metal-organic compounds
Poly[[tetraaquabis(μ3-imidazole-4,5-dicarboxylato)tetrakis(μ2-imidazole-4,5-dicarboxylato)tricobalt(II)dilutetium(III)] dihydrate]
aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China
*Correspondence e-mail: licaizhu1977@yahoo.com.cn
In the title compound, {[Co3Lu2(C5H2N2O4)6(H2O)4]·2H2O}n, the LuIII ions are seven-coordinated in a monocapped trigonal prismatic coordination geometry by six O atoms from three imidazole-4,5-dicarboxylate ligands and one water O atom. The CoII ions are six-coordinated in a slightly distorted octahedral geometry and exhibit two types of coordination environments. One CoII ion, located on an inversion center, is coordinated by two water O atoms as well as two O atoms and two N atoms from two imidazole-4,5-dicarboxylate ligands. The other CoII ion is bonded to four O atoms and two N atoms from four imidazole-4,5-dicarboxylate ligands. These metal coordination units are connected by bridging imidazole-4,5-dicarboxylate ligands, generating a three-dimensional network. The is further stabilized by N—H⋯O, O—H⋯O, and C—H⋯O hydrogen-bonding interactions between the water molecules and the imidazole-4,5-dicarboxylate ligands.
Related literature
For lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands, see: Cheng et al. (2006); Kuang et al. (2007); Sun et al. (2006); Zhu et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536811045764/pv2457sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536811045764/pv2457Isup2.hkl
A mixture of CoSO4.7H2O(0.141 g, 0.5 mmol), Lu2O3 (0.100 g, 0.25 mmol), imidazole-4,5-dicarboxylic acid (0.156 g, 1 mmol), and H2O (10 ml) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 5 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Red block crystals suitable for X-ray analysis were obtained.
H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). H atoms bonded to N atoms and H atoms of water molecules were found from difference Fourier maps and refined isotropically with restraint: N—H = 0.87 Å, O—H = 0.82 or 0.86 Å and Uiso(H) = 1.5 Ueq(N, O).
In the past few years, interest in the lanthanide-transition metal heterometallic complexes with bridging multifunctionnal organic ligands has been increasing, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe (Cheng et al., 2006; Kuang et al., 2007; Sun et al., 2006; Zhu et al., 2010). As an extension of this research, the structure of the title compound, a new heterometallic coordination polymer, has been determined which is presented in this artcle.
The
of the title compound (Fig. 1), contains one LuIII ions, two CoII ions (one situated on an inversion centre), three imidazole-4,5-dicarboxylate ligands, two coordinated water molecules and one uncoordinated water molecule. The LuIII ion is seven-coordinated in a monocapped trigonal prismatic coordination geometry by six O atoms from three imidazole-4,5-dicarboxylate ligands and one water O atom. Both CoII ions are six-coordinated in a slightly distorted octahedral geometry. One CoII ion lies on an inversion center and is coordinated with two O atoms from two coordinated water molecules as well as two O atoms and two N atoms from two imidazole-4,5-dicarboxylate ligands. The other CoII ion is bonded to four O atoms and two N atoms from four imidazole-4,5-dicarboxylate ligands. These metal coordination units are connected by bridging imidazole-4,5-dicarboxylate ligands, generating a three-dimensional network (Fig. 2). The is further stabilized by N—H···O, O—H···O, and C—H···O hydrogen-bonding interactions between water molecules, and imidazole-4,5-dicarboxylate ligands (Table 1).For lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands, see: Cheng et al. (2006); Kuang et al. (2007); Sun et al. (2006); Zhu et al. (2010).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The asymmetric unit showing the atomic-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: A: 1 - x, 2 - y, -z; B: 1 - x, 1 - y, 1 - z; C: x, -1 + y, z; D: 1 + x, 1 + y, z. | |
Fig. 2. A view of the three-dimensional structure of the title compound, the hydrogen bonding interactions showed as broken lines. |
[Co3Lu2(C5H2N2O4)6(H2O)4]·2H2O | Z = 1 |
Mr = 1559.34 | F(000) = 751 |
Triclinic, P1 | Dx = 2.524 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0332 (6) Å | Cell parameters from 2416 reflections |
b = 8.3468 (7) Å | θ = 2.3–27.1° |
c = 17.8510 (15) Å | µ = 6.08 mm−1 |
α = 95.515 (1)° | T = 296 K |
β = 96.786 (1)° | Block, red |
γ = 97.195 (1)° | 0.20 × 0.18 × 0.15 mm |
V = 1025.84 (15) Å3 |
Bruker APEXII area-detector diffractometer | 3642 independent reflections |
Radiation source: fine-focus sealed tube | 3280 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
φ and ω scan | θmax = 25.2°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −5→8 |
Tmin = 0.308, Tmax = 0.402 | k = −10→8 |
5351 measured reflections | l = −19→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.069 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0315P)2 + 1.6377P] where P = (Fo2 + 2Fc2)/3 |
3642 reflections | (Δ/σ)max = 0.001 |
376 parameters | Δρmax = 1.38 e Å−3 |
12 restraints | Δρmin = −1.34 e Å−3 |
[Co3Lu2(C5H2N2O4)6(H2O)4]·2H2O | γ = 97.195 (1)° |
Mr = 1559.34 | V = 1025.84 (15) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.0332 (6) Å | Mo Kα radiation |
b = 8.3468 (7) Å | µ = 6.08 mm−1 |
c = 17.8510 (15) Å | T = 296 K |
α = 95.515 (1)° | 0.20 × 0.18 × 0.15 mm |
β = 96.786 (1)° |
Bruker APEXII area-detector diffractometer | 3642 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3280 reflections with I > 2σ(I) |
Tmin = 0.308, Tmax = 0.402 | Rint = 0.023 |
5351 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 12 restraints |
wR(F2) = 0.069 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 1.38 e Å−3 |
3642 reflections | Δρmin = −1.34 e Å−3 |
376 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Lu1 | 0.70112 (4) | 0.58976 (3) | 0.256536 (13) | 0.01212 (9) | |
Co1 | 0.38269 (11) | 0.06475 (9) | 0.42418 (4) | 0.01307 (17) | |
Co2 | 0.5000 | 1.0000 | 0.0000 | 0.0142 (2) | |
C1 | 0.6258 (8) | 0.7760 (7) | 0.4223 (3) | 0.0133 (12) | |
C2 | 0.7053 (8) | 0.6660 (7) | 0.4742 (3) | 0.0133 (12) | |
C3 | 0.8108 (9) | 0.6042 (7) | 0.5848 (4) | 0.0220 (14) | |
H3 | 0.8561 | 0.6115 | 0.6362 | 0.026* | |
C4 | 0.7216 (8) | 0.5032 (6) | 0.4657 (3) | 0.0103 (11) | |
C5 | 0.6582 (8) | 0.3717 (7) | 0.4028 (3) | 0.0143 (12) | |
C6 | 0.1022 (8) | −0.2023 (7) | 0.3429 (3) | 0.0132 (12) | |
C7 | 0.1583 (8) | −0.1024 (6) | 0.2827 (3) | 0.0134 (12) | |
C8 | 0.3107 (9) | 0.1157 (7) | 0.2497 (3) | 0.0195 (13) | |
H8 | 0.3898 | 0.2141 | 0.2508 | 0.023* | |
C9 | 0.1057 (8) | −0.1066 (7) | 0.2054 (3) | 0.0138 (12) | |
C10 | −0.0137 (8) | −0.2248 (7) | 0.1460 (3) | 0.0149 (12) | |
C11 | 0.2968 (9) | 0.4493 (7) | 0.1376 (3) | 0.0172 (13) | |
C12 | 0.3326 (8) | 0.5562 (7) | 0.0773 (3) | 0.0138 (12) | |
C13 | 0.2892 (9) | 0.6358 (7) | −0.0373 (3) | 0.0189 (13) | |
H13 | 0.2474 | 0.6347 | −0.0887 | 0.023* | |
C14 | 0.4316 (8) | 0.7088 (7) | 0.0769 (3) | 0.0135 (12) | |
C15 | 0.5438 (8) | 0.8341 (7) | 0.1358 (3) | 0.0140 (12) | |
O1 | 0.5982 (6) | 0.7412 (5) | 0.3519 (2) | 0.0215 (10) | |
O2 | 0.5862 (6) | 0.9071 (4) | 0.4555 (2) | 0.0147 (8) | |
O3 | 0.6263 (6) | 0.4072 (5) | 0.3362 (2) | 0.0195 (9) | |
O4 | 0.6378 (6) | 0.2288 (4) | 0.4209 (2) | 0.0192 (9) | |
O5 | 0.1840 (6) | −0.1529 (5) | 0.4094 (2) | 0.0200 (9) | |
O6 | −0.0193 (6) | −0.3287 (5) | 0.3281 (2) | 0.0221 (10) | |
O7 | −0.1116 (6) | −0.3469 (5) | 0.1661 (2) | 0.0194 (9) | |
O8 | −0.0117 (6) | −0.2004 (5) | 0.0777 (2) | 0.0191 (9) | |
O9 | 0.4324 (6) | 0.4605 (5) | 0.1932 (2) | 0.0264 (10) | |
O10 | 0.1470 (6) | 0.3533 (5) | 0.1285 (2) | 0.0256 (10) | |
O11 | 0.5857 (6) | 0.8010 (5) | 0.2037 (2) | 0.0184 (9) | |
O12 | 0.5894 (6) | 0.9710 (5) | 0.1153 (2) | 0.0178 (9) | |
N1 | 0.7588 (7) | 0.7273 (6) | 0.5495 (3) | 0.0176 (11) | |
N2 | 0.7899 (7) | 0.4672 (6) | 0.5366 (3) | 0.0164 (11) | |
N3 | 0.2873 (7) | 0.0359 (5) | 0.3091 (3) | 0.0158 (11) | |
N4 | 0.2033 (8) | 0.0336 (6) | 0.1876 (3) | 0.0204 (11) | |
N5 | 0.2432 (7) | 0.5151 (6) | 0.0041 (3) | 0.0173 (11) | |
N6 | 0.4021 (7) | 0.7565 (5) | 0.0052 (3) | 0.0139 (10) | |
H1 | 0.801 (9) | 0.372 (4) | 0.550 (3) | 0.021* | |
H2 | 0.209 (9) | 0.060 (7) | 0.1428 (17) | 0.021* | |
H4 | 0.181 (8) | 0.420 (4) | −0.008 (3) | 0.021* | |
O1W | 0.2273 (6) | 1.0469 (5) | 0.0245 (2) | 0.0223 (10) | |
H1W | 0.160 (8) | 0.965 (5) | 0.030 (4) | 0.033* | |
H2W | 0.168 (8) | 1.090 (7) | −0.008 (3) | 0.033* | |
O2W | 0.8496 (7) | 0.3654 (5) | 0.2236 (3) | 0.0252 (10) | |
H3W | 0.826 (10) | 0.284 (5) | 0.244 (4) | 0.038* | |
H4W | 0.931 (8) | 0.351 (7) | 0.197 (3) | 0.038* | |
O3W | 0.8053 (7) | 0.0904 (5) | 0.2910 (3) | 0.0314 (11) | |
H5W | 0.734 (8) | 0.016 (7) | 0.260 (3) | 0.047* | |
H6W | 0.741 (9) | 0.111 (8) | 0.328 (3) | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Lu1 | 0.01755 (14) | 0.00981 (13) | 0.00769 (13) | −0.00126 (9) | −0.00124 (9) | 0.00199 (9) |
Co1 | 0.0202 (4) | 0.0086 (4) | 0.0091 (4) | 0.0011 (3) | −0.0020 (3) | 0.0002 (3) |
Co2 | 0.0174 (6) | 0.0130 (5) | 0.0121 (6) | 0.0005 (4) | 0.0001 (5) | 0.0060 (4) |
C1 | 0.016 (3) | 0.014 (3) | 0.010 (3) | −0.001 (2) | 0.003 (2) | 0.006 (2) |
C2 | 0.015 (3) | 0.015 (3) | 0.011 (3) | 0.005 (2) | 0.006 (2) | −0.001 (2) |
C3 | 0.030 (4) | 0.018 (3) | 0.017 (3) | 0.007 (3) | −0.004 (3) | −0.001 (3) |
C4 | 0.011 (3) | 0.010 (3) | 0.010 (3) | 0.003 (2) | −0.002 (2) | 0.004 (2) |
C5 | 0.015 (3) | 0.013 (3) | 0.016 (3) | 0.002 (2) | 0.004 (2) | 0.003 (2) |
C6 | 0.015 (3) | 0.014 (3) | 0.011 (3) | 0.003 (2) | 0.002 (2) | 0.003 (2) |
C7 | 0.014 (3) | 0.010 (3) | 0.016 (3) | 0.000 (2) | 0.000 (2) | 0.003 (2) |
C8 | 0.029 (4) | 0.013 (3) | 0.014 (3) | −0.003 (3) | −0.004 (3) | 0.004 (2) |
C9 | 0.017 (3) | 0.015 (3) | 0.009 (3) | 0.002 (2) | 0.000 (2) | 0.004 (2) |
C10 | 0.013 (3) | 0.018 (3) | 0.015 (3) | 0.006 (2) | 0.001 (2) | 0.003 (2) |
C11 | 0.022 (3) | 0.010 (3) | 0.020 (3) | 0.003 (2) | 0.002 (3) | 0.005 (2) |
C12 | 0.012 (3) | 0.015 (3) | 0.013 (3) | 0.001 (2) | −0.002 (2) | 0.001 (2) |
C13 | 0.022 (3) | 0.021 (3) | 0.012 (3) | 0.003 (3) | −0.007 (3) | 0.002 (2) |
C14 | 0.011 (3) | 0.015 (3) | 0.014 (3) | 0.003 (2) | −0.001 (2) | 0.001 (2) |
C15 | 0.019 (3) | 0.013 (3) | 0.009 (3) | 0.000 (2) | 0.000 (2) | 0.002 (2) |
O1 | 0.035 (3) | 0.021 (2) | 0.009 (2) | 0.011 (2) | −0.0023 (18) | 0.0024 (17) |
O2 | 0.025 (2) | 0.0101 (19) | 0.0083 (19) | 0.0051 (17) | −0.0017 (17) | −0.0002 (16) |
O3 | 0.031 (2) | 0.015 (2) | 0.011 (2) | −0.0016 (18) | −0.0005 (18) | 0.0032 (17) |
O4 | 0.023 (2) | 0.011 (2) | 0.022 (2) | −0.0015 (17) | −0.0008 (19) | 0.0044 (17) |
O5 | 0.028 (2) | 0.018 (2) | 0.011 (2) | −0.0003 (18) | −0.0064 (18) | 0.0051 (17) |
O6 | 0.027 (2) | 0.018 (2) | 0.017 (2) | −0.0079 (19) | −0.0043 (19) | 0.0075 (18) |
O7 | 0.025 (2) | 0.015 (2) | 0.015 (2) | −0.0040 (18) | 0.0003 (18) | −0.0023 (17) |
O8 | 0.024 (2) | 0.022 (2) | 0.009 (2) | −0.0009 (18) | −0.0021 (18) | 0.0035 (17) |
O9 | 0.031 (3) | 0.020 (2) | 0.023 (2) | −0.0083 (19) | −0.012 (2) | 0.0112 (19) |
O10 | 0.021 (2) | 0.027 (2) | 0.026 (2) | −0.006 (2) | −0.003 (2) | 0.011 (2) |
O11 | 0.033 (2) | 0.013 (2) | 0.009 (2) | 0.0025 (18) | −0.0006 (18) | 0.0029 (16) |
O12 | 0.025 (2) | 0.013 (2) | 0.015 (2) | −0.0015 (17) | −0.0017 (18) | 0.0090 (17) |
N1 | 0.025 (3) | 0.017 (3) | 0.011 (2) | 0.003 (2) | −0.001 (2) | 0.002 (2) |
N2 | 0.024 (3) | 0.012 (2) | 0.014 (3) | 0.008 (2) | −0.002 (2) | 0.007 (2) |
N3 | 0.021 (3) | 0.012 (2) | 0.012 (2) | −0.003 (2) | −0.001 (2) | 0.000 (2) |
N4 | 0.026 (3) | 0.024 (3) | 0.013 (3) | 0.001 (2) | 0.005 (2) | 0.011 (2) |
N5 | 0.022 (3) | 0.013 (2) | 0.012 (3) | −0.004 (2) | −0.005 (2) | −0.004 (2) |
N6 | 0.017 (3) | 0.016 (3) | 0.008 (2) | 0.001 (2) | 0.002 (2) | 0.003 (2) |
O1W | 0.020 (2) | 0.027 (3) | 0.023 (2) | 0.0045 (19) | 0.0031 (19) | 0.014 (2) |
O2W | 0.035 (3) | 0.018 (2) | 0.026 (3) | 0.007 (2) | 0.013 (2) | 0.006 (2) |
O3W | 0.042 (3) | 0.020 (2) | 0.032 (3) | 0.001 (2) | 0.014 (2) | −0.001 (2) |
Lu1—O9 | 2.183 (4) | C7—N3 | 1.382 (7) |
Lu1—O6i | 2.206 (4) | C8—N3 | 1.320 (7) |
Lu1—O3 | 2.238 (4) | C8—N4 | 1.340 (8) |
Lu1—O7i | 2.261 (4) | C8—H8 | 0.9300 |
Lu1—O1 | 2.264 (4) | C9—N4 | 1.366 (7) |
Lu1—O11 | 2.270 (4) | C9—C10 | 1.477 (8) |
Lu1—O2W | 2.317 (4) | C10—O8 | 1.257 (7) |
Co1—N3 | 2.066 (5) | C10—O7 | 1.263 (7) |
Co1—O2ii | 2.121 (4) | C11—O10 | 1.226 (7) |
Co1—O5 | 2.123 (4) | C11—O9 | 1.281 (7) |
Co1—O2iii | 2.125 (4) | C11—C12 | 1.486 (8) |
Co1—O4 | 2.126 (4) | C12—C14 | 1.374 (8) |
Co1—N1ii | 2.147 (5) | C12—N5 | 1.374 (7) |
Co2—N6 | 2.077 (4) | C13—N6 | 1.316 (7) |
Co2—N6iv | 2.077 (4) | C13—N5 | 1.335 (8) |
Co2—O1Wiv | 2.092 (4) | C13—H13 | 0.9300 |
Co2—O1W | 2.092 (4) | C14—N6 | 1.377 (7) |
Co2—O12iv | 2.126 (4) | C14—C15 | 1.486 (7) |
Co2—O12 | 2.126 (4) | C15—O12 | 1.249 (6) |
C1—O1 | 1.249 (6) | C15—O11 | 1.278 (6) |
C1—O2 | 1.272 (6) | O2—Co1ii | 2.121 (4) |
C1—C2 | 1.478 (8) | O2—Co1v | 2.125 (4) |
C2—C4 | 1.374 (7) | O6—Lu1vi | 2.206 (4) |
C2—N1 | 1.383 (7) | O7—Lu1vi | 2.261 (4) |
C3—N1 | 1.323 (8) | N1—Co1ii | 2.147 (5) |
C3—N2 | 1.344 (7) | N2—H1 | 0.87 (2) |
C3—H3 | 0.9300 | N4—H2 | 0.85 (2) |
C4—N2 | 1.374 (7) | N5—H4 | 0.85 (2) |
C4—C5 | 1.479 (7) | O1W—H1W | 0.80 (5) |
C5—O3 | 1.256 (7) | O1W—H2W | 0.81 (5) |
C5—O4 | 1.260 (7) | O2W—H3W | 0.81 (5) |
C6—O6 | 1.258 (7) | O2W—H4W | 0.80 (6) |
C6—O5 | 1.262 (6) | O3W—H5W | 0.86 (5) |
C6—C7 | 1.481 (7) | O3W—H6W | 0.86 (6) |
C7—C9 | 1.382 (8) | ||
O9—Lu1—O6i | 168.24 (15) | O6—C6—C7 | 121.6 (5) |
O9—Lu1—O3 | 80.23 (15) | O5—C6—C7 | 116.0 (5) |
O6i—Lu1—O3 | 89.91 (15) | C9—C7—N3 | 109.7 (5) |
O9—Lu1—O7i | 104.39 (15) | C9—C7—C6 | 136.0 (5) |
O6i—Lu1—O7i | 80.05 (14) | N3—C7—C6 | 114.2 (5) |
O3—Lu1—O7i | 144.82 (15) | N3—C8—N4 | 109.9 (5) |
O9—Lu1—O1 | 103.10 (16) | N3—C8—H8 | 125.1 |
O6i—Lu1—O1 | 80.68 (15) | N4—C8—H8 | 125.1 |
O3—Lu1—O1 | 77.20 (14) | N4—C9—C7 | 103.9 (5) |
O7i—Lu1—O1 | 132.94 (14) | N4—C9—C10 | 121.1 (5) |
O9—Lu1—O11 | 80.95 (15) | C7—C9—C10 | 134.9 (5) |
O6i—Lu1—O11 | 110.81 (14) | O8—C10—O7 | 122.9 (5) |
O3—Lu1—O11 | 140.82 (15) | O8—C10—C9 | 118.6 (5) |
O7i—Lu1—O11 | 73.48 (15) | O7—C10—C9 | 118.5 (5) |
O1—Lu1—O11 | 74.08 (14) | O10—C11—O9 | 125.5 (5) |
O9—Lu1—O2W | 88.27 (17) | O10—C11—C12 | 118.2 (5) |
O6i—Lu1—O2W | 82.72 (17) | O9—C11—C12 | 116.1 (5) |
O3—Lu1—O2W | 73.16 (15) | C14—C12—N5 | 104.4 (5) |
O7i—Lu1—O2W | 72.16 (15) | C14—C12—C11 | 134.2 (5) |
O1—Lu1—O2W | 145.87 (15) | N5—C12—C11 | 121.2 (5) |
O11—Lu1—O2W | 139.98 (15) | N6—C13—N5 | 110.3 (5) |
N3—Co1—O2ii | 167.15 (17) | N6—C13—H13 | 124.8 |
N3—Co1—O5 | 76.85 (16) | N5—C13—H13 | 124.8 |
O2ii—Co1—O5 | 95.95 (15) | C12—C14—N6 | 109.5 (5) |
N3—Co1—O2iii | 112.98 (17) | C12—C14—C15 | 135.0 (5) |
O2ii—Co1—O2iii | 76.14 (16) | N6—C14—C15 | 115.2 (5) |
O5—Co1—O2iii | 83.14 (15) | O12—C15—O11 | 123.1 (5) |
N3—Co1—O4 | 97.10 (17) | O12—C15—C14 | 116.4 (5) |
O2ii—Co1—O4 | 93.03 (15) | O11—C15—C14 | 120.5 (5) |
O5—Co1—O4 | 160.66 (16) | C1—O1—Lu1 | 142.1 (4) |
O2iii—Co1—O4 | 82.44 (15) | C1—O2—Co1ii | 117.9 (3) |
N3—Co1—N1ii | 95.80 (18) | C1—O2—Co1v | 132.2 (4) |
O2ii—Co1—N1ii | 76.66 (16) | Co1ii—O2—Co1v | 103.86 (16) |
O5—Co1—N1ii | 111.04 (17) | C5—O3—Lu1 | 144.9 (4) |
O2iii—Co1—N1ii | 150.45 (16) | C5—O4—Co1 | 130.4 (4) |
O4—Co1—N1ii | 87.67 (17) | C6—O5—Co1 | 117.4 (4) |
N6—Co2—N6iv | 180.0 (2) | C6—O6—Lu1vi | 138.2 (4) |
N6—Co2—O1Wiv | 93.28 (18) | C10—O7—Lu1vi | 139.6 (4) |
N6iv—Co2—O1Wiv | 86.72 (18) | C11—O9—Lu1 | 149.6 (4) |
N6—Co2—O1W | 86.72 (18) | C15—O11—Lu1 | 134.8 (4) |
N6iv—Co2—O1W | 93.28 (18) | C15—O12—Co2 | 116.7 (4) |
O1Wiv—Co2—O1W | 180.0 | C3—N1—C2 | 105.8 (5) |
N6—Co2—O12iv | 102.48 (16) | C3—N1—Co1ii | 136.7 (4) |
N6iv—Co2—O12iv | 77.52 (16) | C2—N1—Co1ii | 110.0 (4) |
O1Wiv—Co2—O12iv | 91.60 (16) | C3—N2—C4 | 107.8 (5) |
O1W—Co2—O12iv | 88.40 (16) | C3—N2—H1 | 124 (4) |
N6—Co2—O12 | 77.52 (16) | C4—N2—H1 | 127 (4) |
N6iv—Co2—O12 | 102.48 (16) | C8—N3—C7 | 106.3 (5) |
O1Wiv—Co2—O12 | 88.40 (16) | C8—N3—Co1 | 138.1 (4) |
O1W—Co2—O12 | 91.60 (16) | C7—N3—Co1 | 115.6 (4) |
O12iv—Co2—O12 | 180.0 (2) | C8—N4—C9 | 110.2 (5) |
O1—C1—O2 | 123.3 (5) | C8—N4—H2 | 124 (4) |
O1—C1—C2 | 122.4 (5) | C9—N4—H2 | 126 (4) |
O2—C1—C2 | 114.3 (5) | C13—N5—C12 | 109.3 (5) |
C4—C2—N1 | 109.3 (5) | C13—N5—H4 | 133 (4) |
C4—C2—C1 | 133.0 (5) | C12—N5—H4 | 118 (4) |
N1—C2—C1 | 117.3 (5) | C13—N6—C14 | 106.5 (5) |
N1—C3—N2 | 111.4 (5) | C13—N6—Co2 | 138.4 (4) |
N1—C3—H3 | 124.3 | C14—N6—Co2 | 113.9 (3) |
N2—C3—H3 | 124.3 | Co2—O1W—H1W | 111 (5) |
C2—C4—N2 | 105.7 (5) | Co2—O1W—H2W | 114 (5) |
C2—C4—C5 | 133.4 (5) | H1W—O1W—H2W | 107 (3) |
N2—C4—C5 | 120.3 (5) | Lu1—O2W—H3W | 119 (4) |
O3—C5—O4 | 124.3 (5) | Lu1—O2W—H4W | 133 (4) |
O3—C5—C4 | 119.3 (5) | H3W—O2W—H4W | 108 (3) |
O4—C5—C4 | 116.4 (5) | H5W—O3W—H6W | 107 (3) |
O6—C6—O5 | 122.4 (5) |
Symmetry codes: (i) x+1, y+1, z; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z; (iv) −x+1, −y+2, −z; (v) x, y+1, z; (vi) x−1, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1···O5vii | 0.86 (4) | 2.04 (4) | 2.900 (6) | 175 (5) |
N2—H1···O6vii | 0.86 (4) | 2.59 (5) | 3.139 (6) | 122 (4) |
O1W—H1W···O8v | 0.80 (5) | 2.04 (5) | 2.806 (6) | 161 (6) |
N4—H2···O1Wiii | 0.85 (4) | 2.12 (3) | 2.948 (6) | 162 (5) |
N4—H2···O10 | 0.85 (4) | 2.57 (6) | 3.016 (7) | 114 (4) |
O1W—H2W···O8viii | 0.81 (5) | 1.94 (6) | 2.748 (6) | 174 (6) |
O2W—H3W···O3W | 0.81 (5) | 1.89 (5) | 2.693 (6) | 172 (7) |
N5—H4···O8ix | 0.85 (4) | 2.23 (4) | 3.052 (6) | 161 (5) |
O2W—H4W···O10x | 0.80 (6) | 2.06 (6) | 2.851 (7) | 171 (6) |
O3W—H5W···O11iii | 0.86 (5) | 2.06 (6) | 2.902 (6) | 166 (5) |
O3W—H6W···O4 | 0.86 (6) | 2.10 (6) | 2.928 (6) | 163 (6) |
C8—H8···O3 | 0.93 | 2.44 | 3.217 (7) | 141 |
C8—H8···O9 | 0.93 | 2.39 | 3.190 (7) | 144 |
C13—H13···O2Wxi | 0.93 | 2.42 | 3.352 (7) | 178 |
Symmetry codes: (iii) x, y−1, z; (v) x, y+1, z; (vii) −x+1, −y, −z+1; (viii) −x, −y+1, −z; (ix) −x, −y, −z; (x) x+1, y, z; (xi) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Co3Lu2(C5H2N2O4)6(H2O)4]·2H2O |
Mr | 1559.34 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 7.0332 (6), 8.3468 (7), 17.8510 (15) |
α, β, γ (°) | 95.515 (1), 96.786 (1), 97.195 (1) |
V (Å3) | 1025.84 (15) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 6.08 |
Crystal size (mm) | 0.20 × 0.18 × 0.15 |
Data collection | |
Diffractometer | Bruker APEXII area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.308, 0.402 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5351, 3642, 3280 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.069, 1.02 |
No. of reflections | 3642 |
No. of parameters | 376 |
No. of restraints | 12 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.38, −1.34 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1···O5i | 0.86 (4) | 2.04 (4) | 2.900 (6) | 175 (5) |
N2—H1···O6i | 0.86 (4) | 2.59 (5) | 3.139 (6) | 122 (4) |
O1W—H1W···O8ii | 0.80 (5) | 2.04 (5) | 2.806 (6) | 161 (6) |
N4—H2···O1Wiii | 0.85 (4) | 2.12 (3) | 2.948 (6) | 162 (5) |
N4—H2···O10 | 0.85 (4) | 2.57 (6) | 3.016 (7) | 114 (4) |
O1W—H2W···O8iv | 0.81 (5) | 1.94 (6) | 2.748 (6) | 174 (6) |
O2W—H3W···O3W | 0.81 (5) | 1.89 (5) | 2.693 (6) | 172 (7) |
N5—H4···O8v | 0.85 (4) | 2.23 (4) | 3.052 (6) | 161 (5) |
O2W—H4W···O10vi | 0.80 (6) | 2.06 (6) | 2.851 (7) | 171 (6) |
O3W—H5W···O11iii | 0.86 (5) | 2.06 (6) | 2.902 (6) | 166 (5) |
O3W—H6W···O4 | 0.86 (6) | 2.10 (6) | 2.928 (6) | 163 (6) |
C8—H8···O3 | 0.9300 | 2.4400 | 3.217 (7) | 141.00 |
C8—H8···O9 | 0.9300 | 2.3900 | 3.190 (7) | 144.00 |
C13—H13···O2Wvii | 0.9300 | 2.4200 | 3.352 (7) | 178.00 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y+1, z; (iii) x, y−1, z; (iv) −x, −y+1, −z; (v) −x, −y, −z; (vi) x+1, y, z; (vii) −x+1, −y+1, −z. |
Acknowledgements
The author acknowledges South China Normal University for supporting this work.
References
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77. Web of Science CSD CrossRef CAS Google Scholar
Kuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526–m2527. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 4700–4702. Web of Science CSD CrossRef Google Scholar
Zhu, L.-C., Zhao, Y., Yu, S.-J. & Zhao, M.-M. (2010). Inorg. Chem. Commun. 13, 1299–1303. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the past few years, interest in the lanthanide-transition metal heterometallic complexes with bridging multifunctionnal organic ligands has been increasing, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe (Cheng et al., 2006; Kuang et al., 2007; Sun et al., 2006; Zhu et al., 2010). As an extension of this research, the structure of the title compound, a new heterometallic coordination polymer, has been determined which is presented in this artcle.
The asymmetric unit of the title compound (Fig. 1), contains one LuIII ions, two CoII ions (one situated on an inversion centre), three imidazole-4,5-dicarboxylate ligands, two coordinated water molecules and one uncoordinated water molecule. The LuIII ion is seven-coordinated in a monocapped trigonal prismatic coordination geometry by six O atoms from three imidazole-4,5-dicarboxylate ligands and one water O atom. Both CoII ions are six-coordinated in a slightly distorted octahedral geometry. One CoII ion lies on an inversion center and is coordinated with two O atoms from two coordinated water molecules as well as two O atoms and two N atoms from two imidazole-4,5-dicarboxylate ligands. The other CoII ion is bonded to four O atoms and two N atoms from four imidazole-4,5-dicarboxylate ligands. These metal coordination units are connected by bridging imidazole-4,5-dicarboxylate ligands, generating a three-dimensional network (Fig. 2). The crystal structure is further stabilized by N—H···O, O—H···O, and C—H···O hydrogen-bonding interactions between water molecules, and imidazole-4,5-dicarboxylate ligands (Table 1).