metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tetra­aqua­bis­­(μ3-imidazole-4,5-di­carboxyl­ato)tetra­kis­(μ2-imidazole-4,5-di­carboxyl­ato)tricobalt(II)dilutetium(III)] dihydrate]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China
*Correspondence e-mail: licaizhu1977@yahoo.com.cn

(Received 2 October 2011; accepted 31 October 2011; online 5 November 2011)

In the title compound, {[Co3Lu2(C5H2N2O4)6(H2O)4]·2H2O}n, the LuIII ions are seven-coordinated in a monocapped trigonal prismatic coordination geometry by six O atoms from three imidazole-4,5-dicarboxyl­ate ligands and one water O atom. The CoII ions are six-coordinated in a slightly distorted octa­hedral geometry and exhibit two types of coordination environments. One CoII ion, located on an inversion center, is coordinated by two water O atoms as well as two O atoms and two N atoms from two imidazole-4,5-dicarboxyl­ate ligands. The other CoII ion is bonded to four O atoms and two N atoms from four imidazole-4,5-dicarboxyl­ate ligands. These metal coordination units are connected by bridging imidazole-4,5-dicarboxyl­ate ligands, generating a three-dimensional network. The crystal structure is further stabilized by N—H⋯O, O—H⋯O, and C—H⋯O hydrogen-bonding inter­actions between the water mol­ecules and the imidazole-4,5-dicarboxyl­ate ligands.

Related literature

For lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands, see: Cheng et al. (2006[Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73-77.]); Kuang et al. (2007[Kuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526-m2527.]); Sun et al. (2006[Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 4700-4702.]); Zhu et al. (2010[Zhu, L.-C., Zhao, Y., Yu, S.-J. & Zhao, M.-M. (2010). Inorg. Chem. Commun. 13, 1299-1303.]).

[Scheme 1]

Experimental

Crystal data
  • [Co3Lu2(C5H2N2O4)6(H2O)4]·2H2O

  • Mr = 1559.34

  • Triclinic, [P \overline 1]

  • a = 7.0332 (6) Å

  • b = 8.3468 (7) Å

  • c = 17.8510 (15) Å

  • α = 95.515 (1)°

  • β = 96.786 (1)°

  • γ = 97.195 (1)°

  • V = 1025.84 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 6.08 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.308, Tmax = 0.402

  • 5351 measured reflections

  • 3642 independent reflections

  • 3280 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.069

  • S = 1.02

  • 3642 reflections

  • 376 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.38 e Å−3

  • Δρmin = −1.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O5i 0.86 (4) 2.04 (4) 2.900 (6) 175 (5)
N2—H1⋯O6i 0.86 (4) 2.59 (5) 3.139 (6) 122 (4)
O1W—H1W⋯O8ii 0.80 (5) 2.04 (5) 2.806 (6) 161 (6)
N4—H2⋯O1Wiii 0.85 (4) 2.12 (3) 2.948 (6) 162 (5)
N4—H2⋯O10 0.85 (4) 2.57 (6) 3.016 (7) 114 (4)
O1W—H2W⋯O8iv 0.81 (5) 1.94 (6) 2.748 (6) 174 (6)
O2W—H3W⋯O3W 0.81 (5) 1.89 (5) 2.693 (6) 172 (7)
N5—H4⋯O8v 0.85 (4) 2.23 (4) 3.052 (6) 161 (5)
O2W—H4W⋯O10vi 0.80 (6) 2.06 (6) 2.851 (7) 171 (6)
O3W—H5W⋯O11iii 0.86 (5) 2.06 (6) 2.902 (6) 166 (5)
O3W—H6W⋯O4 0.86 (6) 2.10 (6) 2.928 (6) 163 (6)
C8—H8⋯O3 0.93 2.44 3.217 (7) 141
C8—H8⋯O9 0.93 2.39 3.190 (7) 144
C13—H13⋯O2Wvii 0.93 2.42 3.352 (7) 178
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y+1, z; (iii) x, y-1, z; (iv) -x, -y+1, -z; (v) -x, -y, -z; (vi) x+1, y, z; (vii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past few years, interest in the lanthanide-transition metal heterometallic complexes with bridging multifunctionnal organic ligands has been increasing, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe (Cheng et al., 2006; Kuang et al., 2007; Sun et al., 2006; Zhu et al., 2010). As an extension of this research, the structure of the title compound, a new heterometallic coordination polymer, has been determined which is presented in this artcle.

The asymmetric unit of the title compound (Fig. 1), contains one LuIII ions, two CoII ions (one situated on an inversion centre), three imidazole-4,5-dicarboxylate ligands, two coordinated water molecules and one uncoordinated water molecule. The LuIII ion is seven-coordinated in a monocapped trigonal prismatic coordination geometry by six O atoms from three imidazole-4,5-dicarboxylate ligands and one water O atom. Both CoII ions are six-coordinated in a slightly distorted octahedral geometry. One CoII ion lies on an inversion center and is coordinated with two O atoms from two coordinated water molecules as well as two O atoms and two N atoms from two imidazole-4,5-dicarboxylate ligands. The other CoII ion is bonded to four O atoms and two N atoms from four imidazole-4,5-dicarboxylate ligands. These metal coordination units are connected by bridging imidazole-4,5-dicarboxylate ligands, generating a three-dimensional network (Fig. 2). The crystal structure is further stabilized by N—H···O, O—H···O, and C—H···O hydrogen-bonding interactions between water molecules, and imidazole-4,5-dicarboxylate ligands (Table 1).

Related literature top

For lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands, see: Cheng et al. (2006); Kuang et al. (2007); Sun et al. (2006); Zhu et al. (2010).

Experimental top

A mixture of CoSO4.7H2O(0.141 g, 0.5 mmol), Lu2O3 (0.100 g, 0.25 mmol), imidazole-4,5-dicarboxylic acid (0.156 g, 1 mmol), and H2O (10 ml) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 5 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Red block crystals suitable for X-ray analysis were obtained.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). H atoms bonded to N atoms and H atoms of water molecules were found from difference Fourier maps and refined isotropically with restraint: N—H = 0.87 Å, O—H = 0.82 or 0.86 Å and Uiso(H) = 1.5 Ueq(N, O).

Structure description top

In the past few years, interest in the lanthanide-transition metal heterometallic complexes with bridging multifunctionnal organic ligands has been increasing, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe (Cheng et al., 2006; Kuang et al., 2007; Sun et al., 2006; Zhu et al., 2010). As an extension of this research, the structure of the title compound, a new heterometallic coordination polymer, has been determined which is presented in this artcle.

The asymmetric unit of the title compound (Fig. 1), contains one LuIII ions, two CoII ions (one situated on an inversion centre), three imidazole-4,5-dicarboxylate ligands, two coordinated water molecules and one uncoordinated water molecule. The LuIII ion is seven-coordinated in a monocapped trigonal prismatic coordination geometry by six O atoms from three imidazole-4,5-dicarboxylate ligands and one water O atom. Both CoII ions are six-coordinated in a slightly distorted octahedral geometry. One CoII ion lies on an inversion center and is coordinated with two O atoms from two coordinated water molecules as well as two O atoms and two N atoms from two imidazole-4,5-dicarboxylate ligands. The other CoII ion is bonded to four O atoms and two N atoms from four imidazole-4,5-dicarboxylate ligands. These metal coordination units are connected by bridging imidazole-4,5-dicarboxylate ligands, generating a three-dimensional network (Fig. 2). The crystal structure is further stabilized by N—H···O, O—H···O, and C—H···O hydrogen-bonding interactions between water molecules, and imidazole-4,5-dicarboxylate ligands (Table 1).

For lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands, see: Cheng et al. (2006); Kuang et al. (2007); Sun et al. (2006); Zhu et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit showing the atomic-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: A: 1 - x, 2 - y, -z; B: 1 - x, 1 - y, 1 - z; C: x, -1 + y, z; D: 1 + x, 1 + y, z.
[Figure 2] Fig. 2. A view of the three-dimensional structure of the title compound, the hydrogen bonding interactions showed as broken lines.
Poly[[tetraaquabis(µ3-imidazole-4,5-dicarboxylato)tetrakis(µ2- imidazole-4,5-dicarboxylato)tricobalt(II)dilutetium(III)] dihydrate] top
Crystal data top
[Co3Lu2(C5H2N2O4)6(H2O)4]·2H2OZ = 1
Mr = 1559.34F(000) = 751
Triclinic, P1Dx = 2.524 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0332 (6) ÅCell parameters from 2416 reflections
b = 8.3468 (7) Åθ = 2.3–27.1°
c = 17.8510 (15) ŵ = 6.08 mm1
α = 95.515 (1)°T = 296 K
β = 96.786 (1)°Block, red
γ = 97.195 (1)°0.20 × 0.18 × 0.15 mm
V = 1025.84 (15) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
3642 independent reflections
Radiation source: fine-focus sealed tube3280 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scanθmax = 25.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 58
Tmin = 0.308, Tmax = 0.402k = 108
5351 measured reflectionsl = 1921
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0315P)2 + 1.6377P]
where P = (Fo2 + 2Fc2)/3
3642 reflections(Δ/σ)max = 0.001
376 parametersΔρmax = 1.38 e Å3
12 restraintsΔρmin = 1.34 e Å3
Crystal data top
[Co3Lu2(C5H2N2O4)6(H2O)4]·2H2Oγ = 97.195 (1)°
Mr = 1559.34V = 1025.84 (15) Å3
Triclinic, P1Z = 1
a = 7.0332 (6) ÅMo Kα radiation
b = 8.3468 (7) ŵ = 6.08 mm1
c = 17.8510 (15) ÅT = 296 K
α = 95.515 (1)°0.20 × 0.18 × 0.15 mm
β = 96.786 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3642 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3280 reflections with I > 2σ(I)
Tmin = 0.308, Tmax = 0.402Rint = 0.023
5351 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03112 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.38 e Å3
3642 reflectionsΔρmin = 1.34 e Å3
376 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Lu10.70112 (4)0.58976 (3)0.256536 (13)0.01212 (9)
Co10.38269 (11)0.06475 (9)0.42418 (4)0.01307 (17)
Co20.50001.00000.00000.0142 (2)
C10.6258 (8)0.7760 (7)0.4223 (3)0.0133 (12)
C20.7053 (8)0.6660 (7)0.4742 (3)0.0133 (12)
C30.8108 (9)0.6042 (7)0.5848 (4)0.0220 (14)
H30.85610.61150.63620.026*
C40.7216 (8)0.5032 (6)0.4657 (3)0.0103 (11)
C50.6582 (8)0.3717 (7)0.4028 (3)0.0143 (12)
C60.1022 (8)0.2023 (7)0.3429 (3)0.0132 (12)
C70.1583 (8)0.1024 (6)0.2827 (3)0.0134 (12)
C80.3107 (9)0.1157 (7)0.2497 (3)0.0195 (13)
H80.38980.21410.25080.023*
C90.1057 (8)0.1066 (7)0.2054 (3)0.0138 (12)
C100.0137 (8)0.2248 (7)0.1460 (3)0.0149 (12)
C110.2968 (9)0.4493 (7)0.1376 (3)0.0172 (13)
C120.3326 (8)0.5562 (7)0.0773 (3)0.0138 (12)
C130.2892 (9)0.6358 (7)0.0373 (3)0.0189 (13)
H130.24740.63470.08870.023*
C140.4316 (8)0.7088 (7)0.0769 (3)0.0135 (12)
C150.5438 (8)0.8341 (7)0.1358 (3)0.0140 (12)
O10.5982 (6)0.7412 (5)0.3519 (2)0.0215 (10)
O20.5862 (6)0.9071 (4)0.4555 (2)0.0147 (8)
O30.6263 (6)0.4072 (5)0.3362 (2)0.0195 (9)
O40.6378 (6)0.2288 (4)0.4209 (2)0.0192 (9)
O50.1840 (6)0.1529 (5)0.4094 (2)0.0200 (9)
O60.0193 (6)0.3287 (5)0.3281 (2)0.0221 (10)
O70.1116 (6)0.3469 (5)0.1661 (2)0.0194 (9)
O80.0117 (6)0.2004 (5)0.0777 (2)0.0191 (9)
O90.4324 (6)0.4605 (5)0.1932 (2)0.0264 (10)
O100.1470 (6)0.3533 (5)0.1285 (2)0.0256 (10)
O110.5857 (6)0.8010 (5)0.2037 (2)0.0184 (9)
O120.5894 (6)0.9710 (5)0.1153 (2)0.0178 (9)
N10.7588 (7)0.7273 (6)0.5495 (3)0.0176 (11)
N20.7899 (7)0.4672 (6)0.5366 (3)0.0164 (11)
N30.2873 (7)0.0359 (5)0.3091 (3)0.0158 (11)
N40.2033 (8)0.0336 (6)0.1876 (3)0.0204 (11)
N50.2432 (7)0.5151 (6)0.0041 (3)0.0173 (11)
N60.4021 (7)0.7565 (5)0.0052 (3)0.0139 (10)
H10.801 (9)0.372 (4)0.550 (3)0.021*
H20.209 (9)0.060 (7)0.1428 (17)0.021*
H40.181 (8)0.420 (4)0.008 (3)0.021*
O1W0.2273 (6)1.0469 (5)0.0245 (2)0.0223 (10)
H1W0.160 (8)0.965 (5)0.030 (4)0.033*
H2W0.168 (8)1.090 (7)0.008 (3)0.033*
O2W0.8496 (7)0.3654 (5)0.2236 (3)0.0252 (10)
H3W0.826 (10)0.284 (5)0.244 (4)0.038*
H4W0.931 (8)0.351 (7)0.197 (3)0.038*
O3W0.8053 (7)0.0904 (5)0.2910 (3)0.0314 (11)
H5W0.734 (8)0.016 (7)0.260 (3)0.047*
H6W0.741 (9)0.111 (8)0.328 (3)0.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Lu10.01755 (14)0.00981 (13)0.00769 (13)0.00126 (9)0.00124 (9)0.00199 (9)
Co10.0202 (4)0.0086 (4)0.0091 (4)0.0011 (3)0.0020 (3)0.0002 (3)
Co20.0174 (6)0.0130 (5)0.0121 (6)0.0005 (4)0.0001 (5)0.0060 (4)
C10.016 (3)0.014 (3)0.010 (3)0.001 (2)0.003 (2)0.006 (2)
C20.015 (3)0.015 (3)0.011 (3)0.005 (2)0.006 (2)0.001 (2)
C30.030 (4)0.018 (3)0.017 (3)0.007 (3)0.004 (3)0.001 (3)
C40.011 (3)0.010 (3)0.010 (3)0.003 (2)0.002 (2)0.004 (2)
C50.015 (3)0.013 (3)0.016 (3)0.002 (2)0.004 (2)0.003 (2)
C60.015 (3)0.014 (3)0.011 (3)0.003 (2)0.002 (2)0.003 (2)
C70.014 (3)0.010 (3)0.016 (3)0.000 (2)0.000 (2)0.003 (2)
C80.029 (4)0.013 (3)0.014 (3)0.003 (3)0.004 (3)0.004 (2)
C90.017 (3)0.015 (3)0.009 (3)0.002 (2)0.000 (2)0.004 (2)
C100.013 (3)0.018 (3)0.015 (3)0.006 (2)0.001 (2)0.003 (2)
C110.022 (3)0.010 (3)0.020 (3)0.003 (2)0.002 (3)0.005 (2)
C120.012 (3)0.015 (3)0.013 (3)0.001 (2)0.002 (2)0.001 (2)
C130.022 (3)0.021 (3)0.012 (3)0.003 (3)0.007 (3)0.002 (2)
C140.011 (3)0.015 (3)0.014 (3)0.003 (2)0.001 (2)0.001 (2)
C150.019 (3)0.013 (3)0.009 (3)0.000 (2)0.000 (2)0.002 (2)
O10.035 (3)0.021 (2)0.009 (2)0.011 (2)0.0023 (18)0.0024 (17)
O20.025 (2)0.0101 (19)0.0083 (19)0.0051 (17)0.0017 (17)0.0002 (16)
O30.031 (2)0.015 (2)0.011 (2)0.0016 (18)0.0005 (18)0.0032 (17)
O40.023 (2)0.011 (2)0.022 (2)0.0015 (17)0.0008 (19)0.0044 (17)
O50.028 (2)0.018 (2)0.011 (2)0.0003 (18)0.0064 (18)0.0051 (17)
O60.027 (2)0.018 (2)0.017 (2)0.0079 (19)0.0043 (19)0.0075 (18)
O70.025 (2)0.015 (2)0.015 (2)0.0040 (18)0.0003 (18)0.0023 (17)
O80.024 (2)0.022 (2)0.009 (2)0.0009 (18)0.0021 (18)0.0035 (17)
O90.031 (3)0.020 (2)0.023 (2)0.0083 (19)0.012 (2)0.0112 (19)
O100.021 (2)0.027 (2)0.026 (2)0.006 (2)0.003 (2)0.011 (2)
O110.033 (2)0.013 (2)0.009 (2)0.0025 (18)0.0006 (18)0.0029 (16)
O120.025 (2)0.013 (2)0.015 (2)0.0015 (17)0.0017 (18)0.0090 (17)
N10.025 (3)0.017 (3)0.011 (2)0.003 (2)0.001 (2)0.002 (2)
N20.024 (3)0.012 (2)0.014 (3)0.008 (2)0.002 (2)0.007 (2)
N30.021 (3)0.012 (2)0.012 (2)0.003 (2)0.001 (2)0.000 (2)
N40.026 (3)0.024 (3)0.013 (3)0.001 (2)0.005 (2)0.011 (2)
N50.022 (3)0.013 (2)0.012 (3)0.004 (2)0.005 (2)0.004 (2)
N60.017 (3)0.016 (3)0.008 (2)0.001 (2)0.002 (2)0.003 (2)
O1W0.020 (2)0.027 (3)0.023 (2)0.0045 (19)0.0031 (19)0.014 (2)
O2W0.035 (3)0.018 (2)0.026 (3)0.007 (2)0.013 (2)0.006 (2)
O3W0.042 (3)0.020 (2)0.032 (3)0.001 (2)0.014 (2)0.001 (2)
Geometric parameters (Å, º) top
Lu1—O92.183 (4)C7—N31.382 (7)
Lu1—O6i2.206 (4)C8—N31.320 (7)
Lu1—O32.238 (4)C8—N41.340 (8)
Lu1—O7i2.261 (4)C8—H80.9300
Lu1—O12.264 (4)C9—N41.366 (7)
Lu1—O112.270 (4)C9—C101.477 (8)
Lu1—O2W2.317 (4)C10—O81.257 (7)
Co1—N32.066 (5)C10—O71.263 (7)
Co1—O2ii2.121 (4)C11—O101.226 (7)
Co1—O52.123 (4)C11—O91.281 (7)
Co1—O2iii2.125 (4)C11—C121.486 (8)
Co1—O42.126 (4)C12—C141.374 (8)
Co1—N1ii2.147 (5)C12—N51.374 (7)
Co2—N62.077 (4)C13—N61.316 (7)
Co2—N6iv2.077 (4)C13—N51.335 (8)
Co2—O1Wiv2.092 (4)C13—H130.9300
Co2—O1W2.092 (4)C14—N61.377 (7)
Co2—O12iv2.126 (4)C14—C151.486 (7)
Co2—O122.126 (4)C15—O121.249 (6)
C1—O11.249 (6)C15—O111.278 (6)
C1—O21.272 (6)O2—Co1ii2.121 (4)
C1—C21.478 (8)O2—Co1v2.125 (4)
C2—C41.374 (7)O6—Lu1vi2.206 (4)
C2—N11.383 (7)O7—Lu1vi2.261 (4)
C3—N11.323 (8)N1—Co1ii2.147 (5)
C3—N21.344 (7)N2—H10.87 (2)
C3—H30.9300N4—H20.85 (2)
C4—N21.374 (7)N5—H40.85 (2)
C4—C51.479 (7)O1W—H1W0.80 (5)
C5—O31.256 (7)O1W—H2W0.81 (5)
C5—O41.260 (7)O2W—H3W0.81 (5)
C6—O61.258 (7)O2W—H4W0.80 (6)
C6—O51.262 (6)O3W—H5W0.86 (5)
C6—C71.481 (7)O3W—H6W0.86 (6)
C7—C91.382 (8)
O9—Lu1—O6i168.24 (15)O6—C6—C7121.6 (5)
O9—Lu1—O380.23 (15)O5—C6—C7116.0 (5)
O6i—Lu1—O389.91 (15)C9—C7—N3109.7 (5)
O9—Lu1—O7i104.39 (15)C9—C7—C6136.0 (5)
O6i—Lu1—O7i80.05 (14)N3—C7—C6114.2 (5)
O3—Lu1—O7i144.82 (15)N3—C8—N4109.9 (5)
O9—Lu1—O1103.10 (16)N3—C8—H8125.1
O6i—Lu1—O180.68 (15)N4—C8—H8125.1
O3—Lu1—O177.20 (14)N4—C9—C7103.9 (5)
O7i—Lu1—O1132.94 (14)N4—C9—C10121.1 (5)
O9—Lu1—O1180.95 (15)C7—C9—C10134.9 (5)
O6i—Lu1—O11110.81 (14)O8—C10—O7122.9 (5)
O3—Lu1—O11140.82 (15)O8—C10—C9118.6 (5)
O7i—Lu1—O1173.48 (15)O7—C10—C9118.5 (5)
O1—Lu1—O1174.08 (14)O10—C11—O9125.5 (5)
O9—Lu1—O2W88.27 (17)O10—C11—C12118.2 (5)
O6i—Lu1—O2W82.72 (17)O9—C11—C12116.1 (5)
O3—Lu1—O2W73.16 (15)C14—C12—N5104.4 (5)
O7i—Lu1—O2W72.16 (15)C14—C12—C11134.2 (5)
O1—Lu1—O2W145.87 (15)N5—C12—C11121.2 (5)
O11—Lu1—O2W139.98 (15)N6—C13—N5110.3 (5)
N3—Co1—O2ii167.15 (17)N6—C13—H13124.8
N3—Co1—O576.85 (16)N5—C13—H13124.8
O2ii—Co1—O595.95 (15)C12—C14—N6109.5 (5)
N3—Co1—O2iii112.98 (17)C12—C14—C15135.0 (5)
O2ii—Co1—O2iii76.14 (16)N6—C14—C15115.2 (5)
O5—Co1—O2iii83.14 (15)O12—C15—O11123.1 (5)
N3—Co1—O497.10 (17)O12—C15—C14116.4 (5)
O2ii—Co1—O493.03 (15)O11—C15—C14120.5 (5)
O5—Co1—O4160.66 (16)C1—O1—Lu1142.1 (4)
O2iii—Co1—O482.44 (15)C1—O2—Co1ii117.9 (3)
N3—Co1—N1ii95.80 (18)C1—O2—Co1v132.2 (4)
O2ii—Co1—N1ii76.66 (16)Co1ii—O2—Co1v103.86 (16)
O5—Co1—N1ii111.04 (17)C5—O3—Lu1144.9 (4)
O2iii—Co1—N1ii150.45 (16)C5—O4—Co1130.4 (4)
O4—Co1—N1ii87.67 (17)C6—O5—Co1117.4 (4)
N6—Co2—N6iv180.0 (2)C6—O6—Lu1vi138.2 (4)
N6—Co2—O1Wiv93.28 (18)C10—O7—Lu1vi139.6 (4)
N6iv—Co2—O1Wiv86.72 (18)C11—O9—Lu1149.6 (4)
N6—Co2—O1W86.72 (18)C15—O11—Lu1134.8 (4)
N6iv—Co2—O1W93.28 (18)C15—O12—Co2116.7 (4)
O1Wiv—Co2—O1W180.0C3—N1—C2105.8 (5)
N6—Co2—O12iv102.48 (16)C3—N1—Co1ii136.7 (4)
N6iv—Co2—O12iv77.52 (16)C2—N1—Co1ii110.0 (4)
O1Wiv—Co2—O12iv91.60 (16)C3—N2—C4107.8 (5)
O1W—Co2—O12iv88.40 (16)C3—N2—H1124 (4)
N6—Co2—O1277.52 (16)C4—N2—H1127 (4)
N6iv—Co2—O12102.48 (16)C8—N3—C7106.3 (5)
O1Wiv—Co2—O1288.40 (16)C8—N3—Co1138.1 (4)
O1W—Co2—O1291.60 (16)C7—N3—Co1115.6 (4)
O12iv—Co2—O12180.0 (2)C8—N4—C9110.2 (5)
O1—C1—O2123.3 (5)C8—N4—H2124 (4)
O1—C1—C2122.4 (5)C9—N4—H2126 (4)
O2—C1—C2114.3 (5)C13—N5—C12109.3 (5)
C4—C2—N1109.3 (5)C13—N5—H4133 (4)
C4—C2—C1133.0 (5)C12—N5—H4118 (4)
N1—C2—C1117.3 (5)C13—N6—C14106.5 (5)
N1—C3—N2111.4 (5)C13—N6—Co2138.4 (4)
N1—C3—H3124.3C14—N6—Co2113.9 (3)
N2—C3—H3124.3Co2—O1W—H1W111 (5)
C2—C4—N2105.7 (5)Co2—O1W—H2W114 (5)
C2—C4—C5133.4 (5)H1W—O1W—H2W107 (3)
N2—C4—C5120.3 (5)Lu1—O2W—H3W119 (4)
O3—C5—O4124.3 (5)Lu1—O2W—H4W133 (4)
O3—C5—C4119.3 (5)H3W—O2W—H4W108 (3)
O4—C5—C4116.4 (5)H5W—O3W—H6W107 (3)
O6—C6—O5122.4 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x+1, y+2, z; (v) x, y+1, z; (vi) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O5vii0.86 (4)2.04 (4)2.900 (6)175 (5)
N2—H1···O6vii0.86 (4)2.59 (5)3.139 (6)122 (4)
O1W—H1W···O8v0.80 (5)2.04 (5)2.806 (6)161 (6)
N4—H2···O1Wiii0.85 (4)2.12 (3)2.948 (6)162 (5)
N4—H2···O100.85 (4)2.57 (6)3.016 (7)114 (4)
O1W—H2W···O8viii0.81 (5)1.94 (6)2.748 (6)174 (6)
O2W—H3W···O3W0.81 (5)1.89 (5)2.693 (6)172 (7)
N5—H4···O8ix0.85 (4)2.23 (4)3.052 (6)161 (5)
O2W—H4W···O10x0.80 (6)2.06 (6)2.851 (7)171 (6)
O3W—H5W···O11iii0.86 (5)2.06 (6)2.902 (6)166 (5)
O3W—H6W···O40.86 (6)2.10 (6)2.928 (6)163 (6)
C8—H8···O30.932.443.217 (7)141
C8—H8···O90.932.393.190 (7)144
C13—H13···O2Wxi0.932.423.352 (7)178
Symmetry codes: (iii) x, y1, z; (v) x, y+1, z; (vii) x+1, y, z+1; (viii) x, y+1, z; (ix) x, y, z; (x) x+1, y, z; (xi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Co3Lu2(C5H2N2O4)6(H2O)4]·2H2O
Mr1559.34
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.0332 (6), 8.3468 (7), 17.8510 (15)
α, β, γ (°)95.515 (1), 96.786 (1), 97.195 (1)
V3)1025.84 (15)
Z1
Radiation typeMo Kα
µ (mm1)6.08
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.308, 0.402
No. of measured, independent and
observed [I > 2σ(I)] reflections
5351, 3642, 3280
Rint0.023
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.069, 1.02
No. of reflections3642
No. of parameters376
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.38, 1.34

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O5i0.86 (4)2.04 (4)2.900 (6)175 (5)
N2—H1···O6i0.86 (4)2.59 (5)3.139 (6)122 (4)
O1W—H1W···O8ii0.80 (5)2.04 (5)2.806 (6)161 (6)
N4—H2···O1Wiii0.85 (4)2.12 (3)2.948 (6)162 (5)
N4—H2···O100.85 (4)2.57 (6)3.016 (7)114 (4)
O1W—H2W···O8iv0.81 (5)1.94 (6)2.748 (6)174 (6)
O2W—H3W···O3W0.81 (5)1.89 (5)2.693 (6)172 (7)
N5—H4···O8v0.85 (4)2.23 (4)3.052 (6)161 (5)
O2W—H4W···O10vi0.80 (6)2.06 (6)2.851 (7)171 (6)
O3W—H5W···O11iii0.86 (5)2.06 (6)2.902 (6)166 (5)
O3W—H6W···O40.86 (6)2.10 (6)2.928 (6)163 (6)
C8—H8···O30.93002.44003.217 (7)141.00
C8—H8···O90.93002.39003.190 (7)144.00
C13—H13···O2Wvii0.93002.42003.352 (7)178.00
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x, y1, z; (iv) x, y+1, z; (v) x, y, z; (vi) x+1, y, z; (vii) x+1, y+1, z.
 

Acknowledgements

The author acknowledges South China Normal University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526–m2527.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 4700–4702.  Web of Science CSD CrossRef Google Scholar
First citationZhu, L.-C., Zhao, Y., Yu, S.-J. & Zhao, M.-M. (2010). Inorg. Chem. Commun. 13, 1299–1303.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds