metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[trimeth­yl(4-sulfanylphen­yl)aza­nium] [(chloridocadmate)-di-μ-chlorido]]

aCollege of Chemistry & Materials Engineering, Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, 215500, Jiangsu, People's Republic of China, and bKey Laboratory of Organic Synthesis of Jiangsu Province, School of Chemistry and Chemical Engineering, Suzhou Uinversity, Suzhou 215123, Jiangsu, People's Republic of China
*Correspondence e-mail: chemxytang@hotmail.com

(Received 29 September 2011; accepted 24 November 2011; online 30 November 2011)

The title compound, {(C9H14NS)[CdCl3]}n, consists of a linear [CdCl3]nn polyanion and a trimeth­yl(4-sulfanylphen­yl)aza­nium cation. The CdII atom is penta­coordinated by four μ2-Cl atoms and one terminal Cl atom in a trigonal–bipyramidal geometry. The trigonal–bipyramidal units are linked by two opposite shared faces, giving rise to infinite [CdCl3]n chains parallel to the a axis. The cations surround the chain and are linked to them by S—H⋯Cl and C—H⋯Cl hydrogen bonds, forming a three-dimensional network.

Related literature

For the synthesis of trimethyl­ammonium­phenyl-4-thiol hexa­fluorido­phosphate, see: DePamphilis et al. (1974[DePamphilis, B. V., Averill, B. A., Herskovitz, T., Que, L. & Holm, R. H. (1974). J. Am. Chem. Soc. 96, 4159-4167.]).

[Scheme 1]

Experimental

Crystal data
  • (C9H14NS)[CdCl3]

  • Mr = 387.04

  • Monoclinic, P 21 /c

  • a = 7.3207 (15) Å

  • b = 20.971 (4) Å

  • c = 9.1613 (18) Å

  • β = 103.96 (3)°

  • V = 1364.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.31 mm−1

  • T = 223 K

  • 0.50 × 0.30 × 0.20 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku and Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.442, Tmax = 0.635

  • 12984 measured reflections

  • 2491 independent reflections

  • 2424 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.069

  • S = 1.11

  • 2491 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
S1—H1⋯Cl1i 1.20 2.55 3.746 180
C8—H8B⋯Cl2ii 0.97 2.72 3.640 (3) 158
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku and Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku and Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Related literature top

For the synthesis of trimethylammoniumphenyl-4-thiol hexafluorophosphate, see: DePamphilis et al. (1974).

Experimental top

The synthesis of trimethylammoniumphenyl-4-thiol hexafluorophosphate was according to the literature procedure (DePamphilis et al., 1974). To a suspension containing TabHPF6 (0.125 mg, 0.4 mmol) in MeOH (15 ml) was added Et3N (0.5 ml). The resulting colorless solution was then treated with a solution of CdCl2.2.5H2O (0.091 g, 0.4 mmol) in MeOH (10 ml). The mixture was stirred at room temperature for 1 h and treated with HCl to adjust the pH to 3, and then filtered. Diethyl ether (20 ml) was allowed to diffuse onto the filtrate. After standing it at ambient temperature for one week, colorless block crystals of (I) were formed. Yield: 0.100 g (65% based on Cd). The crystal used for the crystal structure determination was obtained directly from the above preparation. Analysis, found: C, 27.52; H, 3.31; N, 4.02%. calculated. for C9H14NSCdCl3: C, 27.93; H, 3.65; N, 3.62%.

Refinement top

Carbon-bond H atoms were positioned geometrically (C—H = 0.94 Å for methylene group and C—H = 0.97 Å for methyl group), and were included in the refinement in the riding mode approximation, with Uiso(H) = 1.2Ueq(C)for methylene group and Uiso(H) = 1.5Ueq(C)for methyl group. The H atom attached to atom S1 was located in a difference Fourier map and refined isotropically without constraints with Uiso(H) values fixed at 1.2Ueq(S)].

Structure description top

For the synthesis of trimethylammoniumphenyl-4-thiol hexafluorophosphate, see: DePamphilis et al. (1974).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP plot of complex (I) at the 30% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. One dimensional structure formed by S—H···Cl interactions.
[Figure 3] Fig. 3. Three dimensional networks formed by S—H···Cl and C—H···Cl interactions.
catena-Poly[[trimethyl(4-sulfanylphenyl)azanium] [(chloridocadmate)-di-µ-chlorido]] top
Crystal data top
(C9H14NS)[CdCl3]F(000) = 760
Mr = 387.04Dx = 1.883 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3007 reflections
a = 7.3207 (15) Åθ = 3.0–25.4°
b = 20.971 (4) ŵ = 2.31 mm1
c = 9.1613 (18) ÅT = 223 K
β = 103.96 (3)°Block, colorless
V = 1364.9 (5) Å30.50 × 0.30 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury
diffractometer
2491 independent reflections
Radiation source: fine-focus sealed tube2424 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC2001)
h = 87
Tmin = 0.442, Tmax = 0.635k = 2225
12984 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.038P)2 + 0.9902P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2491 reflectionsΔρmax = 0.56 e Å3
137 parametersΔρmin = 0.79 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0059 (5)
Crystal data top
(C9H14NS)[CdCl3]V = 1364.9 (5) Å3
Mr = 387.04Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3207 (15) ŵ = 2.31 mm1
b = 20.971 (4) ÅT = 223 K
c = 9.1613 (18) Å0.50 × 0.30 × 0.20 mm
β = 103.96 (3)°
Data collection top
Rigaku Mercury
diffractometer
2491 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC2001)
2424 reflections with I > 2σ(I)
Tmin = 0.442, Tmax = 0.635Rint = 0.027
12984 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.11Δρmax = 0.56 e Å3
2491 reflectionsΔρmin = 0.79 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.73386 (3)0.993777 (10)0.92593 (2)0.02485 (11)
Cl10.95247 (10)1.08537 (3)0.99446 (8)0.02873 (17)
Cl20.68785 (10)0.96938 (3)0.66114 (7)0.03076 (18)
Cl30.59419 (8)0.93630 (3)1.11069 (7)0.03094 (18)
S10.67638 (8)0.79389 (3)0.84461 (7)0.0484 (2)
H10.79520.83260.89620.058*
C10.5039 (4)0.74912 (14)0.9045 (3)0.0285 (6)
C20.3807 (4)0.77654 (14)0.9805 (3)0.0319 (6)
H20.38760.82051.00160.038*
C30.2478 (4)0.73917 (14)1.0253 (3)0.0303 (6)
H30.16380.75771.07600.036*
C40.2392 (4)0.67468 (13)0.9952 (3)0.0238 (6)
C50.3603 (4)0.64695 (14)0.9182 (3)0.0278 (6)
H50.35400.60300.89770.033*
C60.4898 (4)0.68458 (14)0.8721 (3)0.0301 (6)
H60.57000.66620.81770.036*
C70.2022 (4)0.58027 (15)1.1450 (4)0.0350 (7)
H7A0.26890.55341.08890.053*
H7B0.11190.55481.18130.053*
H7C0.29140.59911.22970.053*
C80.0195 (4)0.66781 (15)1.1295 (3)0.0342 (7)
H8A0.06070.68781.21740.051*
H8B0.10420.63811.16100.051*
H8C0.09220.70031.06540.051*
C90.0285 (4)0.60310 (16)0.9076 (3)0.0357 (7)
H9A0.08690.63650.83890.054*
H9B0.12510.57850.93810.054*
H9C0.04360.57540.85780.054*
N10.1003 (3)0.63245 (11)1.0439 (2)0.0250 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02433 (16)0.02926 (16)0.02258 (16)0.00438 (7)0.00880 (10)0.00082 (7)
Cl10.0240 (3)0.0261 (4)0.0358 (4)0.0021 (3)0.0065 (3)0.0020 (3)
Cl20.0328 (4)0.0364 (4)0.0230 (3)0.0030 (3)0.0066 (3)0.0025 (3)
Cl30.0280 (4)0.0330 (4)0.0359 (4)0.0061 (3)0.0157 (3)0.0131 (3)
S10.0499 (5)0.0405 (5)0.0632 (6)0.0145 (4)0.0301 (4)0.0025 (4)
C10.0287 (15)0.0301 (15)0.0267 (14)0.0036 (11)0.0066 (11)0.0032 (11)
C20.0352 (16)0.0247 (15)0.0366 (16)0.0010 (12)0.0105 (12)0.0012 (12)
C30.0336 (16)0.0282 (16)0.0322 (15)0.0008 (12)0.0141 (12)0.0046 (12)
C40.0220 (13)0.0257 (14)0.0240 (14)0.0025 (11)0.0065 (10)0.0012 (11)
C50.0310 (15)0.0246 (15)0.0297 (15)0.0001 (11)0.0112 (12)0.0034 (11)
C60.0296 (15)0.0310 (16)0.0337 (16)0.0005 (12)0.0152 (12)0.0025 (12)
C70.0374 (17)0.0319 (17)0.0379 (17)0.0022 (13)0.0133 (13)0.0094 (13)
C80.0333 (16)0.0372 (17)0.0377 (17)0.0009 (13)0.0197 (13)0.0029 (13)
C90.0304 (16)0.0440 (18)0.0339 (16)0.0111 (13)0.0101 (12)0.0082 (13)
N10.0265 (12)0.0262 (12)0.0245 (11)0.0007 (9)0.0102 (9)0.0000 (9)
Geometric parameters (Å, º) top
Cd1—Cl22.4219 (8)C4—N11.496 (3)
Cd1—Cl12.4819 (8)C5—C61.375 (4)
Cd1—Cl32.4896 (7)C5—H50.9400
Cd1—Cl3i2.7643 (7)C6—H60.9400
Cd1—Cl1ii2.7842 (9)C7—N11.509 (4)
Cl1—Cd1ii2.7842 (9)C7—H7A0.9700
Cl3—Cd1i2.7643 (7)C7—H7B0.9700
S1—C11.764 (3)C7—H7C0.9700
S1—H11.1999C8—N11.505 (4)
C1—C61.384 (4)C8—H8A0.9700
C1—C21.390 (4)C8—H8B0.9700
C2—C31.386 (4)C8—H8C0.9700
C2—H20.9400C9—N11.503 (4)
C3—C41.379 (4)C9—H9A0.9700
C3—H30.9400C9—H9B0.9700
C4—C51.387 (4)C9—H9C0.9700
Cl2—Cd1—Cl1110.02 (3)C5—C6—C1121.1 (3)
Cl2—Cd1—Cl3126.73 (3)C5—C6—H6119.4
Cl1—Cd1—Cl3123.24 (3)C1—C6—H6119.4
Cl2—Cd1—Cl3i94.80 (3)N1—C7—H7A109.5
Cl1—Cd1—Cl3i96.23 (3)N1—C7—H7B109.5
Cl3—Cd1—Cl3i81.49 (3)H7A—C7—H7B109.5
Cl2—Cd1—Cl1ii92.47 (3)N1—C7—H7C109.5
Cl1—Cd1—Cl1ii87.38 (3)H7A—C7—H7C109.5
Cl3—Cd1—Cl1ii88.93 (3)H7B—C7—H7C109.5
Cl3i—Cd1—Cl1ii170.23 (2)N1—C8—H8A109.5
Cd1—Cl1—Cd1ii92.62 (3)N1—C8—H8B109.5
Cd1—Cl3—Cd1i98.51 (3)H8A—C8—H8B109.5
C1—S1—H1138.0N1—C8—H8C109.5
C6—C1—C2119.2 (3)H8A—C8—H8C109.5
C6—C1—S1118.4 (2)H8B—C8—H8C109.5
C2—C1—S1122.4 (2)N1—C9—H9A109.5
C3—C2—C1120.1 (3)N1—C9—H9B109.5
C3—C2—H2120.0H9A—C9—H9B109.5
C1—C2—H2120.0N1—C9—H9C109.5
C4—C3—C2119.8 (3)H9A—C9—H9C109.5
C4—C3—H3120.1H9B—C9—H9C109.5
C2—C3—H3120.1C4—N1—C9109.2 (2)
C3—C4—C5120.6 (3)C4—N1—C8112.8 (2)
C3—C4—N1121.5 (2)C9—N1—C8107.9 (2)
C5—C4—N1117.9 (2)C4—N1—C7109.9 (2)
C6—C5—C4119.2 (3)C9—N1—C7109.3 (2)
C6—C5—H5120.4C8—N1—C7107.6 (2)
C4—C5—H5120.4
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
S1—H1···Cl1ii1.202.553.746180
C8—H8B···Cl2iii0.972.723.640 (3)158
Symmetry codes: (ii) x+2, y+2, z+2; (iii) x1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C9H14NS)[CdCl3]
Mr387.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)7.3207 (15), 20.971 (4), 9.1613 (18)
β (°) 103.96 (3)
V3)1364.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.31
Crystal size (mm)0.50 × 0.30 × 0.20
Data collection
DiffractometerRigaku Mercury
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC2001)
Tmin, Tmax0.442, 0.635
No. of measured, independent and
observed [I > 2σ(I)] reflections
12984, 2491, 2424
Rint0.027
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.069, 1.11
No. of reflections2491
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.79

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
S1—H1···Cl1i1.202.553.746180.0
C8—H8B···Cl2ii0.972.723.640 (3)158.4
Symmetry codes: (i) x+2, y+2, z+2; (ii) x1, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of the Education Commission of Jiangsu Province of China (No.11KJB150001) and a start-up grant from Changshu Institute of Technology (No. ky2009069).

References

First citationDePamphilis, B. V., Averill, B. A., Herskovitz, T., Que, L. & Holm, R. H. (1974). J. Am. Chem. Soc. 96, 4159–4167.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku and Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku and Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds