metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(di-2-pyridyl­amine-κ2N,N′)bis­­(thio­cyanato-κN)nickel(II)

aDepartment of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F - bus 2404, B-3001 Heverlee, Belgium, and Department of Chemistry, University of Stellenbosch, Private Bag X1, Matieland, South Africa
*Correspondence e-mail: lianger@chem.kuleuven.be

(Received 13 November 2011; accepted 22 November 2011; online 30 November 2011)

The mononuclear neutral title complex, [Ni(NCS)2(C10H9N3)2], shows a cis-octa­hedral geometry around the NiII ion, formed by two chelating di-2-pyridyl­amine (Hdpa) ligands and two thio­cyanate anions. Both amine H atoms are involved in N—H⋯S hydrogen bonding, resulting in the formation of layers of inter­linked mol­ecules parallel to the ab plane, which are further held together by weak ππ inter­actions between adjacent complexes, involving one ring of each dipyridyl­amine unit [centroid–centroid distance = 3.777 (4) Å], forming a three-dimensional assembly.

Related literature

For previous studies on mononuclear NiII, CuII and ZnII complexes with amine ligands, see: Wrzeszcz et al. (2002[Wrzeszcz, G., Dobrzańska, L., Wojtczak, A. & Grodzicki, A. (2002). J. Chem. Soc. Dalton Trans. pp. 2862-2867.]); Dobrzańska et al. (2000[Dobrzańska, L., Wrzeszcz, G., Grodzicki, A. & Rozpłoch, F. (2000). Pol. J. Chem. 74, 1017-1021.], 2001[Dobrzańska, L., Wrzeszcz, G., Grodzicki, A. & Rozpłoch, F. (2001). Pol. J. Chem. 75, 909-914.]). For the spectroscopic properties of the title bulk material, see: Burbridge & Goodgame (1968[Burbridge, C. D. & Goodgame, D. M. L. (1968). J. Chem. Soc. A, pp. 237-240.]). For crystallographic reports on trans-octa­hedral [Ni(chelating N,N-ligand)2(NCS)2] complexes, see: Wang et al. (2010[Wang, C.-Y., Cao, F., Wang, P., Lv, C.-Y. & Wu, X. (2010). Acta Cryst. E66, m119.]); Karadag et al. (2004[Karadag, A., Bulut, A. & Büyükgüngör, O. (2004). Acta Cryst. C60, m402-m404.]); Ghosh et al. (1997[Ghosh, S., Mukherjee, M., Mukherjee, A. K. & Ray Chaudhuri, N. (1997). Acta Cryst. C53, 1561-1564.]); for cis-, see: Zhang et al. (2008[Zhang, S. G., Hu, T. Q. & Li, H. (2008). Acta Cryst. E64, m769.]); Zhao et al. (2006[Zhao, Q.-H., Mu, X.-M., Zhang, M.-S. & Fang, R.-B. (2006). Acta Cryst. E62, m615-m616.]); Moore & Squattrito (1999[Moore, S. L. & Squattrito, P. J. (1999). Acta Cryst. C55, 332-334.]). For information about the configurations adopted by the Hdpa ligand, see: Chung et al. (2010[Chung, Y.-H., Lin, H.-H., Lee, C.-J. & Liou, S.-Y. (2010). J. Chin. Chem. Soc. 57, 864-875.]). For a crystallo­graphic report on diazido­bis­(di-2-pyridyl­amine)­nickel(II) monohydrate, see: Villanueva et al. (2004[Villanueva, M., Urtiaga, M. K., Mesa, J. L. & Arriortua, M. I. (2004). Acta Cryst. E60, m1175-m1177.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)2(C10H9N3)2]

  • Mr = 517.27

  • Monoclinic, P 21 /c

  • a = 8.605 (4) Å

  • b = 16.410 (9) Å

  • c = 16.556 (10) Å

  • β = 107.894 (8)°

  • V = 2225 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 100 K

  • 0.24 × 0.18 × 0.04 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.780, Tmax = 0.958

  • 10729 measured reflections

  • 4107 independent reflections

  • 2815 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.161

  • S = 1.03

  • 4107 reflections

  • 304 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯S32i 0.88 (5) 2.53 (6) 3.373 (5) 161
N20—H20⋯S29ii 0.85 (5) 2.59 (5) 3.437 (5) 175
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a continuation of our studies on NCS-bridged heteronuclear metal-organic complexes (Wrzeszcz et al., 2002; Dobrzańska et al., 2001; Dobrzańska et al., 2000), based on mononuclear NiII, Cu(II) and Zn(II) complexes with amine ligands, the title coordination compound was prepared. The spectroscopic properties of the title bulk material were reported earlier (Burbridge & Goodgame, 1968) but were not supported by crystallographic data. Nevertheless, there are quite a few crystallographic reports on [Ni(chelating N,N-ligand)2(NCS)2] complexes with trans- (Wang et al., 2010; Karadag et al., 2004; Ghosh et al., 1997) or cis- (Zhang et al., 2008; Zhao et al., 2006; Moore & Squattrito, 1999) octahedral geometry. The complex crystallizes with one molecule in the asymmetric unit. It shows cis-octahedral arrangement of the ligands around NiII, formed by two isothiocyanate anions and two chelating bidentate Hdpa ligands (Fig. 1). The latter adopt the most commonly encountered anti-anti configuration (Chung et al., 2010). The pyridine rings in each Hdpa ligand are tilted with respect to one another with values of 33.4 (2)° for N7 and 31.0 (2)° for N20. A similar coordination environment has been reported for a related NiII complex with Hdpa and two azide ions instead of isothiocyanate ions (Villanueva et al., 2004). The H amine atoms are involved in hydrogen bonding with the S atoms from the isothiocyanate ions of neighbouring molecules (Table 1), to form layers of interlinked molecules. These are further held together by weak ππ interactions between slightly tilted N1—C6 and C21—N26 rings with a centroid-centroid distance of 3.777 (4) Å (symmetry operation: x, 1/2 - y, 1/2 + z) to form a three-dimensional assembly (Fig. 2).

Related literature top

For previous studies on mononuclear NiII, CuII and ZnII complexes with amine ligands, see: Wrzeszcz et al. (2002); Dobrzańska et al. (2000, 2001). For the spectroscopic properties of the title bulk material, see: Burbridge & Goodgame (1968). For crystallographic reports on trans-octahedral [Ni(chelating N,N-ligand)2(NCS)2] complexes, see: Wang et al. (2010); Karadag et al. (2004); Ghosh et al. (1997); for cis-, see: Zhang et al. (2008); Zhao et al. (2006); Moore & Squattrito (1999). For information about the configurations adopted by the Hdpa ligand, see: Chung et al. (2010). For a crystallographic report on diazidobis(di-2-pyridylamine)nickel(II) monohydrate, see: Villanueva et al. (2004).

Experimental top

A methanolic solution (15 ml) of di-2-pyridylamine (171.2 mg, 1.0 mmol) was added dropwise to a methanolic solution (30 ml) of nickel thiocyanate (87.4 mg, 0.5 mmol). The reaction mixture was stirred for 15 minutes and left to evaporate in ambient air. After 3 weeks, crystals suitable for X-ray studies were obtained.

Refinement top

All phenyl H atoms were placed in calculated positions whereas amino H atoms were located in the Fourier difference map and their coordinates were freely refined. The Uiso(H) values were set to 1.2Ueq of the carrying atom. The crystals diffract quite weakly at high angles which could be the reason the crystal structure has not been reported previously.

Structure description top

As a continuation of our studies on NCS-bridged heteronuclear metal-organic complexes (Wrzeszcz et al., 2002; Dobrzańska et al., 2001; Dobrzańska et al., 2000), based on mononuclear NiII, Cu(II) and Zn(II) complexes with amine ligands, the title coordination compound was prepared. The spectroscopic properties of the title bulk material were reported earlier (Burbridge & Goodgame, 1968) but were not supported by crystallographic data. Nevertheless, there are quite a few crystallographic reports on [Ni(chelating N,N-ligand)2(NCS)2] complexes with trans- (Wang et al., 2010; Karadag et al., 2004; Ghosh et al., 1997) or cis- (Zhang et al., 2008; Zhao et al., 2006; Moore & Squattrito, 1999) octahedral geometry. The complex crystallizes with one molecule in the asymmetric unit. It shows cis-octahedral arrangement of the ligands around NiII, formed by two isothiocyanate anions and two chelating bidentate Hdpa ligands (Fig. 1). The latter adopt the most commonly encountered anti-anti configuration (Chung et al., 2010). The pyridine rings in each Hdpa ligand are tilted with respect to one another with values of 33.4 (2)° for N7 and 31.0 (2)° for N20. A similar coordination environment has been reported for a related NiII complex with Hdpa and two azide ions instead of isothiocyanate ions (Villanueva et al., 2004). The H amine atoms are involved in hydrogen bonding with the S atoms from the isothiocyanate ions of neighbouring molecules (Table 1), to form layers of interlinked molecules. These are further held together by weak ππ interactions between slightly tilted N1—C6 and C21—N26 rings with a centroid-centroid distance of 3.777 (4) Å (symmetry operation: x, 1/2 - y, 1/2 + z) to form a three-dimensional assembly (Fig. 2).

For previous studies on mononuclear NiII, CuII and ZnII complexes with amine ligands, see: Wrzeszcz et al. (2002); Dobrzańska et al. (2000, 2001). For the spectroscopic properties of the title bulk material, see: Burbridge & Goodgame (1968). For crystallographic reports on trans-octahedral [Ni(chelating N,N-ligand)2(NCS)2] complexes, see: Wang et al. (2010); Karadag et al. (2004); Ghosh et al. (1997); for cis-, see: Zhang et al. (2008); Zhao et al. (2006); Moore & Squattrito (1999). For information about the configurations adopted by the Hdpa ligand, see: Chung et al. (2010). For a crystallographic report on diazidobis(di-2-pyridylamine)nickel(II) monohydrate, see: Villanueva et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Capped sticks representation of the packing shown down the a axis; layers formed by N—H···S interactions (orange, symmetry codes: (i) -x, y + 1/2, -z + 1/2; (ii) -x + 1, y + 1/2, -z + 1/2) shown in red and green; ππ interactions highlighted by ball representation of the aromatic rings involved.
Bis(di-2-pyridylamine-κ2N,N')bis(thiocyanato- κN)nickel(II) top
Crystal data top
[Ni(NCS)2(C10H9N3)2]F(000) = 1064
Mr = 517.27Dx = 1.544 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2092 reflections
a = 8.605 (4) Åθ = 2.5–24.8°
b = 16.410 (9) ŵ = 1.09 mm1
c = 16.556 (10) ÅT = 100 K
β = 107.894 (8)°Plate, purple
V = 2225 (2) Å30.24 × 0.18 × 0.04 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
4107 independent reflections
Radiation source: fine-focus sealed tube2815 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ω scansθmax = 25.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 109
Tmin = 0.780, Tmax = 0.958k = 1219
10729 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.076P)2 + 1.1451P]
where P = (Fo2 + 2Fc2)/3
4107 reflections(Δ/σ)max < 0.001
304 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
[Ni(NCS)2(C10H9N3)2]V = 2225 (2) Å3
Mr = 517.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.605 (4) ŵ = 1.09 mm1
b = 16.410 (9) ÅT = 100 K
c = 16.556 (10) Å0.24 × 0.18 × 0.04 mm
β = 107.894 (8)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
4107 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2815 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.958Rint = 0.068
10729 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.77 e Å3
4107 reflectionsΔρmin = 0.84 e Å3
304 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.17658 (8)0.22019 (4)0.21548 (4)0.0259 (2)
N10.0773 (5)0.2386 (3)0.3150 (3)0.0265 (10)
C20.0102 (6)0.1787 (3)0.3351 (3)0.0309 (13)
H20.01920.12840.30570.037*
C30.0881 (7)0.1865 (3)0.3965 (4)0.0321 (13)
H30.14840.14270.40950.038*
C40.0750 (7)0.2606 (3)0.4384 (3)0.0313 (13)
H40.12840.26860.48020.038*
C50.0151 (6)0.3220 (3)0.4194 (3)0.0306 (13)
H50.02550.37290.44790.037*
C60.0914 (6)0.3089 (3)0.3575 (3)0.0279 (12)
N70.1791 (5)0.3731 (3)0.3382 (3)0.0264 (10)
H70.167 (7)0.420 (3)0.361 (4)0.032*
C80.3232 (7)0.3684 (3)0.3174 (3)0.0290 (12)
C90.4232 (7)0.4366 (3)0.3302 (3)0.0332 (13)
H90.39000.48660.34860.040*
C100.5705 (7)0.4300 (3)0.3157 (3)0.0328 (13)
H100.64050.47600.32240.039*
C110.6166 (7)0.3557 (3)0.2912 (3)0.0318 (13)
H110.72200.34860.28510.038*
C120.5081 (7)0.2924 (3)0.2758 (3)0.0296 (12)
H120.53930.24180.25760.035*
N130.3598 (5)0.2989 (3)0.2854 (3)0.0269 (10)
N140.0418 (5)0.3193 (3)0.1498 (3)0.0251 (10)
C150.1120 (6)0.3317 (3)0.1526 (3)0.0263 (12)
H150.16660.28810.17030.032*
C160.1916 (7)0.4037 (3)0.1314 (3)0.0300 (12)
H160.30060.40960.13280.036*
C170.1126 (7)0.4684 (4)0.1075 (3)0.0351 (13)
H170.16380.52020.09540.042*
C180.0408 (7)0.4562 (3)0.1018 (3)0.0310 (13)
H180.09840.49940.08550.037*
C190.1103 (6)0.3797 (3)0.1202 (3)0.0248 (11)
N200.2599 (5)0.3658 (3)0.1073 (3)0.0265 (10)
H200.306 (7)0.410 (3)0.100 (4)0.032*
C210.3201 (7)0.2927 (3)0.0869 (3)0.0296 (13)
C220.4206 (7)0.2955 (3)0.0350 (3)0.0324 (13)
H220.44550.34600.01370.039*
C230.4827 (7)0.2240 (4)0.0153 (4)0.0355 (14)
H230.55660.22450.01720.043*
C240.4367 (7)0.1514 (4)0.0430 (3)0.0332 (13)
H240.47330.10090.02750.040*
C250.3384 (6)0.1539 (3)0.0926 (3)0.0306 (13)
H250.30670.10370.11150.037*
N260.2823 (5)0.2237 (3)0.1172 (3)0.0285 (10)
N270.3197 (6)0.1248 (3)0.2766 (3)0.0332 (11)
C280.4180 (7)0.0920 (3)0.3306 (3)0.0276 (12)
S290.55527 (18)0.04778 (9)0.41017 (9)0.0335 (4)
N300.0026 (6)0.1428 (3)0.1499 (3)0.0317 (11)
C310.0852 (7)0.0975 (3)0.1021 (4)0.0282 (12)
S320.20188 (17)0.03490 (8)0.03303 (9)0.0308 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0245 (4)0.0307 (4)0.0212 (4)0.0002 (3)0.0048 (3)0.0001 (3)
N10.025 (2)0.028 (3)0.025 (2)0.0005 (19)0.004 (2)0.0037 (18)
C20.028 (3)0.030 (3)0.031 (3)0.002 (2)0.003 (3)0.000 (2)
C30.029 (3)0.035 (3)0.033 (3)0.001 (2)0.011 (3)0.009 (2)
C40.028 (3)0.042 (4)0.024 (3)0.004 (3)0.008 (3)0.003 (2)
C50.026 (3)0.035 (3)0.027 (3)0.004 (2)0.003 (2)0.003 (2)
C60.024 (3)0.038 (3)0.018 (3)0.002 (2)0.001 (2)0.002 (2)
N70.024 (3)0.031 (3)0.022 (2)0.0015 (19)0.005 (2)0.0050 (18)
C80.025 (3)0.043 (3)0.018 (3)0.001 (2)0.005 (2)0.001 (2)
C90.033 (3)0.038 (3)0.028 (3)0.004 (3)0.008 (3)0.001 (2)
C100.028 (3)0.043 (4)0.025 (3)0.012 (3)0.004 (3)0.003 (2)
C110.021 (3)0.052 (4)0.020 (3)0.005 (3)0.002 (2)0.005 (2)
C120.026 (3)0.041 (3)0.019 (3)0.003 (2)0.003 (2)0.002 (2)
N130.020 (2)0.034 (3)0.025 (2)0.0047 (18)0.005 (2)0.0003 (19)
N140.021 (2)0.032 (3)0.021 (2)0.0015 (19)0.0052 (19)0.0000 (18)
C150.024 (3)0.038 (3)0.016 (3)0.001 (2)0.004 (2)0.001 (2)
C160.024 (3)0.038 (3)0.026 (3)0.002 (2)0.004 (2)0.000 (2)
C170.036 (3)0.038 (3)0.028 (3)0.007 (3)0.005 (3)0.003 (2)
C180.032 (3)0.034 (3)0.025 (3)0.005 (2)0.006 (2)0.000 (2)
C190.022 (3)0.028 (3)0.023 (3)0.001 (2)0.005 (2)0.002 (2)
N200.021 (2)0.033 (3)0.025 (2)0.0040 (19)0.006 (2)0.0012 (19)
C210.024 (3)0.037 (3)0.023 (3)0.004 (2)0.000 (2)0.005 (2)
C220.027 (3)0.045 (4)0.023 (3)0.000 (3)0.006 (2)0.002 (2)
C230.021 (3)0.057 (4)0.028 (3)0.002 (3)0.006 (2)0.003 (3)
C240.021 (3)0.050 (4)0.027 (3)0.005 (3)0.005 (2)0.004 (3)
C250.023 (3)0.038 (3)0.027 (3)0.002 (2)0.001 (2)0.001 (2)
N260.027 (2)0.030 (3)0.027 (2)0.001 (2)0.006 (2)0.0029 (19)
N270.031 (3)0.043 (3)0.022 (3)0.001 (2)0.002 (2)0.002 (2)
C280.032 (3)0.030 (3)0.025 (3)0.010 (2)0.013 (3)0.004 (2)
S290.0313 (8)0.0375 (9)0.0283 (8)0.0047 (6)0.0040 (6)0.0004 (6)
N300.029 (3)0.037 (3)0.029 (3)0.002 (2)0.008 (2)0.004 (2)
C310.023 (3)0.035 (3)0.029 (3)0.000 (2)0.012 (3)0.002 (2)
S320.0280 (8)0.0363 (8)0.0259 (8)0.0042 (6)0.0051 (6)0.0020 (6)
Geometric parameters (Å, º) top
Ni1—N302.035 (5)C12—H120.9500
Ni1—N272.055 (5)N14—C191.322 (6)
Ni1—N132.092 (4)N14—C151.354 (6)
Ni1—N262.095 (4)C15—C161.357 (7)
Ni1—N142.097 (4)C15—H150.9500
Ni1—N12.097 (4)C16—C171.382 (8)
N1—C61.337 (7)C16—H160.9500
N1—C21.341 (7)C17—C181.367 (8)
C2—C31.385 (7)C17—H170.9500
C2—H20.9500C18—C191.384 (7)
C3—C41.387 (8)C18—H180.9500
C3—H30.9500C19—N201.387 (7)
C4—C51.365 (8)N20—C211.389 (7)
C4—H40.9500N20—H200.85 (5)
C5—C61.392 (7)C21—N261.318 (7)
C5—H50.9500C21—C221.396 (8)
C6—N71.390 (7)C22—C231.369 (8)
N7—C81.387 (7)C22—H220.9500
N7—H70.88 (5)C23—C241.378 (8)
C8—N131.335 (7)C23—H230.9500
C8—C91.388 (8)C24—C251.349 (7)
C9—C101.364 (8)C24—H240.9500
C9—H90.9500C25—N261.353 (7)
C10—C111.382 (8)C25—H250.9500
C10—H100.9500N27—C281.157 (7)
C11—C121.366 (7)C28—S291.644 (6)
C11—H110.9500N30—C311.157 (7)
C12—N131.337 (7)C31—S321.632 (6)
N30—Ni1—N2791.65 (19)N13—C12—H12118.7
N30—Ni1—N13178.74 (17)C11—C12—H12118.7
N27—Ni1—N1387.81 (18)C8—N13—C12117.7 (5)
N30—Ni1—N2692.34 (18)C8—N13—Ni1121.2 (3)
N27—Ni1—N2693.79 (18)C12—N13—Ni1118.0 (3)
N13—Ni1—N2688.83 (17)C19—N14—C15116.9 (4)
N30—Ni1—N1489.99 (18)C19—N14—Ni1122.3 (3)
N27—Ni1—N14176.50 (17)C15—N14—Ni1119.3 (3)
N13—Ni1—N1490.61 (17)N14—C15—C16122.9 (5)
N26—Ni1—N1483.06 (17)N14—C15—H15118.5
N30—Ni1—N194.85 (18)C16—C15—H15118.5
N27—Ni1—N192.87 (17)C15—C16—C17119.3 (5)
N13—Ni1—N184.04 (17)C15—C16—H16120.3
N26—Ni1—N1170.05 (17)C17—C16—H16120.3
N14—Ni1—N190.07 (16)C18—C17—C16118.6 (5)
C6—N1—C2117.9 (5)C18—C17—H17120.7
C6—N1—Ni1123.0 (3)C16—C17—H17120.7
C2—N1—Ni1119.0 (4)C17—C18—C19118.6 (5)
N1—C2—C3123.3 (5)C17—C18—H18120.7
N1—C2—H2118.3C19—C18—H18120.7
C3—C2—H2118.3N14—C19—C18123.4 (5)
C2—C3—C4117.7 (5)N14—C19—N20118.3 (4)
C2—C3—H3121.1C18—C19—N20118.3 (5)
C4—C3—H3121.1C19—N20—C21127.8 (4)
C5—C4—C3119.7 (5)C19—N20—H20112 (4)
C5—C4—H4120.2C21—N20—H20118 (4)
C3—C4—H4120.2N26—C21—N20119.7 (5)
C4—C5—C6119.1 (5)N26—C21—C22122.3 (5)
C4—C5—H5120.5N20—C21—C22117.9 (5)
C6—C5—H5120.5C23—C22—C21118.6 (5)
N1—C6—N7120.0 (5)C23—C22—H22120.7
N1—C6—C5122.2 (5)C21—C22—H22120.7
N7—C6—C5117.7 (5)C22—C23—C24119.3 (5)
C8—N7—C6127.2 (5)C22—C23—H23120.4
C8—N7—H7113 (4)C24—C23—H23120.4
C6—N7—H7115 (4)C25—C24—C23118.4 (5)
N13—C8—N7118.9 (5)C25—C24—H24120.8
N13—C8—C9122.6 (5)C23—C24—H24120.8
N7—C8—C9118.5 (5)C24—C25—N26123.8 (5)
C10—C9—C8118.4 (5)C24—C25—H25118.1
C10—C9—H9120.8N26—C25—H25118.1
C8—C9—H9120.8C21—N26—C25117.4 (5)
C9—C10—C11119.2 (5)C21—N26—Ni1122.4 (4)
C9—C10—H10120.4C25—N26—Ni1119.4 (4)
C11—C10—H10120.4C28—N27—Ni1157.0 (4)
C12—C11—C10118.9 (5)N27—C28—S29177.5 (5)
C12—C11—H11120.5C31—N30—Ni1166.4 (4)
C10—C11—H11120.5N30—C31—S32178.8 (5)
N13—C12—C11122.7 (5)
N30—Ni1—N1—C6147.6 (4)N30—Ni1—N14—C1557.0 (4)
N27—Ni1—N1—C6120.5 (4)N13—Ni1—N14—C15121.9 (4)
N13—Ni1—N1—C633.1 (4)N26—Ni1—N14—C15149.3 (4)
N14—Ni1—N1—C657.6 (4)N1—Ni1—N14—C1537.9 (4)
N30—Ni1—N1—C229.7 (4)C19—N14—C15—C163.8 (7)
N27—Ni1—N1—C262.2 (4)Ni1—N14—C15—C16162.6 (4)
N13—Ni1—N1—C2149.7 (4)N14—C15—C16—C171.6 (8)
N14—Ni1—N1—C2119.7 (4)C15—C16—C17—C183.5 (8)
C6—N1—C2—C31.0 (8)C16—C17—C18—C190.1 (8)
Ni1—N1—C2—C3176.4 (4)C15—N14—C19—C187.5 (7)
N1—C2—C3—C40.5 (8)Ni1—N14—C19—C18158.5 (4)
C2—C3—C4—C51.2 (8)C15—N14—C19—N20172.7 (4)
C3—C4—C5—C60.4 (8)Ni1—N14—C19—N2021.3 (6)
C2—N1—C6—N7179.1 (5)C17—C18—C19—N145.7 (8)
Ni1—N1—C6—N71.9 (7)C17—C18—C19—N20174.5 (5)
C2—N1—C6—C51.9 (8)N14—C19—N20—C2129.3 (8)
Ni1—N1—C6—C5175.4 (4)C18—C19—N20—C21150.9 (5)
C4—C5—C6—N11.2 (8)C19—N20—C21—N2633.8 (8)
C4—C5—C6—N7178.5 (5)C19—N20—C21—C22146.6 (5)
N1—C6—N7—C838.8 (8)N26—C21—C22—C230.4 (8)
C5—C6—N7—C8143.9 (5)N20—C21—C22—C23179.2 (5)
C6—N7—C8—N1323.8 (8)C21—C22—C23—C243.7 (8)
C6—N7—C8—C9156.7 (5)C22—C23—C24—C253.5 (8)
N13—C8—C9—C105.3 (8)C23—C24—C25—N260.2 (8)
N7—C8—C9—C10175.2 (5)N20—C21—N26—C25177.3 (5)
C8—C9—C10—C111.7 (8)C22—C21—N26—C253.2 (8)
C9—C10—C11—C125.0 (8)N20—C21—N26—Ni113.4 (7)
C10—C11—C12—N131.5 (8)C22—C21—N26—Ni1166.1 (4)
N7—C8—N13—C12171.8 (5)C24—C25—N26—C213.5 (8)
C9—C8—N13—C128.7 (8)C24—C25—N26—Ni1166.1 (4)
N7—C8—N13—Ni128.5 (6)N30—Ni1—N26—C21130.3 (4)
C9—C8—N13—Ni1151.0 (4)N27—Ni1—N26—C21137.9 (4)
C11—C12—N13—C85.2 (8)N13—Ni1—N26—C2150.1 (4)
C11—C12—N13—Ni1155.2 (4)N14—Ni1—N26—C2140.6 (4)
N27—Ni1—N13—C8139.8 (4)N30—Ni1—N26—C2560.6 (4)
N26—Ni1—N13—C8126.4 (4)N27—Ni1—N26—C2531.2 (4)
N14—Ni1—N13—C843.3 (4)N13—Ni1—N26—C25118.9 (4)
N1—Ni1—N13—C846.7 (4)N14—Ni1—N26—C25150.3 (4)
N27—Ni1—N13—C1260.6 (4)N30—Ni1—N27—C28152.9 (11)
N26—Ni1—N13—C1233.3 (4)N13—Ni1—N27—C2825.9 (11)
N14—Ni1—N13—C12116.3 (4)N26—Ni1—N27—C28114.6 (11)
N1—Ni1—N13—C12153.7 (4)N1—Ni1—N27—C2858.0 (11)
N30—Ni1—N14—C19137.4 (4)N27—Ni1—N30—C3183 (2)
N13—Ni1—N14—C1943.8 (4)N26—Ni1—N30—C3111 (2)
N26—Ni1—N14—C1945.0 (4)N14—Ni1—N30—C3194 (2)
N1—Ni1—N14—C19127.8 (4)N1—Ni1—N30—C31176 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···S32i0.88 (5)2.53 (6)3.373 (5)161
N20—H20···S29ii0.85 (5)2.59 (5)3.437 (5)175
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C10H9N3)2]
Mr517.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.605 (4), 16.410 (9), 16.556 (10)
β (°) 107.894 (8)
V3)2225 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.24 × 0.18 × 0.04
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.780, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
10729, 4107, 2815
Rint0.068
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.161, 1.03
No. of reflections4107
No. of parameters304
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.77, 0.84

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···S32i0.88 (5)2.53 (6)3.373 (5)161
N20—H20···S29ii0.85 (5)2.59 (5)3.437 (5)175
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The author thanks the Research Foundation Flanders (FWO) for financial support.

References

First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurbridge, C. D. & Goodgame, D. M. L. (1968). J. Chem. Soc. A, pp. 237–240.  CrossRef Google Scholar
First citationChung, Y.-H., Lin, H.-H., Lee, C.-J. & Liou, S.-Y. (2010). J. Chin. Chem. Soc. 57, 864–875.  CAS Google Scholar
First citationDobrzańska, L., Wrzeszcz, G., Grodzicki, A. & Rozpłoch, F. (2000). Pol. J. Chem. 74, 1017–1021.  Google Scholar
First citationDobrzańska, L., Wrzeszcz, G., Grodzicki, A. & Rozpłoch, F. (2001). Pol. J. Chem. 75, 909–914.  Google Scholar
First citationGhosh, S., Mukherjee, M., Mukherjee, A. K. & Ray Chaudhuri, N. (1997). Acta Cryst. C53, 1561–1564.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKaradag, A., Bulut, A. & Büyükgüngör, O. (2004). Acta Cryst. C60, m402–m404.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoore, S. L. & Squattrito, P. J. (1999). Acta Cryst. C55, 332–334.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVillanueva, M., Urtiaga, M. K., Mesa, J. L. & Arriortua, M. I. (2004). Acta Cryst. E60, m1175–m1177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, C.-Y., Cao, F., Wang, P., Lv, C.-Y. & Wu, X. (2010). Acta Cryst. E66, m119.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWrzeszcz, G., Dobrzańska, L., Wojtczak, A. & Grodzicki, A. (2002). J. Chem. Soc. Dalton Trans. pp. 2862–2867.  Web of Science CSD CrossRef Google Scholar
First citationZhang, S. G., Hu, T. Q. & Li, H. (2008). Acta Cryst. E64, m769.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, Q.-H., Mu, X.-M., Zhang, M.-S. & Fang, R.-B. (2006). Acta Cryst. E62, m615–m616.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds