organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[2-(2-Carb­­oxy­phen­yl)hydrazinyl­­idene]-3-oxo-N-phenyl­butyramide

aDepartment of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
*Correspondence e-mail: dongjinlong7576@yahoo.com.cn

(Received 24 October 2011; accepted 14 November 2011; online 23 November 2011)

In the title compound, C17H15N3O4, the mol­ecule is in the keto–hydrazone form. Intra­molecular N—H⋯O hydrogen bonds ensure that the mol­ecule is nearly planar (r.m.s. deviation of non-H atoms is 0.098 Å), with the two benzene rings forming a dihedral angle of 10.04 (2)°. In the crystal, inversion dimers are formed via pairs of O—H⋯O hydrogen bonds involving the –CO2H groups.

Related literature

For general background to the properties of organic pigments, see: Schmidt et al. (2007[Schmidt, M. U., Dinnebier, R. E. & Kalkhof, H. (2007). J. Phys. Chem. B, 111, 9722-9732.]); Barrow et al. (2002[Barrow, M. J., Christie, R. M. & Monteith, J. E. (2002). Dyes Pigments, 55, 79-89.]). For related structures, see: van de Streek et al. (2009[Streek, J. van de, Brüning, J., Ivashevskaya, S. N., Ermrich, M., Paulus, E. F., Bolte, M. & Schmidt, M. U. (2009). Acta Cryst. B65, 200-211.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15N3O4

  • Mr = 325.32

  • Monoclinic, P 21 /n

  • a = 15.5731 (16) Å

  • b = 5.3292 (5) Å

  • c = 18.7731 (19) Å

  • β = 99.246 (1)°

  • V = 1537.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.50 × 0.30 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.979

  • 7277 measured reflections

  • 2724 independent reflections

  • 1459 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.137

  • S = 1.02

  • 2724 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3i 0.82 1.84 2.654 (3) 175
N3—H3⋯O1 0.86 1.97 2.685 (3) 140
N1—H1⋯O3 0.86 1.99 2.631 (3) 131
N1—H1⋯O2 0.86 1.91 2.568 (3) 132
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic pigments are nowadays most commonly used for coloring paints and plastics and for most printing applications (Schmidt et al., 2007; Barrow et al., 2002). Originally, azo pigments were believed to contain the azo group NN, but for approximately 25 years now it has been known that all Hansa yellow pigments (and all other commercial 'azo' pigments) crystallize in the hydrazone form; it would, therefore, be more appropriate to speak of 'hydrazone' pigments (van de Streek et al., 2009). In this paper, we present the crystal structure of the title hydrazone compound (I). The molecular structure of (I) is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are normal. The O2—C4 (1.226 (3) Å) and N3—C4 (1.343 (3) Å) distances are consistent with the keto form of the amide functionality. The N1—N2 (1.310 (3) Å) and N2—C3(1.306 (3) Å) distances are consistent with hydrazone form functionality.

Related literature top

For general background to the properties of organic pigments, see: Schmidt et al. (2007); Barrow et al. (2002). For related structures, see: van de Streek et al. (2009). For standard bond-length data, see: Allen et al. (1987).

Experimental top

To a sodium hydroxide solution (20 cm3) of acetoacetanilide (102 mmol), 40 cm3 (101 mmol) diazcompound of o-aminobenzoic acid was added and the mixture was heated to 90° for 1 h. A yellow solid separated and was collected by filtration, washed with diethyl ether (absolute) and dried in air. Then the precipitate was dissolved in methanol and the solution was allowed to stand for a few days at ambient temperature, after which time yellow blocky crystals of the title compound suitable for X-ray diffraction were obtained.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C—H = 0.93–0.96 Å, N—H = 0.86Å and Uiso(H)= 1.2Ueq(C, N) or 1.5Ueq(Cmethyl, O).

Structure description top

Organic pigments are nowadays most commonly used for coloring paints and plastics and for most printing applications (Schmidt et al., 2007; Barrow et al., 2002). Originally, azo pigments were believed to contain the azo group NN, but for approximately 25 years now it has been known that all Hansa yellow pigments (and all other commercial 'azo' pigments) crystallize in the hydrazone form; it would, therefore, be more appropriate to speak of 'hydrazone' pigments (van de Streek et al., 2009). In this paper, we present the crystal structure of the title hydrazone compound (I). The molecular structure of (I) is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are normal. The O2—C4 (1.226 (3) Å) and N3—C4 (1.343 (3) Å) distances are consistent with the keto form of the amide functionality. The N1—N2 (1.310 (3) Å) and N2—C3(1.306 (3) Å) distances are consistent with hydrazone form functionality.

For general background to the properties of organic pigments, see: Schmidt et al. (2007); Barrow et al. (2002). For related structures, see: van de Streek et al. (2009). For standard bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) viewed approximately down the b axis, with hydrogen bonds drawn as dashed lines.
2-[2-(2-Carboxyphenyl)hydrazinylidene]-3-oxo-N-phenylbutyramide top
Crystal data top
C17H15N3O4F(000) = 680
Mr = 325.32Dx = 1.405 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1353 reflections
a = 15.5731 (16) Åθ = 2.7–21.8°
b = 5.3292 (5) ŵ = 0.10 mm1
c = 18.7731 (19) ÅT = 298 K
β = 99.246 (1)°Prism, yellow
V = 1537.8 (3) Å30.50 × 0.30 × 0.21 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2724 independent reflections
Radiation source: fine-focus sealed tube1459 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
φ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1817
Tmin = 0.951, Tmax = 0.979k = 66
7277 measured reflectionsl = 1622
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.044P)2 + 0.5365P]
where P = (Fo2 + 2Fc2)/3
2724 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H15N3O4V = 1537.8 (3) Å3
Mr = 325.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.5731 (16) ŵ = 0.10 mm1
b = 5.3292 (5) ÅT = 298 K
c = 18.7731 (19) Å0.50 × 0.30 × 0.21 mm
β = 99.246 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2724 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1459 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.979Rint = 0.057
7277 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
2724 reflectionsΔρmin = 0.17 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.41408 (14)0.3850 (5)0.60735 (12)0.0434 (7)
H10.39740.50250.57690.052*
N20.35836 (15)0.2176 (4)0.62294 (12)0.0419 (6)
N30.16263 (15)0.3518 (5)0.49622 (13)0.0505 (7)
H30.13770.21850.50860.061*
O10.15219 (14)0.0370 (4)0.58537 (12)0.0645 (7)
O20.28838 (12)0.5712 (4)0.51762 (11)0.0555 (6)
O30.46446 (12)0.7749 (4)0.53863 (11)0.0549 (6)
O40.60410 (12)0.8767 (4)0.55453 (10)0.0512 (6)
H40.58570.98450.52480.077*
C10.2678 (2)0.1513 (6)0.67626 (18)0.0644 (10)
H1A0.22470.26060.69080.097*
H1B0.29110.04480.71590.097*
H1C0.31370.24980.66200.097*
C20.2268 (2)0.0067 (6)0.61396 (17)0.0493 (8)
C30.27837 (17)0.2113 (6)0.58885 (15)0.0412 (7)
C40.24362 (18)0.3937 (6)0.53112 (15)0.0415 (8)
C50.11349 (18)0.4973 (6)0.44218 (15)0.0439 (8)
C60.1443 (2)0.7084 (6)0.41191 (17)0.0520 (9)
H60.20130.76120.42650.062*
C70.0899 (2)0.8403 (6)0.35986 (17)0.0578 (9)
H70.11070.98280.33960.069*
C80.0057 (2)0.7644 (7)0.33746 (18)0.0640 (10)
H80.03050.85540.30250.077*
C90.0247 (2)0.5538 (7)0.36703 (18)0.0614 (10)
H90.08180.50170.35210.074*
C100.02861 (19)0.4196 (6)0.41859 (17)0.0534 (9)
H100.00780.27550.43790.064*
C110.53920 (18)0.7376 (5)0.56816 (15)0.0401 (7)
C120.56303 (17)0.5356 (5)0.62085 (14)0.0375 (7)
C130.50074 (17)0.3708 (6)0.64061 (14)0.0375 (7)
C140.52611 (19)0.1898 (6)0.69253 (15)0.0471 (8)
H140.48490.08240.70670.057*
C150.6116 (2)0.1679 (6)0.72323 (16)0.0514 (9)
H150.62800.04670.75840.062*
C160.6735 (2)0.3229 (6)0.70263 (16)0.0531 (9)
H160.73170.30300.72250.064*
C170.64912 (18)0.5063 (6)0.65278 (15)0.0462 (8)
H170.69110.61390.64000.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0420 (14)0.0388 (16)0.0482 (16)0.0049 (12)0.0037 (12)0.0094 (12)
N20.0447 (14)0.0366 (16)0.0454 (15)0.0032 (12)0.0106 (12)0.0008 (12)
N30.0444 (15)0.0445 (17)0.0609 (18)0.0091 (13)0.0035 (13)0.0065 (14)
O10.0483 (13)0.0586 (16)0.0874 (17)0.0120 (12)0.0129 (12)0.0133 (13)
O20.0417 (12)0.0536 (15)0.0688 (15)0.0063 (11)0.0017 (10)0.0184 (12)
O30.0425 (13)0.0525 (15)0.0654 (15)0.0061 (11)0.0042 (10)0.0196 (12)
O40.0452 (12)0.0473 (14)0.0600 (14)0.0052 (11)0.0054 (10)0.0145 (11)
C10.080 (2)0.052 (2)0.062 (2)0.0127 (19)0.0126 (18)0.0109 (19)
C20.053 (2)0.041 (2)0.057 (2)0.0031 (17)0.0184 (16)0.0053 (17)
C30.0392 (17)0.0390 (19)0.0466 (19)0.0019 (15)0.0101 (14)0.0008 (15)
C40.0367 (17)0.042 (2)0.0473 (19)0.0016 (15)0.0098 (14)0.0003 (15)
C50.0417 (17)0.046 (2)0.0440 (18)0.0026 (15)0.0073 (14)0.0032 (16)
C60.0528 (19)0.049 (2)0.054 (2)0.0001 (17)0.0078 (16)0.0036 (17)
C70.066 (2)0.050 (2)0.057 (2)0.0092 (19)0.0104 (18)0.0040 (18)
C80.062 (2)0.075 (3)0.052 (2)0.023 (2)0.0026 (17)0.001 (2)
C90.0444 (19)0.077 (3)0.060 (2)0.006 (2)0.0028 (17)0.010 (2)
C100.0465 (19)0.056 (2)0.058 (2)0.0024 (17)0.0093 (16)0.0066 (18)
C110.0435 (18)0.0364 (19)0.0408 (18)0.0064 (15)0.0080 (14)0.0025 (15)
C120.0409 (16)0.0365 (18)0.0340 (16)0.0000 (14)0.0030 (13)0.0001 (14)
C130.0386 (16)0.0402 (19)0.0330 (16)0.0005 (14)0.0030 (13)0.0007 (14)
C140.0478 (18)0.049 (2)0.0436 (19)0.0014 (16)0.0053 (14)0.0041 (16)
C150.057 (2)0.048 (2)0.047 (2)0.0039 (17)0.0000 (16)0.0096 (17)
C160.0465 (19)0.054 (2)0.054 (2)0.0002 (17)0.0056 (16)0.0070 (18)
C170.0433 (17)0.047 (2)0.0466 (19)0.0033 (16)0.0031 (14)0.0024 (16)
Geometric parameters (Å, º) top
N1—N21.310 (3)C6—C71.378 (4)
N1—C131.395 (3)C6—H60.9300
N1—H10.8600C7—C81.373 (4)
N2—C31.306 (3)C7—H70.9300
N3—C41.343 (3)C8—C91.370 (5)
N3—C51.402 (4)C8—H80.9300
N3—H30.8600C9—C101.371 (4)
O1—C21.221 (3)C9—H90.9300
O2—C41.226 (3)C10—H100.9300
O3—C111.222 (3)C11—C121.469 (4)
O4—C111.311 (3)C12—C171.387 (4)
O4—H40.8200C12—C131.402 (4)
C1—C21.498 (4)C13—C141.383 (4)
C1—H1A0.9600C14—C151.369 (4)
C1—H1B0.9600C14—H140.9300
C1—H1C0.9600C15—C161.370 (4)
C2—C31.476 (4)C15—H150.9300
C3—C41.491 (4)C16—C171.364 (4)
C5—C61.381 (4)C16—H160.9300
C5—C101.388 (4)C17—H170.9300
N2—N1—C13119.4 (2)C6—C7—H7119.5
N2—N1—H1120.3C9—C8—C7119.5 (3)
C13—N1—H1120.3C9—C8—H8120.2
C3—N2—N1121.5 (3)C7—C8—H8120.2
C4—N3—C5128.4 (3)C8—C9—C10120.2 (3)
C4—N3—H3115.8C8—C9—H9119.9
C5—N3—H3115.8C10—C9—H9119.9
C11—O4—H4109.5C9—C10—C5120.5 (3)
C2—C1—H1A109.5C9—C10—H10119.7
C2—C1—H1B109.5C5—C10—H10119.7
H1A—C1—H1B109.5O3—C11—O4121.8 (3)
C2—C1—H1C109.5O3—C11—C12122.9 (3)
H1A—C1—H1C109.5O4—C11—C12115.3 (2)
H1B—C1—H1C109.5C17—C12—C13118.5 (3)
O1—C2—C3121.9 (3)C17—C12—C11119.7 (3)
O1—C2—C1119.4 (3)C13—C12—C11121.8 (2)
C3—C2—C1118.6 (3)C14—C13—N1120.0 (3)
N2—C3—C2112.8 (3)C14—C13—C12119.5 (3)
N2—C3—C4123.1 (3)N1—C13—C12120.5 (3)
C2—C3—C4124.1 (3)C15—C14—C13120.3 (3)
O2—C4—N3123.2 (3)C15—C14—H14119.8
O2—C4—C3120.1 (3)C13—C14—H14119.8
N3—C4—C3116.7 (3)C14—C15—C16120.7 (3)
C6—C5—C10119.2 (3)C14—C15—H15119.7
C6—C5—N3124.3 (3)C16—C15—H15119.7
C10—C5—N3116.6 (3)C17—C16—C15119.7 (3)
C7—C6—C5119.6 (3)C17—C16—H16120.2
C7—C6—H6120.2C15—C16—H16120.2
C5—C6—H6120.2C16—C17—C12121.3 (3)
C8—C7—C6121.0 (3)C16—C17—H17119.3
C8—C7—H7119.5C12—C17—H17119.3
C13—N1—N2—C3174.3 (3)C8—C9—C10—C50.9 (5)
N1—N2—C3—C2179.2 (2)C6—C5—C10—C91.5 (5)
N1—N2—C3—C41.1 (4)N3—C5—C10—C9178.6 (3)
O1—C2—C3—N2175.6 (3)O3—C11—C12—C17179.3 (3)
C1—C2—C3—N24.2 (4)O4—C11—C12—C170.9 (4)
O1—C2—C3—C44.7 (5)O3—C11—C12—C130.2 (4)
C1—C2—C3—C4175.4 (3)O4—C11—C12—C13179.7 (2)
C5—N3—C4—O22.5 (5)N2—N1—C13—C143.6 (4)
C5—N3—C4—C3177.4 (3)N2—N1—C13—C12175.1 (2)
N2—C3—C4—O25.9 (4)C17—C12—C13—C141.9 (4)
C2—C3—C4—O2173.7 (3)C11—C12—C13—C14177.5 (3)
N2—C3—C4—N3174.3 (3)C17—C12—C13—N1176.8 (3)
C2—C3—C4—N36.1 (4)C11—C12—C13—N13.7 (4)
C4—N3—C5—C64.3 (5)N1—C13—C14—C15177.3 (3)
C4—N3—C5—C10175.7 (3)C12—C13—C14—C151.5 (4)
C10—C5—C6—C71.1 (4)C13—C14—C15—C160.6 (5)
N3—C5—C6—C7178.9 (3)C14—C15—C16—C172.2 (5)
C5—C6—C7—C80.2 (5)C15—C16—C17—C121.7 (5)
C6—C7—C8—C90.3 (5)C13—C12—C17—C160.3 (4)
C7—C8—C9—C100.1 (5)C11—C12—C17—C16179.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.821.842.654 (3)175
N3—H3···O10.861.972.685 (3)140
N1—H1···O30.861.992.631 (3)131
N1—H1···O20.861.912.568 (3)132
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC17H15N3O4
Mr325.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)15.5731 (16), 5.3292 (5), 18.7731 (19)
β (°) 99.246 (1)
V3)1537.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.30 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.951, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
7277, 2724, 1459
Rint0.057
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.137, 1.02
No. of reflections2724
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.821.842.654 (3)174.9
N3—H3···O10.861.972.685 (3)140.0
N1—H1···O30.861.992.631 (3)130.7
N1—H1···O20.861.912.568 (3)132.3
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

The authors gratefully acknowledge the University Technology Development Project in Shanxi Province (grant No. 20111122).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBarrow, M. J., Christie, R. M. & Monteith, J. E. (2002). Dyes Pigments, 55, 79-89.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSchmidt, M. U., Dinnebier, R. E. & Kalkhof, H. (2007). J. Phys. Chem. B, 111, 9722–9732.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStreek, J. van de, Brüning, J., Ivashevskaya, S. N., Ermrich, M., Paulus, E. F., Bolte, M. & Schmidt, M. U. (2009). Acta Cryst. B65, 200–211.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds