. 1).

Related literature top

For related structures, see: Son et al. (2008); Tacheva et al. (2010); Bergner et al. (2009); Patel et al. (2011)). For background to this work see: Dassonneville et al. (2011); Nissen & Detert (2011). For the synthesis, see: Somei et al. (1980). For synthetic applications, see: Opatz (2009); Meyer et al. (2005); in polysubstituted pyrroles, see: Bergner & Opatz (2007); in tetrahydroisoquinolines, see: Werner et al. (2007); Ferenc & Opatz (2008); Romek & Opatz (2010).

Experimental top

4-[(E)-{[Cyano(cyclohexyl)methyl]imino}methyl]benzonitrile (90 mg, 1.0 equiv., 0.36 mmol) and gramine (66 mg, 1.05 equiv., 0.38 mmol) were dissolved in CH3CN (3 ml) in an argon-filled microwave reaction tube and P(Bu)3 (36 µL, 0.40 equiv., 0.14 mmol) was added. The tube was sealed and irradiated (300 W) at 413 K for one hour (air cooling). The reaction mixture was diluted in CH2Cl2 (20 ml) and washed three times with sat aq. NaHCO3 (20 ml) and brine (10 ml). The organic layer was dried over MgSO4, filtered and the solvent was evaporated in vacuo. Purification by silica gel chromatography (petroleum ether / ethyl acetate / triethyl amine = 8 / 2 / 1) and recrystallization from petroleum ether / chloroform afforded the title compound as a pale yellow solid (104 mg, 76%).

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with N—H = 0.88 Å, C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Structure description top

The title compound was prepared as an intermediate in a new access to β-carbolines. A tributylphosphine catalyzed addition of gramine on alkylideneaminonitrile (Somei et al. (1980)) leads to the title compound (Fig. 1). The indole moiety is essentially planar (max. deviation at N1 0.012 (1) Å) and the cyclohexane ring adopts a chair conformation (Fig. 1). The hydrogen on C14 of the cyclohexane and the adjacent cyano group C12—N13 are in an anti-periplanar conformation (C12—C11—C14—H14: 178 °). Pairs of molecules form centrosymmetrical dimers (Fig. 2) connected via N1—H1···N13 hydrogen bridges (N1···N13 2.980 (2) Å) (Tab. 1).

For related structures, see: Son et al. (2008); Tacheva et al. (2010); Bergner et al. (2009); Patel et al. (2011)). For background to this work see: Dassonneville et al. (2011); Nissen & Detert (2011). For the synthesis, see: Somei et al. (1980). For synthetic applications, see: Opatz (2009); Meyer et al. (2005); in polysubstituted pyrroles, see: Bergner & Opatz (2007); in tetrahydroisoquinolines, see: Werner et al. (2007); Ferenc & Opatz (2008); Romek & Opatz (2010).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the centrosymmetric dimers with hydrogen bonding shown as dashed lines.
rac-4-{(E)-[1-Cyano-1-cyclohexyl-2-(1H-indol- 3-yl)ethyl]iminomethyl}benzonitrile top
Crystal data top
C25H24N4Z = 2
Mr = 380.48F(000) = 404
Triclinic, P1Dx = 1.194 Mg m3
Hall symbol: -P 1Melting point = 438–439 K
a = 9.0755 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4546 (8) ÅCell parameters from 7492 reflections
c = 11.8246 (8) Åθ = 3.4–29.7°
α = 92.958 (6)°µ = 0.07 mm1
β = 105.995 (5)°T = 193 K
γ = 99.505 (6)°Block, colourless
V = 1058.09 (13) Å30.34 × 0.17 × 0.13 mm
Data collection top
Stoe IPDS 2T
diffractometer
3183 reflections with I > 2σ(I)
Radiation source: sealed TubeRint = 0.035
Graphite monochromatorθmax = 28.0°, θmin = 3.4°
Detector resolution: 6.67 pixels mm-1h = 1111
rotation method scansk = 1313
11005 measured reflectionsl = 1515
5089 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.052P)2]
where P = (Fo2 + 2Fc2)/3
5089 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C25H24N4γ = 99.505 (6)°
Mr = 380.48V = 1058.09 (13) Å3
Triclinic, P1Z = 2
a = 9.0755 (6) ÅMo Kα radiation
b = 10.4546 (8) ŵ = 0.07 mm1
c = 11.8246 (8) ÅT = 193 K
α = 92.958 (6)°0.34 × 0.17 × 0.13 mm
β = 105.995 (5)°
Data collection top
Stoe IPDS 2T
diffractometer
3183 reflections with I > 2σ(I)
11005 measured reflectionsRint = 0.035
5089 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 0.99Δρmax = 0.17 e Å3
5089 reflectionsΔρmin = 0.23 e Å3
262 parameters
Special details top

Experimental. IR (neat, ATR): ν (cm-1) = 3411 (br), 2927 (s), 2853 (m), 2227 (m), 1921 (w), 1643 (m), 1452 (s), 1095 (w), 1069 (w), 1009 (w), 892 (w), 834 (s), 771 (w),738 (vs).

1H-NMR (400 MHz, CDCl3): δ = 8.05 (s, 1H, H1), 7.95 (s, 1H, H21), 7.65 (d, 3JHH = 8.4 Hz, 2H, H23), 7.62 (d, 3JHH = 8.4 Hz, 2H, H24), 7.44 (d, 3JHH = 8.0 Hz, 1H, H6), 7.24 (m, 1H, H3), 7.09 (d, 4JHH = 2. 4 Hz, 1H, H9), 7.04 (t, 3JHH = 8.0 Hz, 1H, H5), 6.87 (t, 3JHH = 7.5 Hz, 1H, H4), 3.49 (d, 2JHH = 14.3 Hz, 1H, H10), 3.35 (d, 2JHH = 14.3 Hz, 1H, 10-CH2), 2.26–1.66 (m, 6H, cyclohexane), 1.46–1.13 (m, 5H, cyclohexane).

FD—MS: m/z (%) = 380.6 (100) [C25H24N4] +, 381.6 (29).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.58172 (14)0.16501 (12)0.34742 (10)0.0446 (3)
H10.64220.10930.34010.053*
C20.51776 (15)0.23949 (13)0.26196 (11)0.0388 (3)
C30.52832 (18)0.24696 (15)0.14670 (12)0.0486 (4)
H30.58640.19440.11510.058*
C40.45124 (19)0.33346 (17)0.08059 (12)0.0545 (4)
H40.45600.34030.00180.065*
C50.36656 (18)0.41101 (16)0.12666 (13)0.0523 (4)
H50.31550.47030.07910.063*
C60.35547 (16)0.40333 (14)0.24005 (12)0.0434 (3)
H60.29730.45670.27060.052*
C70.43120 (15)0.31584 (13)0.30950 (11)0.0356 (3)
C80.44490 (15)0.28356 (12)0.42828 (11)0.0359 (3)
C90.53641 (16)0.19104 (14)0.44635 (12)0.0419 (3)
H90.56470.15050.51720.050*
C100.37533 (15)0.34143 (13)0.51440 (11)0.0391 (3)
H10A0.37010.43300.49900.047*
H10B0.44610.34280.59500.047*
C110.20943 (15)0.26983 (12)0.51160 (10)0.0339 (3)
C120.22302 (15)0.14187 (13)0.55972 (11)0.0369 (3)
N130.23057 (15)0.04430 (12)0.59751 (10)0.0487 (3)
C140.13740 (15)0.35027 (12)0.58881 (10)0.0346 (3)
H140.13360.43650.55640.042*
C150.03045 (16)0.28806 (14)0.58034 (12)0.0417 (3)
H15A0.09470.27910.49680.050*
H15B0.03230.19960.60670.050*
C160.10125 (17)0.36810 (15)0.65522 (12)0.0450 (3)
H16A0.11170.45260.62270.054*
H16B0.20690.32130.65160.054*
C170.00124 (18)0.39252 (14)0.78303 (12)0.0453 (3)
H17A0.00150.30860.81800.054*
H17B0.04720.44840.82880.054*
C180.16384 (18)0.45897 (15)0.79033 (12)0.0488 (4)
H18A0.16140.54560.76060.059*
H18B0.22830.47230.87400.059*
C190.23735 (17)0.37809 (15)0.71819 (11)0.0446 (3)
H19A0.24880.29460.75250.054*
H19B0.34270.42550.72190.054*
N200.11173 (12)0.25599 (10)0.38904 (8)0.0344 (2)
C210.06207 (15)0.14545 (12)0.33013 (10)0.0365 (3)
H210.08360.06940.36710.044*
C220.02917 (15)0.13329 (13)0.20417 (10)0.0379 (3)
C230.1016 (2)0.01174 (15)0.14411 (12)0.0529 (4)
H230.09480.06400.18490.064*
C240.1835 (2)0.00046 (17)0.02578 (13)0.0644 (5)
H240.23210.08410.01490.077*
C250.19417 (19)0.10979 (17)0.03294 (12)0.0561 (4)
C260.12354 (17)0.23217 (15)0.02625 (12)0.0478 (4)
H260.13220.30790.01440.057*
C270.04120 (16)0.24334 (13)0.14366 (11)0.0408 (3)
H270.00800.32700.18390.049*
C280.2738 (3)0.1007 (2)0.15794 (14)0.0846 (7)
N290.3312 (3)0.0976 (2)0.25669 (14)0.1323 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0387 (6)0.0444 (7)0.0524 (7)0.0127 (5)0.0132 (5)0.0054 (5)
C20.0332 (7)0.0404 (7)0.0404 (7)0.0009 (6)0.0106 (5)0.0017 (5)
C30.0439 (8)0.0552 (9)0.0458 (8)0.0023 (7)0.0198 (6)0.0052 (6)
C40.0534 (9)0.0698 (10)0.0360 (7)0.0051 (8)0.0149 (7)0.0084 (7)
C50.0506 (9)0.0617 (10)0.0430 (7)0.0064 (7)0.0105 (7)0.0189 (7)
C60.0403 (8)0.0460 (8)0.0446 (7)0.0080 (6)0.0123 (6)0.0110 (6)
C70.0317 (7)0.0382 (7)0.0351 (6)0.0016 (5)0.0093 (5)0.0049 (5)
C80.0332 (7)0.0375 (7)0.0352 (6)0.0018 (5)0.0091 (5)0.0061 (5)
C90.0376 (7)0.0443 (7)0.0405 (7)0.0043 (6)0.0070 (6)0.0087 (6)
C100.0378 (7)0.0411 (7)0.0349 (6)0.0009 (6)0.0101 (5)0.0015 (5)
C110.0352 (7)0.0348 (6)0.0295 (6)0.0031 (5)0.0069 (5)0.0062 (5)
C120.0367 (7)0.0414 (7)0.0330 (6)0.0072 (6)0.0104 (5)0.0056 (5)
N130.0535 (8)0.0471 (7)0.0502 (7)0.0153 (6)0.0177 (6)0.0151 (6)
C140.0398 (7)0.0337 (6)0.0296 (6)0.0046 (5)0.0096 (5)0.0061 (5)
C150.0402 (8)0.0442 (7)0.0401 (7)0.0051 (6)0.0127 (6)0.0011 (6)
C160.0441 (8)0.0479 (8)0.0452 (7)0.0085 (6)0.0166 (6)0.0047 (6)
C170.0606 (9)0.0398 (7)0.0425 (7)0.0093 (7)0.0255 (7)0.0083 (6)
C180.0546 (9)0.0541 (9)0.0351 (7)0.0038 (7)0.0138 (6)0.0031 (6)
C190.0441 (8)0.0545 (9)0.0317 (6)0.0059 (6)0.0077 (6)0.0012 (6)
N200.0360 (6)0.0362 (6)0.0297 (5)0.0032 (4)0.0090 (4)0.0045 (4)
C210.0408 (7)0.0348 (7)0.0329 (6)0.0039 (5)0.0108 (5)0.0047 (5)
C220.0393 (7)0.0415 (7)0.0314 (6)0.0015 (6)0.0116 (5)0.0030 (5)
C230.0691 (10)0.0420 (8)0.0371 (7)0.0076 (7)0.0086 (7)0.0026 (6)
C240.0783 (12)0.0567 (10)0.0387 (8)0.0230 (9)0.0068 (7)0.0012 (7)
C250.0538 (9)0.0691 (10)0.0324 (7)0.0151 (8)0.0062 (6)0.0066 (7)
C260.0488 (8)0.0545 (9)0.0369 (7)0.0019 (7)0.0103 (6)0.0126 (6)
C270.0438 (8)0.0410 (7)0.0354 (6)0.0025 (6)0.0115 (6)0.0029 (5)
C280.0929 (15)0.0869 (14)0.0417 (9)0.0396 (12)0.0022 (9)0.0141 (8)
N290.163 (2)0.1240 (16)0.0438 (8)0.0756 (15)0.0218 (10)0.0248 (9)
Geometric parameters (Å, º) top
N1—C21.3681 (17)C15—H15A0.9900
N1—C91.3715 (18)C15—H15B0.9900
N1—H10.8800C16—C171.517 (2)
C2—C31.3976 (18)C16—H16A0.9900
C2—C71.4051 (19)C16—H16B0.9900
C3—C41.378 (2)C17—C181.521 (2)
C3—H30.9500C17—H17A0.9900
C4—C51.391 (2)C17—H17B0.9900
C4—H40.9500C18—C191.521 (2)
C5—C61.3773 (19)C18—H18A0.9900
C5—H50.9500C18—H18B0.9900
C6—C71.3992 (19)C19—H19A0.9900
C6—H60.9500C19—H19B0.9900
C7—C81.4382 (16)N20—C211.2633 (16)
C8—C91.364 (2)C21—C221.4786 (17)
C8—C101.4895 (19)C21—H210.9500
C9—H90.9500C22—C231.3875 (19)
C10—C111.5576 (17)C22—C271.3897 (18)
C10—H10A0.9900C23—C241.380 (2)
C10—H10B0.9900C23—H230.9500
C11—N201.4612 (15)C24—C251.379 (2)
C11—C121.4910 (17)C24—H240.9500
C11—C141.5489 (18)C25—C261.388 (2)
C12—N131.1394 (16)C25—C281.446 (2)
C14—C151.5282 (18)C26—C271.3719 (18)
C14—C191.5330 (17)C26—H260.9500
C14—H141.0000C27—H270.9500
C15—C161.520 (2)C28—N291.136 (2)
C2—N1—C9109.06 (12)C14—C15—H15B109.2
C2—N1—H1125.5H15A—C15—H15B107.9
C9—N1—H1125.5C17—C16—C15111.34 (12)
N1—C2—C3130.63 (14)C17—C16—H16A109.4
N1—C2—C7107.47 (11)C15—C16—H16A109.4
C3—C2—C7121.90 (13)C17—C16—H16B109.4
C4—C3—C2117.47 (15)C15—C16—H16B109.4
C4—C3—H3121.3H16A—C16—H16B108.0
C2—C3—H3121.3C16—C17—C18110.28 (11)
C3—C4—C5121.45 (13)C16—C17—H17A109.6
C3—C4—H4119.3C18—C17—H17A109.6
C5—C4—H4119.3C16—C17—H17B109.6
C6—C5—C4121.14 (14)C18—C17—H17B109.6
C6—C5—H5119.4H17A—C17—H17B108.1
C4—C5—H5119.4C19—C18—C17111.34 (12)
C5—C6—C7119.02 (15)C19—C18—H18A109.4
C5—C6—H6120.5C17—C18—H18A109.4
C7—C6—H6120.5C19—C18—H18B109.4
C6—C7—C2119.01 (12)C17—C18—H18B109.4
C6—C7—C8133.73 (13)H18A—C18—H18B108.0
C2—C7—C8107.25 (11)C18—C19—C14111.10 (12)
C9—C8—C7106.01 (12)C18—C19—H19A109.4
C9—C8—C10127.18 (11)C14—C19—H19A109.4
C7—C8—C10126.80 (12)C18—C19—H19B109.4
C8—C9—N1110.21 (12)C14—C19—H19B109.4
C8—C9—H9124.9H19A—C19—H19B108.0
N1—C9—H9124.9C21—N20—C11121.14 (11)
C8—C10—C11115.35 (10)N20—C21—C22120.67 (12)
C8—C10—H10A108.4N20—C21—H21119.7
C11—C10—H10A108.4C22—C21—H21119.7
C8—C10—H10B108.4C23—C22—C27119.03 (12)
C11—C10—H10B108.4C23—C22—C21120.53 (12)
H10A—C10—H10B107.5C27—C22—C21120.42 (12)
N20—C11—C12112.70 (10)C24—C23—C22120.77 (14)
N20—C11—C14108.71 (10)C24—C23—H23119.6
C12—C11—C14108.63 (9)C22—C23—H23119.6
N20—C11—C10107.39 (9)C25—C24—C23119.43 (14)
C12—C11—C10108.49 (11)C25—C24—H24120.3
C14—C11—C10110.94 (10)C23—C24—H24120.3
N13—C12—C11178.41 (14)C24—C25—C26120.46 (13)
C15—C14—C19110.85 (10)C24—C25—C28121.09 (15)
C15—C14—C11112.32 (10)C26—C25—C28118.41 (15)
C19—C14—C11112.82 (11)C27—C26—C25119.74 (13)
C15—C14—H14106.8C27—C26—H26120.1
C19—C14—H14106.8C25—C26—H26120.1
C11—C14—H14106.8C26—C27—C22120.56 (13)
C16—C15—C14112.13 (11)C26—C27—H27119.7
C16—C15—H15A109.2C22—C27—H27119.7
C14—C15—H15A109.2N29—C28—C25176.98 (19)
C16—C15—H15B109.2
C9—N1—C2—C3179.37 (14)C10—C11—C14—C15175.47 (10)
C9—N1—C2—C70.76 (14)N20—C11—C14—C19176.23 (10)
N1—C2—C3—C4179.33 (13)C12—C11—C14—C1960.80 (13)
C7—C2—C3—C40.5 (2)C10—C11—C14—C1958.36 (13)
C2—C3—C4—C50.3 (2)C19—C14—C15—C1653.39 (15)
C3—C4—C5—C60.6 (2)C11—C14—C15—C16179.38 (10)
C4—C5—C6—C70.1 (2)C14—C15—C16—C1755.08 (15)
C5—C6—C7—C20.72 (19)C15—C16—C17—C1856.49 (16)
C5—C6—C7—C8179.62 (13)C16—C17—C18—C1957.64 (16)
N1—C2—C7—C6178.85 (11)C17—C18—C19—C1456.67 (15)
C3—C2—C7—C61.03 (19)C15—C14—C19—C1853.95 (15)
N1—C2—C7—C80.32 (14)C11—C14—C19—C18179.09 (11)
C3—C2—C7—C8179.79 (12)C12—C11—N20—C217.59 (17)
C6—C7—C8—C9179.23 (14)C14—C11—N20—C21128.07 (12)
C2—C7—C8—C90.23 (14)C10—C11—N20—C21111.83 (13)
C6—C7—C8—C100.2 (2)C11—N20—C21—C22176.49 (11)
C2—C7—C8—C10178.80 (12)N20—C21—C22—C23171.10 (14)
C7—C8—C9—N10.71 (14)N20—C21—C22—C2710.1 (2)
C10—C8—C9—N1178.32 (12)C27—C22—C23—C240.6 (2)
C2—N1—C9—C80.93 (15)C21—C22—C23—C24178.30 (15)
C9—C8—C10—C1190.70 (16)C22—C23—C24—C250.5 (3)
C7—C8—C10—C1190.47 (15)C23—C24—C25—C260.1 (3)
C8—C10—C11—N2051.87 (14)C23—C24—C25—C28177.63 (18)
C8—C10—C11—C1270.21 (13)C24—C25—C26—C270.7 (3)
C8—C10—C11—C14170.53 (10)C28—C25—C26—C27177.12 (16)
N20—C11—C12—N1393 (5)C25—C26—C27—C220.6 (2)
C14—C11—C12—N1327 (5)C23—C22—C27—C260.0 (2)
C10—C11—C12—N13148 (5)C21—C22—C27—C26178.88 (13)
N20—C11—C14—C1557.61 (12)C24—C25—C28—N29137 (6)
C12—C11—C14—C1565.36 (13)C26—C25—C28—N2941 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N13i0.882.172.9801 (18)152
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC25H24N4
Mr380.48
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)9.0755 (6), 10.4546 (8), 11.8246 (8)
α, β, γ (°)92.958 (6), 105.995 (5), 99.505 (6)
V3)1058.09 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.34 × 0.17 × 0.13
Data collection
DiffractometerStoe IPDS 2T
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11005, 5089, 3183
Rint0.035
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 0.99
No. of reflections5089
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.23

Computer programs: X-AREA (Stoe & Cie, 2001), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N13i0.882.172.9801 (18)152
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors are grateful to Heinz Kolshorn for the NMR spectroscopy and helpful discussions.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBergner, I. & Opatz, T. (2007). J. Org. Chem. 72, 7083–7090.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBergner, I., Wiebe, C., Meyer, N. & Opatz, T. (2009). J. Org. Chem. 74, 8243–8253.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. 15, 2836–2844.  Web of Science CSD CrossRef Google Scholar
First citationFerenc, D. & Opatz, T. (2008). Synthesis, pp. 3941–3944.  Google Scholar
First citationMeyer, N., Werner, F. & Opatz, T. (2005). Synthesis, pp. 945–956.  Google Scholar
First citationNissen, F. & Detert, H. (2011). Eur. J. Org. Chem. 15, 2845–2853.  Web of Science CSD CrossRef Google Scholar
First citationOpatz, T. (2009). Synthesis, pp. 1941–1959.  Web of Science CrossRef Google Scholar
First citationPatel, B., Carlisle, J., Bottle, S. E., Hanson, G. R., Kariuki, B. M., Male, L., McMurtrie, J. C., Spencer, N. & Grainger, R. S. (2011). Org. Biomol. Chem. 9, 2336–2344.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRomek, A. & Opatz, T. (2010). Eur. J. Org. Chem. pp. 5841–5849.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSomei, M., Karasawa, Y. & Kaneko, C. (1980). Chem. Lett. pp. 813–816.  CrossRef Web of Science Google Scholar
First citationSon, Y.-A., Matsumoto, S., Han, E.-M., Wang, S. & Kim, S.-H. (2008). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 492, 46–52.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTacheva, D., Ivanova, B. B., Mayer-Figge, H., Sheldrick, W. S. & Spiteller, M. (2010). Spectrochim. Acta Part A, 77, 588–593.  CrossRef CAS Google Scholar
First citationWerner, F., Blank, N. & Opatz, T. (2007). Eur. J. Org. Chem. pp. 3911–3915.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds